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Abstract. Object proposals have contributed significantly to recent
advances in object understanding in images. Inspired by the success of
this approach, we introduce Deep Action Proposals (DAPs), an effective
and efficient algorithm for generating temporal action proposals from
long videos. We show how to take advantage of the vast capacity of deep
learning models and memory cells to retrieve from untrimmed videos
temporal segments, which are likely to contain actions. A comprehensive
evaluation indicates that our approach outperforms previous work on a
large scale action benchmark, runs at 134 FPS making it practical for
large-scale scenarios, and exhibits an appealing ability to generalize, i.e.
to retrieve good quality temporal proposals of actions unseen in training.

Keywords: Action proposals · Action detection · Long-short term
memory

1 Introduction

Nowadays, the ubiquity of digital cameras and social networks has increased
the amount of visual media content (especially videos) generated and shared by
people. In the face of this data deluge, it becomes crucial to develop efficient and
scalable algorithms that can intelligently parse/browse visual data to discover
semantic information. In this paper, we focus on the task of quickly localizing
temporal chunks in untrimmed videos that are likely to contain human activities
of interest. This is the well-known task of temporal action proposal generation.
The detected temporal proposals can facilitate and speedup activity detection,
indexing, and retrieval in long videos. For example, a “good” action proposal
method can retrieve video snippets of a home-run being scored within a large
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Fig. 1. An effective and efficient action proposal algorithm can localize segments of
varied duration around actions occurring along a video without exhaustively exploring
multiple temporal scales. This work shows how to produce high-quality temporal pro-
posals likely to contain actions and to be 10x faster that the state of the art approach.

corpus of baseball games or extract important moments during the construction
of a new skyscraper. Motivated by the large-scale nature of the problem, we
develop a temporal proposal algorithm that retrieves high fidelity proposals with
a much smaller computational cost than previous methods (refer to Fig. 1).

The idea of extracting regions with semantic content is not new in the com-
puter vision community. Object proposals have proven to be one of the key
elements in the current success of object detection at large scales, both in terms
of efficiency and high detection rates [28,29]. Efficient object proposal modules
have also enabled a boost in performance of other high-level visual tasks, such as
simultaneous detection and segmentation, object tracking, and image caption-
ing [13,14,16,20]. In order to push forward on high-level analysis of untrimmed
videos, we argue that the development of action proposal methods should be put
in the forefront of human activity understanding research.

Jain et al. [17] introduced the concept of action proposals by taking inspira-
tion from object proposal methods in the image domain. Most previous action
proposal approaches focused on producing spatio-temporal object proposals i.e.
retrieving cuboids or tubelets containing actions [1,6,10,11,24,39]. It is tempt-
ing to think that keeping the temporal part of these tubelets would result in
good temporal segments confining actions. However, it was recently shown that
the temporal footprint of some methods can be as accurate as sampling tempo-
ral proposals uniformly in the video [4]. Moreover, these methods evaluate their
performance on simple or repetitive actions in short video clips, which makes
it difficult to gauge their scalability to large collections of video sequences con-
taining more challenging activities [3,18]. Given the current state-of-the-art of
spatio-temporal action proposals, it is worth exploring how only temporal action
proposals can contribute to the semantic analysis of videos.

In fact, very recent work has explored the generation of temporal action
proposals directly from videos [4,22,30]. Most of these approaches focus on
exploring a large number of regions in the video at multiple scales (i.e. tem-
poral lengths) and selecting among them proposals through an efficient feature
extraction and classification pipeline. Unlike these methods and as illustrated in
Fig. 1, we propose an effective and efficient approach that leverages the capacity
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of deep learning models with memory blocks to extract action proposals at differ-
ent temporal scales in only one pass through the video. This is done by encoding
a video sequence as a discriminative sequence of states, from which action likely
segments can be localized with varied duration inside a video sequence.

Contributions: (i) We propose a new approach for temporal action proposal
generation, specifically targeting long videos. This is done by training a well-
suited memory network to reliably output the temporal location and scale of a
fixed number of proposals. (ii) Our model is able to generate proposals of mul-
tiple temporal scales with a single pass through the video and to generalize well
to new unseen actions. (iii) Extensive experiments on large-scale benchmarks
show that our method achieves a better recall than other proposal methods. (iv)
Our approach is computationally efficient and runs at 134 FPS.

