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Abstract. When building a unified vision system or gradually adding
new capabilities to a system, the usual assumption is that training data
for all tasks is always available. However, as the number of tasks grows,
storing and retraining on such data becomes infeasible. A new problem
arises where we add new capabilities to a Convolutional Neural Network
(CNN), but the training data for its existing capabilities are unavailable.
We propose our Learning without Forgetting method, which uses only
new task data to train the network while preserving the original capabili-
ties. Our method performs favorably compared to commonly used feature
extraction and fine-tuning adaption techniques and performs similarly to
multitask learning that uses original task data we assume unavailable. A
more surprising observation is that Learning without Forgetting may be
able to replace fine-tuning as standard practice for improved new task
performance.

Keywords: Convolutional neural networks + Transfer learning - Multi-
task learning - Deep learning - Visual recognition

1 Introduction

Many practical vision applications require learning new visual capabilities while
maintaining performance on existing ones. For example, a robot may be delivered
to someone’s house with a set of default object recognition capabilities, but
new site-specific object models need to be added. Or for construction safety,
a system can identify whether a worker is wearing a safety vest or hard hat,
but a superintendent may wish to add the ability to detect improper footware.
Ideally, the new tasks could be learned while sharing parameters from old ones,
without degrading performance on old tasks or having access to the old training
data. Legacy data may be unrecorded, proprietary, or simply too cumbersome
to use in training a new task. Though similar in spirit to transfer, multitask, and
lifelong learning, we are not aware of any work that provides a solution to the
problem of continually adding new prediction tasks based on adapting shared
parameters without access to training data for previously learned tasks.

In this paper, we demonstrate a simple but effective solution on a variety of
image classification problems with Convolutional Neural Network (CNN) clas-
sifiers. In our setting, a CNN has a set of shared parameters 65 (e.g., five con-
volutional layers and two fully connected layers for AlexNet [11] architecture),
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Fine Duplicating and  Feature Joint  Learning without
Tuning Fine Tuning  Extraction Training Forgetting

new task performance  good good X medium best V'best
original task performance X bad good good good v'good
training efficiency  fast fast fast X slow v fast
testing efficiency fast X slow fast fast v fast
storage requirement medium X large medium X large v'medium
requires previous task data no no no X yes v'no

Fig. 1. We wish to add new prediction tasks to an existing CNN vision system with-
out requiring access to the training data for existing tasks. This table shows relative
advantages of our method compared to commonly used methods.

task-specific parameters for previously learned tasks 6, (e.g., the output layer
for ImageNet [19] classification and corresponding weights), and randomly ini-
tialized task-specific parameters for new tasks 6, (e.g., scene classifiers). It is
useful to think of 8, and 6,, as classifiers that operate on features parameterized
by 5. Currently, there are three common approaches (Figs. 1 and 2) to learning
0,, while benefiting from previously learned 6:

Feature extraction (e.g., [6]): 05 and 6, are unchanged, and the outputs of
one or more layers are used as features for the new task in training 6,,.

Fine-tuning (e.g., [9]): 05 and 0,, are optimized for the new task, while 6, is
fixed. A low learning rate is typically used to prevent large drift in 6,. Potentially,
the original network could be duplicated and fine-tuned for each new task to
create a set of specialized networks.

Joint Training (e.g., [3]): All parameters 65, 6,, 0,, are jointly optimized, for
example by interleaving samples from each task.

Each of these strategies has a major drawback. Feature extraction typically
underperforms on the new task because the shared parameters fail to represent
some information that is discriminative for the new task. Fine-tuning degrades
performance on previously learned tasks because the shared parameters change
without new guidance for the original task-specific prediction parameters. Dupli-
cating and fine-tuning for each task results in linearly increasing test time as new
tasks are added, rather than sharing computation for shared parameters. Joint
training becomes increasingly cumbersome in training as more tasks are learned
and is not possible if the training data for previously learned tasks is unavailable.

We propose a new strategy that we call Learning without Forgetting
(LwF). Using only examples for the new task, we optimize both for high accuracy
for the new task and for preservation of responses on the existing tasks from
the original network. Clearly, if the new network produces exactly the same
outputs on all relevant images, its accuracy will be the same as the original
network. In practice, the images for the new task may provide a poor sampling
of the original task domain, but our experiments show that preserving outputs
on these examples is still an effective strategy to preserve performance on the
old task and also has an unexpected benefit of acting as a regularizer to improve
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Fig. 2. Illustration for our method (e) and methods we compare to (b—d). Images and
labels used in training are shown. Data for different tasks are used in alternation in
joint training.

ground truth

performance on the new task. Our Learning without Forgetting approach has
several advantages:

(1) Classification performance: Learning without Forgetting outperforms feature
extraction and, more surprisingly, fine-tuning on the new task while greatly
outperforming using fine-tuned parameters 6, on the old task.

(2) Computational efficiency: Training time is faster than joint training and
only slightly slower than fine-tuning, and test time is faster than if one uses
multiple fine-tuned networks for different tasks.

(3) Simplicity in deployment: Once a task is learned, the training data does not
need to be retained or reapplied to preserve performance in the adapting
network.

2 Related Work

Multi-task learning, transfer learning, and related methods have a long history.
In brief, our Learning without Forgetting approach could be seen as a combi-
nation of Distillation Networks [10] and fine-tuning [9]. Fine-tuning initializes
with parameters from an existing network trained on a related data-rich problem
and finds a new local minimum by optimizing parameters for a new task with a
low learning rate. The idea of Distillation Networks is to learn parameters in a
simpler network that produce the same outputs as a more complex ensemble of
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networks either on the original training set or a large unlabeled set of data. Our
approach differs in that we solve for a set of parameters that works well on both
old and new tasks using the same data to supervise learning of the new tasks
and to provide unsupervised output guidance on the old tasks.

We now summarize existing methods for transfer and multitask learning and
compare them to our approach.

Feature Extraction [6,17] uses a pre-trained deep CNN to compute features
for an image. The extracted features are the activations of one layer (usually
the last hidden layer) or multiple layers given the image. Classifiers trained on
these features can achieve competitive results, sometimes outperforming human-
engineered features [6]. Further studies [2] show how hyper-parameters, e.g. origi-
nal network structure, should be selected for better performance. Feature extrac-
tion does not modify the original network and allows new tasks to benefit from
complex features learned from previous tasks. However, these features are not
specialized for the new task and can often be improved by fine-tuning.

Fine-tuning [9] modifies the parameters of an existing CNN to train a new task.
The output layer is extended with randomly intialized weights for the new task
and a small learning rate is used to tune parameters from their original values
to minimize the loss on the new task. Using appropriate hyper-parameters for
training, the resulting model often outperforms feature extraction [2,9] or learn-
ing from a randomly initialized network [1,26]. Fine-tuning adapts the shared
parameters 65 to make them more discriminative for the new task, and the low
learning rate is an indirect mechanism to preserve some of the representational
structure learned in the original tasks. Our method provides a more direct way
to preserve representations that are important for the original task, improving
both original and new task performance relative to fine-tuning.

Adding new nodes to each network layer is a way to preserve the original
network parameters while learning new discriminative features. For example,
Terekhov et al. [21] proposes Deep Block-Modular Neural Networks for fully-
connected neural networks. Parameters for the original network are untouched,
and newly added nodes are fully connected to the layer beneath them. This
method has the downside of substantially expanding the number of parameters
in the network, and can underperform both fine-tuning and feature extraction if
insufficient training data is available to learn the new parameters. We experiment
with expanding the fully connected layers of original network but find that the
expansion does not provide an improvement on our original approach.

Our work also relates to methods that transfer knowledge between net-
works. Hinton et al. [10] propose Knowledge Distillation, where knowledge is
transferred from a large network or a network assembly to a smaller network
for efficient deployment. The smaller network is trained using a modified cross-
entropy loss (further described in Sect. 3) that encourages both large and small
responses of the original and new network to be similar. Romero et al. [18] builds
on this work to transfer to a deeper network by applying extra guidance on the
middle layer. Chen et al. [5] proposes the Net2Net method that immediately
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generates a deeper, wider network that is functionally equivalent to an existing
one. This technique can quickly initialize networks for faster hyper-parameter
exploration. These methods aim to produce a differently structured network that
approximates the original network, while we aim to find new parameters for the
original network structure (6s,6,) that approximate the original outputs while
tuning shared parameters 6, for new tasks.