1.1 Related Work

We summarize the most recent work on topics related to the task of action
proposal generation and our proposed methodology.

Object Proposals: Exhaustively running computationally intensive object
classifiers with a sliding window approach is not as common as it was eight
years ago. Instead, the use of generic or class-specific object proposals is now a
cornerstone in the object detection pipeline. These proposal algorithms retrieve
high-quality candidate regions that are likely to contain an object (high recall),
before classification is performed [8,15,29]. This approach has proven to be an
effective and scalable way to find possible locations of an object in an image.

The latest trend in this area is designing algorithms with high ranking quality
i.e. achieving high object recall with less number of bounding boxes, preferably
with a small computational overhead and the potential to scale to hundreds of
object categories [35,37,40]. Here, discriminative methods based on deep learning
models have helped improve the ranking quality of proposal approaches [7,28,
32,37]. Inspired by this work, we extend the use of deep and recurrent networks
to temporal action proposal generation by introducing a new architecture.

Action Detection: In contrast to object detection methods, the dominant app-
roach for action detection is still to use a sliding window approach [12,18,26]
combined with action classifiers trained on multiple features [2,9,33]. Previous
approaches have reduced the computational overhead of sliding window search
by using branch-and-bound techniques [5,27] and exploiting some characteristics
of the visual descriptors. In contrast, our model efficiently reduces the number
of evaluated windows by encoding a sequence of visual descriptors.

Spatio-Temporal Action Proposals: Recently, ideas from the area of object
proposals have been extrapolated to action recognition in the video domain
[6,10,11,17,21,24,39]. Most of these methods produce spatio-temporal object
segments to perform spatio-temporal detection of simple or cyclic actions on
short video sequences, hence their scalability to real-world scenarios is uncer-
tain. These methods rely on straddling of voxels [6,17], reasoning over dense
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trajectories [24,39], or non real-time object proposals [11], which increase their
computational cost and reduce their competitiveness at large scales.

Temporal Action Proposals: Very recently, work emerged that focused on
temporal segments which are likely to contain human actions [4,22,30]. Similar
to grouping techniques for retrieving object proposals, Mettes et al. create a
hierarchy of fragments by hierarchical clustering based on semantic visual sim-
ilarity of contiguous frames [22]. The main disadvantages of this approach are
its strong dependence on an unsupervised grouping method that diminishes its
repeatability [15] and the absence of an actioness score for each fragment in the
hierarchy. In comparison, we use a supervised method that learns to generate
segments on a video and predict their action likelihood. Most closely related with
our approach are methods that use category-independent classifiers to explore
many segments in video and exhaustively evaluate segments of multiple temporal
scales [4,30]. Our method improves over previous ones by using a powerful deep
learning model that allows for less windows to be scanned and multiple tem-
poral scales to be considered simultaneously in a single pass through the video.
We leverage long-short term memory cells to learn an appropriate encoding of
the video sequence as a set of discriminative states. We experimentally show
that this representation is able to regress the temporal location and duration of
relevant segments on the original sequence, while running at 134 FPS.

2 Our Approach: Deep Action Proposals

We propose a new Deep Action Proposals (DAPs) network for the task of tem-
poral action proposal generation. From a long input video sequence, we aim
to retrieve temporal segments that likely contain actions of interest. Figure 2
summarizes our model architecture, which is described in detail in Sect. 2.1.
Section 2.2 describes the training and inference procedures.

2.1 Architecture

Our DAPs network encodes a stream of visual observations of length T frames
into discriminative states, from which we infer the temporal location and dura-
tion {si}K

i=1 of K action proposals inside the stream. Each proposal si is associ-
ated with a confidence score ci. Our network integrates the following modules:

Visual encoder: It encodes a small video volume into a meaningful low dimen-
sional feature vector. In practice, we use activations from the top layer of a 3D
convolutional network trained for action classification (C3D network [34]).

Sequence encoder: It encodes the sequence of visual codes as a discriminative
sequence of hidden states. Here, we use a long-short term memory (LSTM)
network. In contrast to traditional feed-forward layers, it directly models the
sequential information in a principled and effective manner [23,31].