Feature extraction and fine-tuning are special cases of Domain Adaptation
(when old and new tasks are the same) or Transfer Learning (different tasks).
Transfer Learning uses knowledge from one task to help another, as surveyed
by Pan et al. [15]. The Deep Adaption Network by Long et al. [13] matches the
RKHS embedding of the deep representation of both source and target tasks to
reduce domain bias. Another similar domain adaptation method is by Tzeng et
al. [23], which encourages the shared deep representation to be indistinguishable
across domains. This method also uses knowledge distillation, but to help train
the new domain instead of preserving the old task. Domain adaptation and
transfer learning require that at least unlabeled data is present for both task
domains. In contrast, we are interested in the case when training data for the
original tasks (i.e. source domains) are not available.

Multitask learning (e.g., [3]) differs from transfer learning in that it aims at
improving all tasks simultaneously by combining the common knowledge from
all tasks. Each task provides extra training data for the parameters that are
shared or constrained, serving as a form of regularization for the other tasks [4].
For neural networks, Caruana [3] gives a detailed study of multi-task learning.
Usually the bottom layers of the network are shared, while the top layers are
task-specific. Multitask learning requires data from all tasks to be present, while
our method requires only data for the new tasks.

Methods that integrate knowledge over time, e.g. Lifelong Learning [22]
and Never Ending Learning [14], are also related. Lifelong learning focuses on
flexibly adding new tasks while transferring knowledge between tasks. Never
Ending Learning focuses on building diverse knowledge and experience (e.g. by
reading the web every day). Though topically related to our work, these methods
do not provide a way to preserve performance on existing tasks without the
original training data. Ruvolo et al. [7] describe a method to efficiently add
new tasks to a multitask system, co-training all tasks while using only new task
data. However, the method assumes that weights for all classifiers and regression
models can be linearly decomposed into a set of bases. In contrast with our
method, the algorithm applies only to logistic or linear regression on engineered
features, and these features cannot be made task-specific, e.g. by fine-tuning.

3 Learning Without Forgetting

Given a CNN with shared parameters 05 and task-specific parameters 0,
(Fig.2(a)), our goal is to add task-specific parameters 6,, for a new task and
to learn parameters that work well on old and new tasks, using images and
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LEARNINGWITHOUTFORGETTING:
Start with:
0s: shared parameters
0,: task specific parameters for each old task
Xn, Yy training data and ground truth on the new task
Initialize:
Y, < CONN(X,, 0s, 6,) // compute output of old tasks for new data
0 <RANDINIT(|0,|) // randomly initialize new parameters
Train:
Define Y, = CNN(X,,, 05, 6,) // old task output
Define ¥, = CNN(X,,, 0s, 0,,) /] new task output
02, 05, 0 axgmin (Lota(Yo, Vo) + Lncw(Ya, Vo) + R(0s, 60, 00))

65.80.6

Fig. 3. Procedure for learning without forgetting.

labels from only the new task (i.e., without using data from existing tasks). Our
algorithm is outlined in Fig. 3, and the network structure illustrated in Fig. 2(e).

First, we record responses y, on each new task image from the original net-
work for outputs on the old tasks (defined by 65 and 6,). Our experiments involve
classification, so the responses are the set of label probabilities for each training
image. Nodes for each new class are added to the output layer, fully connected
to the layer beneath, with randomly initialized weights 6,,. The number of new
parameters is equal to the number of new classes times the number of nodes
in the last shared layer, typically a very small percent of the total number of
parameters. In our experiments (Sect.4.2), we also compare alternate ways of
modifying the network for the new task.

Next, we train the network to minimize loss for all tasks and regularization R
using stochastic gradient descent. The regularization R corresponds to a simple
weight decay of 0.0005. When training, we first freeze 5 and 6, and train 6,, to
convergence. Then, we jointly train all weights until convergence.

For simplicity, we denote the loss functions, outputs, and ground truth for
single examples. The total loss is averaged over all images in a batch in training.
For new tasks, the loss encourages predictions ¥, to be consistent with the
ground truth y,. The tasks in our experiments are multiclass classification, so
we use the common [11,20] multinomial logistic loss:

‘Cnew(}’nvyn) = —Yn- IOgyn (1)

where ¥, is the softmax output of the network and y, is the one-hot ground
truth label vector. If there are multiple new tasks, or if the task is multi-label
classification where we make true/false predictions for each label, we take the
sum of losses across the new tasks and the labels.

For each original task, we want the output probabilities for each image to
be close to the recorded output from the original network. We use the Knowl-
edge Distillation loss, which was found by Hinton et al. [10] to work well for
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encouraging the outputs of one network to approximate the outputs of another.
This is a modified cross-entropy loss that increases the weight for smaller
probabilities:

l

Lota(yor50) = —H(yh55) = — > 4 log 7.V (2)
i=1
where | is the number of labels and ygi)7 ?)é)(i) are the modified versions of recorded

and current probabilities y((f), g]((f):

o _ WY e @Y7 )
° (4) ’ ° ~(5) '
(s T 55 @)

If there are multiple old tasks, or if an old task is multi-label classification, we
take the sum of the loss for each old task and label. Hinton et al. [10] sug-
gest that setting 7" > 1, which increases the weight of smaller logit values and
encourages the network to better encode similarities among classes. We use 1" = 2
according to a grid search on a held out set, which aligns with the author’s rec-
ommendations. In experiments, use of knowledge distillation loss leads to similar
performance to other reasonable losses. Therefore, it is important to constrain
outputs for original tasks to be similar to the original network, but the similarity
measure is not crucial.

Implementation Details. We use MatConvNet [24] to train our networks using
stochastic gradient descent with momentum of 0.9 and dropout enabled in the
fully connected layers. The data normalization of the original task is used for
the new task. The resizing follows the implementation of the original network,
which is 256 x 256 for AlexNet and 256 pixels in the shortest edge with aspect
ratio preserved for VGG. We randomly jitter the training data by taking random
fixed-size crops of the resized images and adding variance to the RGB values, as
with AlexNet. This data augmentation is applied to feature extraction too.

When training networks, we follow the standard practices for fine-tuning
existing networks. We use a learning rate much smaller than when training the
original network (0.1 ~ 0.02 times the original rate), and lower it once by 10x
after the accuracy on a held out set plateaus. The learning rates are selected to
maximize new task performance with a reasonable number of epochs. The com-
pared methods converge at similar speeds, so we used the same number of epochs
for each method (but not the same for different task pairs). For each scenario, the
same learning rate are shared by all methods except feature extraction, which
uses 5x the learning rate due to its small number of parameters.

For the feature extraction baseline, we extract features as the last hidden
layer of the original network and classify with a two-layer network with 4096
nodes in the hidden layer. For joint training, loss for one task’s output nodes
is only applied for its own training images. The same number of images are
subsampled for every task in each epoch to balance their loss, and we interleave
batches of different tasks for gradient descent.
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Efficiency Comparison. The most computationally expensive part of using the
neural network is evaluating or back-propagating through the shared parameters
05, especially the convolutional layers. For training, feature extraction is the
fastest because only the new task parameters are tuned. LwF is slightly slower
than fine-tuning because it needs to back-propagate through 6, for old tasks but
needs to evaluate and back-propagate through 6, only once. Joint training is
the slowest, because different images are used for different tasks, and each task
requires separate back-propagation through the shared parameters.

All methods take approximately the same amount of time to evaluate a test
image. However, duplicating the network and fine-tuning for each task takes m
times as long to evaluate, where m is the total number of tasks.

4 Experiments

Our experiments are designed to evaluate whether Learning without Forgetting
(LwF) is an effective method to learn a new task while preserving performance on
old tasks. We compare to baselines of feature extraction and fine-tuning, which
are common approaches to leverage an existing network for a new task with-
out requiring training data for the original tasks. Feature extraction maintains
the exact performance on the original task. We also compare to joint training
(sometimes called multitask learning) as an upper-bound on possible perfor-
mance, since joint training uses images and labels for original and new tasks,
while LwF uses only images and labels for the new tasks.