Localization module: It predicts the location of K proposals inside the stream
based on a linear combination of the last state in the sequence encoder. In this
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Fig. 2. Our Deep Action Proposals (DAPs) architecture effectively encodes a stream
of visual observations (of length T frames) into discriminative states from which it is
possible to localize K proposals {si}K

i=1 with confidences {ci}K
i=1 inside the stream. We

generate several segments where it is possible to find actions along a video sequence
by sliding it with step size δ.

way, our model can output segments of different lengths in one pass instead of
the traditional way of scanning over overlapping segments with multiple window
sizes. Each proposal si is predicted by the localization module.

Prediction module: It predicts the confidence ci that proposal si contains
an action within its temporal extent. In practice, ci is the output of a sigmoid
function over a linear combination of the last state of the sequence encoder.

2.2 Inference and Learning

Inference: In order to produce several candidate segments where actions are
likely within a long video sequence, we slide our DAPs network over it with
step size δ. Every time our model scans a video stream of length T frames,
it places K segments of varied duration inside it with their respective action
likelihoods. In contrast with previous approaches that scan the same clip of
video with multiple sized windows, we encode the information of the clip in
order to improve efficiency at inference time. In that way, our algorithm scans
the whole video sequence in only one pass with one stream (or window) size T ,
while still producing segments of different duration.

Learning: Another way to interpret our DAPs network is in the form of a
function f that maps a video stream v (of length T frames) onto a set of K
segments inside the stream with their respective action likelihood. Formally, we
have (S,C) = fK,T (v; θ) where S = {si}K

i=1 and C = {ci}K
i=1 represent the

set of all predicted segments and their action likelihoods, respectively. Here, θ
represents the parameters of our model.

We are interested in learning an appropriate function f such that: (i) seg-
ments produced by our model match the locations of actions A = {ai}M

i=1 in the



DAPs: Deep Action Proposals for Action Understanding 773

sequence (the number of these actions in stream v is assumed less than K); and
(ii) confidence values associated with segments that match an action are higher
than other segments. This is done by formulating an assignment problem, which
solves for an optimal matching between predictions from our DAPs function and
ground truth action annotations in the video stream. Without loss of generality,
for each training segment, we solve the following problem:

(x∗, θ∗) = argmin
x,θ

αLmatch(x, S(θ), A) + Lconf(x, C(θ))

s.t. xij ∈ {0, 1} ,
∑

i

xij = 1
(1)

where xij = 1 means that the i-th prediction si is assigned to the j-th ground
truth annotation aj . Here, we define Lmatch(x, S(θ), A) to be a function that
penalizes (in the form of a Euclidean distance) matched segments that are distant
from action annotations. Also, we take Lconf(x, C(θ)) to enforce (in the form
of binary cross-entropy) that the likelihood of matched segments be as high as
possible, while simultaneously penalizing non-matched segments that occur with
high likelihood. Finally, α is a tradeoff constant that combines both terms. This
problem can be solved by alternating between solving the assignment problem
for a given θk and back-propagating errors given an optimal assignment xk.

For simplicity we rely on a heuristic similar to [7] to relax the assignment
problem by introducing K anchor segments L = {li}K

i=1. In this way, we guide the
localization module of the network towards K anchor segments summarizing the
statistics of the annotations. This approach speeds up the optimization by: (i)
guiding the learning towards statistically relevant locations; and (ii) solving the
assignment problem up-front i.e. for every instance v we compare the predictions
of our function (S,C) with (L, Y ), where Y = {yi}K

i=1, yi ∈ {0, 1} defining that
the i-th anchor segment matches a ground-truth annotation of the instance.

In practice, we obtain the location and duration of each anchor proposal
by clustering the ground-truth annotations with k-means which gives rise to a
diverse set of anchors throughout the stream. More details about the optimiza-
tion problem are provided in the supplementary material.

Implementation Details: for our visual encoder, we use the publicly available
pre-trained C3D model [34] which has a temporal resolution of 16 frames. To
shorten the training time of our implementation, we reduce the dimensionality of
the activations from the second fully-connected layer (fc7 ) of our visual encoder
from 4096 to 500 dimensions using PCA. By cross-validation, we find that one
layer and 256 output units achieves a good trade-off between accuracy and run-
time. We use back-propagation through time with ADAGRAD update rule to
find the parameters θ of our sequence encoder and output modules. By hyper-
parameter search, a learning rate of 10−4 and α = 1.0 provide good results. In
practice, we predict locations (s) as duration of the action and the frame index
of its center (normalized by T ).