We experiment on a variety of image classification problems with varying
degrees of inter-task similarity. For the original (“old”) task, we consider the
ILSVRC 2012 subset of ImageNet [19] and the Places2 [27] taster challenge
in ILSVRC 2015 [19]. ImageNet has 1,000 object category classes and more
than 1,000,000 training images. Places2 has 401 scene classes and more than
8,000,000 training images. We use these large datasets also because we assume
we start from a well-trained network, which implies a large-scale dataset. For the
new tasks, we consider PASCAL VOC 2012 image classification [8] (“VOC”),
Caltech-UCSD Birds-200-2011 fine-grained classification [25] (“CUB”), and
MIT indoor scene classification [16] (“Scenes”). These datasets have a mod-
erate number of images for training: 5,717 for VOC; 5,994 for CUB; and 5,360
for Scenes. Among these, VOC is very similar to ImageNet, as subcategories
of its labels can be found in ImageNet classes. MIT indoor scene dataset is in
turn similar to Places2. CUB is dissimilar to both, since it includes only birds
and requires capturing the fine details of the image to make a valid prediction.
In one experiment, we use MNIST [12] as the new task expecting our method
to underperform, since the hand-written characters are completely unrelated to
ImageNet classes.

We mainly use the AlexNet [11] network structure because it is fast to train
and well-studied by the community [2,9,26]. We also verify that similar results
hold using 16-layer VGGnet [20] on a smaller set of experiments. The original
networks pre-trained on ImageNet and Places2 are obtained from public online
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Table 1. Performance for the single new task scenario. For all tables, the difference
of methods’ performance with LwF (our method) is reported to facilitate comparison.
Mean Average Precision is reported for VOC and accuracy for all others. On the new
task, LwF outperforms baselines, and performs comparably with joint training, which
uses old task training data we consider unavailable for the other methods. On the old
task, our method greatly outperforms fine-tuning and achieves similar performance to
joint training. An exception is the MNIST task where LwF does not perform well.

(a) Using AlexNet structure (validation performance for ImageNet/Places2/VOC)

ImageNet—VOC ImageNet—CUB ImageNet—Scenes Places2—VOC Places2—CUB Places2—Scenes ImageNet—MNIST

old new old new old new old new old new old new old new

LwF (ours) 56.5 75.8 55.1 57.5 55.9 64.5 433 721 384 417 430 75.3 52.1 99.0
fine-tuning -1.4 -0.3 -5.1 -1.5 -3.4 -1.0 -1.8 -0.1 -9.1 -0.8 -4.1 -0.8 -4.9 0.2
feat. extraction 0.5 -1.1 2.0 -5.3 1.2 -3.7 -0.2 -3.9 4.7 -19.4 0.2 -0.5 5.0 -0.8

Jjoint training 0.2 0.0 0.5 -0.9 0.5 -0.6 -0.1 0.1 3.3 -0.2 0.2 0.1 4.7 0.2

(b) Test set performance  (¢) Using VGGnet structure

Places2—VOC ImageNet—CUB ImageNet—Scenes
old new old new old new
LwF (ours) 41.1 75.2 LwF (ours) 65.6 72.3 68.1 4.7
fine-tuning -1.9 -0.1 fine-tuning -11.0 -0.2 -5.6 -0.7
feat. extraction 0.1 -3.5 feat. extraction 3.1 -9.1 0.7 -5.1
joint training 0.0 0.0 joint training 2.5 2.3 2.0 0.8

sources. At suggestion of the authors of Places2, we fine-tuned the provided
Places2 original network on the Places2 training set, due to its sensitivity to
image rescaling methods, which slightly improved performance (44 % top-1 val-
idation accuracy with 10 jitters) compared to the reported 43 %.

We report the center image crop mean average precision for VOC, and center
image crop accuracy for all other tasks. We report the accuracy of the validation
set of VOC, ImageNet and Places2, and on the test set of CUB and Scenes
dataset. Since the test performance of the former three cannot be evaluated
frequently, we only provide the performance on their test sets in one experiment.

Our experiments investigate adding a single new task to the network or
adding multiple tasks one-by-one. We also examine effect of dataset size and
network design. In ablation studies, we examine alternative response-preserving
losses, the utility of expanding the network structure, and fine-tuning with a
lower learning rate as a method to preserve original task performance.

4.1 Main Experiments

Single New Task Scenario. First, we compare the results of learning one new
task among different task pairs and different methods. Table 1(a) and (b) shows
the performance of our method, and the relative performance of other methods
compared to it using AlexNet. We make the following observations:

On the new task, our method consistently outperforms fine-tuning and feature
extraction except for ImageNet—MNIST. The gain over fine-tuning was unex-
pected and indicates that preserving outputs on the old task is an effective
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regularizer. (See Sect.5 for a brief discussion). This finding motivates replac-
ing fine-tuning with LwF as the standard approach for adapting a network
to a new task.

On the old task, our method performs better than fine-tuning but often under-
performs feature extraction. By changing shared parameters 6, fine-tuning
significantly degrades performance on the task for which the original network
was trained. By jointly adapting 6, and 6, to generate similar outputs to the
original network on the old task, the performance loss is greatly reduced.
Our method performs similarly to joint training. Our method tends to slightly
outperform joint training on the new task but underperform on the old task,
which we attribute to a different balance of the losses in the two methods.
Overall, the methods perform similarly, a positive result since our method
does not require access to the old task training data and is faster to train.
Dissimilar new tasks degrade old task performance more. For example, CUB
is very dissimilar task from Places2 [2], and adapting the network to CUB
leads to a Places2 accuracy loss of 13.8 % (4.7 %+9.1 %) for fine-tuning, 4.7 %
for LwF, and 1.4% (4.7% — 3.3 %) for joint training. In these cases, learning
the new task causes considerable drift in the shared parameters, which cannot
fully be accounted for by LwF because the distribution of CUB and Places2
images is very different. Even joint training leads to more accuracy loss on
Places2—CUB'’s old task because it cannot find a set of shared parameters
that works well for both tasks. As expected, our method does not outperform
fine-tuning for ImageNet-; MNIST on the new task, since the hand-written
characters provide poor indirect supervision for the old task, and the old
task accuracy drops substantially with both methods, though more with fine-
tuning.

Similar observations hold for both VGG and AlexNet structures, except that
joint training outperforms consistently for VGG (Table 1(c)), indicating that
these results are likely to hold for other network structures as well, though
joint training may have a larger benefit on networks with more representa-
tional power.

Multiple New Task Scenario. Second, we compare different methods when
we cumulatively add new tasks to the system, simulating a scenario in which new
object or scene categories are gradually added to the prediction vocabulary. We
experiment on gradually adding VOC task to AlexNet trained on Places2, and
adding Scene task to AlexNet trained on ImageNet. These pairs have moderate
difference between original task and new tasks. We split the new task classes
into three parts according to their similarity — VOC into transport, animals
and objects, and Scenes into large rooms, medium rooms and small rooms. The
images in Scenes are split into these three subsets. Since VOC is a multilabel
dataset, it is not possible to split the images into different categories, so the
labels are split for each task and images are shared among all the tasks.

Each time a new task is added, the responses of all other tasks Y, are re-
computed, to emulate the situation where data for all original tasks are unavail-
able. Therefore, Y, for older tasks changes each time. For feature extractor and
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Fig. 4. Performance of each task when gradually adding new tasks to a pre-trained
network. Different tasks are shown in different sub-graphs. The z-axis labels indicate
the new task added to the network each time. Error bars shows +2 standard deviations
for 3 runs with different 0,, random initializations. Markers are jittered horizontally for
visualization, but line plots are not jittered to facilitate comparison. For all tasks, our
method degrades slower over time than fine-tuning and outperforms feature extraction.
For Places2—VOC, our method performs comparably to joint training.

joint training, cumulative training does not apply, so we only report their perfor-
mance on the final stage where all tasks are added. Figure 4 shows the results on
both dataset pairs. Our findings are usually consistent with the single new task
scenario: LwF outperforms fine-tuning on all tasks, outperforms feature extrac-
tion for new tasks, and except on the old tasks in ImageNet— Scenes, performs
similarly overall to joint training.