The DAPs network is trained on video streams of length T frames from long
untrimmed videos. From a labeled dataset like THUMOS-14 with 11 h of video
and more than 3000 annotations, we are able to generate a large corpus of video
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streams (over 500 thousands) that might contain multiple actions. In practice,
we densely extract video streams and cluster them according to their tIoU with
annotations of the video. We sample streams from each cluster, so they are
equally represented.

3 Experiments and Discussion

3.1 Experimental Setup

We validate the quality of our approach on labeled untrimmed videos from the
challenging THUMOS-14 benchmark, which contains over 24 h of video from
about 20 sport action categories. This part comprises 413 videos divided into
200 validation videos and 213 test videos. We train our DAPs model using 180
out of 200 videos from the validation set and hold out 20 videos for validation.
We report results on the 213 test videos with temporal annotations. To study
the generalization capability of our model across datasets, we also test on the
validation set of the ActivityNet benchmark (release 1.2) [3], which comprises
76 h of video and 100 action classes. No fine tuning is done on this benchmark.

Metrics. We assess the quality of our temporal proposals with the metrics from
[15]. Specifically, we use Average Recall (AR) to measure the temporal proposal
quality for a limited number of proposals. We compute AR for a tIOU between
0.5 to 1, as a function of the number of proposals. We expect the best proposal
approach to achieve the best recall by generating tight temporal proposals at
a fixed number of proposals. We also measure the recall at a fixed number of
proposals, as a function of tIoU. This metric measures the localization quality
of temporal proposals. We consider 1000 proposals for this.

In Sect. 3.3, we investigate the impact of applying action proposals in the con-
text of action detection. Following the standard evaluation protocol, we measure
the mean Average Precision (mAP) at 50 % tIoU. We use the official toolkit
provided by THUMOS-14 [18].

3.2 Recall Analysis

In this section, we analyze recall performance of our method. Specifically, we
study (i) the performance of variants of our approach, (ii) the performance com-
peting temporal proposal methods, and (iii) the ability of our approach to gen-
eralize to actions that are unseen during training.

Variants of our approach. We evaluate the effect of hyper-parameters on our
DAPs model on 20 videos from the THUMOS-14 validation set. Figure 3 plots
AR (first and third columns) and Recall at 1000 proposals (second and fourth
columns) of our algorithm for different numbers of proposals per stream (K) and
four different stream lengths (T ).

As Fig. 3 shows (two leftmost columns), our model is not very sensitive to
the number of anchor proposals K for a stream length T = 512 frames. Our
experiments show that larger K does not necessarily translate into better per-
formance. We hypothesize that this behavior is a result of using k-means to
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Fig. 3. We evaluate the effect of the hyper-parameters of our approach on a held-
out portion of the validation set of THUMOS-14. We find that the performance of
our model is stable with respect to the number of proposals per stream K (leftmost
columns). On the other hand, we find that the choice of the stream length T is more
critical (rightmost columns).

select the anchors. This result suggests that the difference between selecting
multiple anchors per segment might not be predictable, so we resort to choose
this hyper-parameter by cross-validation. We choose K = 64 for the rest of our
experiments, as a reasonable tradeoff between capacity and AR. In fact, our
DAPs model with K = 64 achieves the highest average recall rate for more than
100 proposals and about 100 % recall at a 50 % tIoU with 1000 proposals, as
shown in Fig. 3 (second columns).

Next, we assess the impact of the stream length T on the performance of our
architecture. We evaluate with T ∈ {160, 256, 512, 1024} frames which covers
{75, 92, 98, 99}% of the annotations in the validation set respectively. The results
suggest that T is a crucial hyper-parameter for achieving high recall. From Fig. 3
(rightmost column), we find that for tIoU of 50 % at 1000 proposals the recall
correlates with statistics of annotations. Therefore, we conclude that our model
learns correctly to retrieve actions inside the range of T . Based on this analysis,
we choose a value of T = 512 frames for other experiments.