Influence of Dataset Size. We inspect whether the size of the new task dataset
affects our performance relative to other methods. We perform this experiment
on adding VOC to Places2 AlexNet. We subsample the VOC dataset to 30 %,
10% and 3% when training the network, and report the result on the entire
validation set. Note that for joint training, since each dataset has a different
size, the same number of images are subsampled to train both tasks (resampled
each epoch), which means a smaller number of Places2 images being used at one
time. Our results are shown in Fig. 5. Results show that the same observations
hold, except that our method suffers more than joint training on the old task as
the number of examples is decreased. Differences between LwF and fine-tuning
on the old task and between LwE and feature extraction on the new task increase
with less data.

4.2 Design Choices and Alternatives

Choice of Task-Specific Layers. It is possible to regard more layers as task-
specific 6,, 0, (see Fig.6(a)) instead of regarding only the output nodes as
task-specific. This may provide advantage for both tasks because later layers
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Fig. 5. Influence of subsampling new task training set on compared methods. The z-
axis indicates diminishing training set size. Three runs of our experiments with different
random 6, initialization and dataset subsampling are shown. Scatter points are jittered
horizontally for visualization, but line plots are not jittered to facilitate comparison.
Differences between LwF and fine-tuning on the old task and between LwF and feature
extraction on the new task increase with less data.
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B recorded old [J fine-tune
new task ‘o tasks’ response  new task N [*] unchanged
image H" image |:|_> new task Net2Net weights
label ~>0-init’d weights

|:|" new task label

Fig. 6. Illustration for alternative network modification methods. In (a), more fully
connected layers are task-specific, rather than shared. In (b), nodes for multiple old
tasks (not shown) are connected in the same way. LwF can also be applied to Network
Expansion by unfreezing all nodes and matching output responses on the old tasks

tend to be more task specific [2]. However, doing so requires more storage, as
most parameters in AlexNet are in the first two fully connected layers. Table 2(a)
shows the comparison on three task pairs. Qur results do not indicate any advan-
tage to having additional task-specific layers.

Network Expansion. We explore another way of modifying the network struc-
ture, which we refer to as “network expansion”, which adds nodes to some layers.
This allows for extra new-task-specific information in the earlier layers while still
using the original network’s information.

Figure 6(b) illustrates this method. We add 1024 nodes to each layer of the
top 3 layers. The weights from all nodes at previous layer to the new nodes at
current layer are initialized the same way Net2Net [5] would expand a layer by
copying nodes. Weights from new nodes at previous layer to the original nodes at
current layer are initialized to zero. The top layer weights of the new nodes are
randomly re-initialized. Then we either freeze the existing weights and fine-tune
the new weights on the new task (“network expansion”), or train using Learning
without Forgetting as before (“network expansion + LwF”).

Table 2(b) shows the comparison with our original method. Network expan-
sion by itself performs better than feature extraction, but neither variant performs
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Table 2. Performance of our method versus various alternative design choices. In most
cases, these alternative choices do not provide consistent advantage or disadvantage
compared to our method.

(a) Changing the number of task-specific layers

Places2—VOC ImageNet—Scenes ImageNet—CUB

starting from old new old new old new
5.9 64.5 55.1 57.5
5.5 64.2 54.8 56.5
5.8 64.2 55.2 56.1

5

output layer (ours) 43.3 72.1 l
last hidden layer 43.1 72.5
27 Jast hidden (Fig. 6(a)) 43.1  72.6

SRt

(b) Comparison of our method, network expansion, and L2 soft-constraint. Perfor-
mance relative to Learning without Forgetting is reported. Fine-tuning and feature
extraction are shown for comparison. Network expansion by itself underperforms
on the new task. Using it with LwF yields worse to similar performance as LwF.
L2 soft-constraint produces results between fine-tuning and feature extraction.