In the experiments to follow, we report the results of our DAPs algorithm
with K = 64, T = 512 which offers a good trade-off between accuracy, scalability,
and run-time performance.

Comparison with other approaches. We compare the performance of our
algorithm against recent approaches designed to retrieve temporal proposals,
namely Sparse-prop [4], BoFrag [22], and SCNN-prop [30]. For completeness, we
also compare to a representative spatio-temporal proposal method, APT [10].
For a fair comparison, we project APT spatio-temporal proposals to the tempo-
ral dimension only. We obtain APT results by running the public implementation
provided by the authors. For all other methods, temporal proposals were kindly
provided by the authors.

Figure 4 illustrates the AR and recall of 1000 proposals of all five methods
on the THUMOS-14 benchmark. Clearly, our DAPs significantly outperforms
all other methods in both metrics. We hypothesize that it improves upon them
by effectively encoding the sequence of visual codes as a discriminative set of
states from where it is plausible to regress proposals with multiple durations.
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Fig. 4. Our DAPs network outperforms previous temporal and spatio-temporal
approaches on THUMOS-14 in terms of Average Recall as well as in terms of recall of
1000 proposals for a wide range of tIoU. This result evidences the importance of effec-
tively encoding the visual sequence as a discriminative sequence of states in relation
with previous approaches.

Notably, our DAPs algorithm boosts AR at 1000 proposals and recall of 1000
proposals at 50 % tIoU to 58.1 % and 95.7 %, respectively. The later represents
a relative improvement in recall of 27.2 % over the SCNN-prop [30], which also
trains a network to match temporal segmentation (based on tIoU ) with ground
truth annotations. Note that our approach achieves a better performance without
exhaustively exploring multiple rigid temporal window sizes which suggests that
our network is effectively encoding multiple action durations instead of sticking
to a fixed length. It is worth to notice that the AR of DAPs with 1.6k proposals
is better or comparable to the AR of APT and SparseProp for 10k proposals.
We envision clever innovations of DAPs architecture to increase the number of
proposals maintaining the same quality. Figure 4 (right) shows that our approach
is the best to generate segments tightly localized around the actions up to 85 %
tIoU. From this point, it is interesting that algorithms like DAPs and SCNN-
prop exhibit a greater decreasing slope than other algorithms. We guess that
this effect is partly due to the use of tIoU to define the supervisory signals.

On the other hand, we find that all supervised methods outperform the unsu-
pervised ones (BoFrag [22] and APT [10]) by a considerable margin, especially at
high tIoU values. This suggests that supervised methods are not over-fitting over
their training set and they learn a good function to measure action likelihood.
We believe that such actioness function may help to boost the performance of
unsupervised approaches, especially on methods that do not provide an action
likelihood score for each segment, like BoFrag and APT.

Is the network able to generalize the concept of an action? Proposal
approaches are similar to classifier cascades in the sense that they reduce the
computational cost of evaluating powerful classifiers on regions that can be
“easily” rejected [36]. According to Hosang et al. [15], the main difference
between these methods is that classifier cascades do not necessarily exhibit an
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Fig. 5. We measure the generalization power of our DAPs network across dataset for
unseen actions by evaluating its performance on ActivityNet. Interestingly, the AR
performance of our network does not decrease significantly, at 600 proposals, on videos
where action durations comes from a similar distribution, ActivityNet ≤ 1024 frames
line. This suggests that discriminative sequence of states learned by our model capture
common patterns that allows it to localize and score segments of unseen actions. On
the right, we appreciate segments retrieved by our method focus on brushing teeth and
shoveling snow actions, clearly not related with any sport.

ability to generalize beyond the categories they are trained on. Along these lines,
we study the generalization capabilities of our DAPs network to validate that it
is a proper proposal approach. We do that by applying our model, trained on 20
sports categories from THUMOS-14, on ActivityNet, a rich and diverse dataset
in terms of actions. For example, just nine actions from THUMOS-14 have a
reasonable correspondence with the hundred activities in ActivityNet. Moreover,
this dataset includes many categories unrelated with sports, such as Preparing
pasta, Playing saxophone, Shoveling snow, to name a few.