ImageNet—VOC ImageNet—CUB ImageNet—Scenes Places2—VOC Places2—CUB Places2—Scenes

old new old new old new old new old new old new

LwF (ours) 56.5 75.8 55.1 57.5 55.9 64.5 43.3 72.1 38.4 41.7 43.0 75.3

fine-tuning  -1.4 -0.3 -5.1 -1.5 -3.4 -1.0 -1.8 -0.1 -9.1 -0.8 -4.1 -0.8

feat. extraction 0.5 -1.1 2.0 -5.3 1.2 -3.7 -0.2 -3.9 4.7 -19.4 0.2 -0.5

network expansion 0.5 -1.1 2.0 -3.6 1.2 -2.0 -0.2 -3.6 4.7 -6.9 0.2 0.0

network expansion + LwF 0.0 0.1 -0.3 -0.5 -0.2 -0.4 0.0 0.2 1.3 -0.1 -0.3 -0.2

L2 weight soft-constraint -1.0 -0.4 -4.2 -2.0 -3.0 -1.0 -1.5 -0.5 -8.5 -3.3 -4.0 -0.4
(¢) Changing the response-  (d) Attempt to lower 6’s learning rate when fine-
preserving loss. Only Lo un- tuning. The degradation of old task performance is
derperforms on the old task. not avoided, and the new task performance drops.

Places2 VOC ImageNet—VOC Places2—VOC

LwF (Li) 435 719 old new old new

LwF (L2) 422 723 fine-tuning  55.2 75.6 41.5 71.9

LwF (cross-entropy) ~ 43.6  71.8 fine-tuning (10% 05 learning rate) 55.9 75.5 41.5 714

LwF (know. distill.)  43.3  72.1

as well as LwF on new tasks. We leave exploration of other possible versions of
network expansion (e.g. number of top layers to expand, number of new nodes
at each layer, parameter initialization method) as future work.

L2 Soft-Constrained Weights. Perhaps an obvious alternative to LwF is to
keep the network parameters (instead of the response) close to the original. We
compare with the baseline that adds $A:[|w — wo||? to the loss for fine-tuning,
where w and wqy are flattened vectors of all shared parameters 65 and their
original values. Coeflicient A is set to 0.5 for VOC and 0.05 for other new tasks.
As shown in Table 2(b), our method outperforms this baseline, which produces
a result between feature extraction (no parameter change) and fine-tuning (free
parameter change). We believe that by regularizing the output, our method
maintains old task performance better than regularizing individual parameters,
since many small parameter changes could cause big changes in the outputs.

Choice of Response Preserving Loss. We compare the use of Ly, Ls, cross-
entropy loss, and knowledge distillation loss with T = 2 for keeping y., ¥/,
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similar. We test on adding VOC to Places2 AlexNet. Table 2(c) shows our results.
Results indicate no clear overall advantage or disadvantage for any loss, though
Lo underperforms on the original task.

Effect of Lower Learning Rate of Shared Parameters. We investigate
whether simply lowering the learning rate of the shared parameters 5 would
preserve the original task performance. The result is shown in Table2(d). A
reduced learning rate does not prevent fine-tuning from significantly reducing
original task performance, and it reduces new task performance. This shows
that simply reducing the learning rate of shared layers is insufficient for original
task preservation.

5 Discussion

We address the problem of adapting a vision system to a new task while pre-
serving performance on original tasks, without access to training data for the
original tasks. We propose the Learning without Forgetting method for convolu-
tional neural networks, which can be seen as a hybrid of knowledge distillation
and fine-tuning, learning parameters that are discriminative for the new task
while preserving outputs for the original tasks on the training data.

This work has implications for two uses. First, if we want to expand the set
of possible predictions on an existing network, our method performs similarly to
joint training but is faster to train and does not require access to the training
data for previous tasks. Second, if we care only about the performance for the
new task, our method consistently outperforms the current standard practice of
fine-tuning. Fine-tuning approaches use a low learning rate in hopes that the
parameters will settle in a “good” local minimum not too far from the original
values. Preserving outputs on the old task is a more direct and interpretable way
to retain the important shared structures learned for the previous tasks.

We see several directions for future work. We have demonstrated the effec-
tiveness of LwF for image classification but would like to further experiment
on semantic segmentation, detection, and problems outside of computer vision.
Additionally, one could explore variants of the approach, such as maintaining a
set of unlabeled images to serve as representative examples for previously learned
tasks. Theoretically, it would be interesting to bound the old task performance
based on preserving outputs for a sample drawn from a different distribution.
More generally, there is a need for approaches that are suitable for online learning
across different tasks, especially when classes have heavy tailed distributions.

Acknowledgement. This work is supported in part by NSF Awards 14-46765 and
10-53768 and ONR MURI N000014-16-1-2007.
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