Figure 5 (left) quantitatively summarizes the generalization capability of our
approach. We show average recall results of our method on four datasets: Activ-
ityNet (all 100 categories), ActivityNet ∩ THUMOS-14 (on 9 categories shared
between both benchmarks), ActivityNet ≤ 512 frames (videos of unseen cate-
gories with annotations up to 1024 frames), and THUMOS-14. By comparing
the performance on ActivityNet and THUMOS-14, the generalization power of
DAPs might not seem encouraging. However, we find that 42 % of the activity
annotations in ActivityNet span more than 1024 frames (i.e. twice the size of our
temporal stream T ), hence it will be difficult for our model to achieve a high
AR in this scenario. Since the distribution of activity durations in ActivityNet
is very different to the one in THUMOS-14, a drop in recall performance is not
surprising. In fact, Hosang et al. make a very similar observation in the context
of generalizing 2D object proposals in images across datasets [15].

Following up on this observation, we study the performance of our approach
on ActivityNet ∩ THUMOS-14, where we only consider annotations from com-
mon classes seen in training; and ActivityNet ≤ 512 frames, where we only con-
sider annotations of unseen classes that have similar duration statistics observed
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in THUMOS-14, i.e. annotations that span up to 512 frames. When evaluating
on these two datasets, DAPs performance is quite similar in both cases, espe-
cially when more proposals are retrieved. In fact, it achieves an AR of 50.9 %
and 41.9 % for 600 proposals respectively, which are close to our performance on
THUMOS-14 for the same number of proposals. This suggests that DAPs does
exhibit a desired level of generalization for unseen actions. Note that, ActivityNet
videos are 50 % shorter than THUMOS-14 videos on average so it is natural that
our method produces less number of proposals.

Figure 5 (right) shows qualitative examples of temporal proposals retrieved
by our network for activities not related to action categories used in training. We
hypothesize that the network can generalize to these activities by discovering
common underlying patterns in the encoded visual sequence that helps it to
localize a proposal, as well as, score its likelihood.

3.3 DAPs for Action Detection

Inspired by the success of object detection approaches in combining object pro-
posal methods with object classifiers, we study the benefit of applying our tem-
poral action proposals in an action detection pipeline. To this end, we classify the
action proposals generated by our approach and competing proposal methods
using the same state-of-the-art action classifier trained on THUMOS-14 [38].
In this section, we describe the action classifier, assess the impact of the num-
ber of proposals on detection performance, and compare our method against
state-of-the-art approaches.

Action Classifier. Here, we adopt the recent approach of Xu et al. [38], which
encodes features learned by a conv-net model using VLAD. Here, we use the acti-
vations from the fc7 layer from a 3D conv-net [34] as our features. We first learn
a codebook using k-means with k = 256. Then, we encode the fc7 features that
belong to each temporal segment using VLAD with power and L2 -normalization.
Finally, we train a one-vs-all linear SVM classifier with C = 100. At test time,
we run our activity classifier over all the generated action proposals and obtain
an action confidence score for each of them. We apply non-maximum suppression
with a 30 % tIoU to eliminate near-duplicate detections. As in common detec-
tion procedures, we generate a final prediction score by multiplying the classifier
and proposal scores.

Detection results. Table 1 shows quantitative detection results comparing our
proposal approach against competing methods. Following action detection con-
vention, we report the mAP (mean AP) score at 50 % tIoU. We consistently
outperform the competing methods by a significant margin. This substantiates
our claim that our method produces high-quality proposals with a budgeted
number of proposals.

Interestingly, BoFrag generates good localization results despite its modest
recall performance. This suggests that BoFrag is producing proposals with a
small number of hard negatives, which allows the activity classifier to keep the
number of false positives low. We also observe that all methods tend to saturate
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Table 1. Results for action detection experiments on THUMOS-14. We evaluate the
performance of different proposal methods using mAP at P (mAP@P) number of pro-
posals. The tIoU threshold for a correct detection is fixed to 50 % and “-” is used when
a method is not able to produce the P number of proposals. Our method outperform
competing methods by a significant margin for all number of proposals.

Method mAP@50 mAP@100 mAP@200 mAP@500 mAP@1000

APT 4.1 5.2 6.2 6.8 6.4

BoFrag 5.3 6.6 7.0 8.5 8.3

SCNN-prop 5.3 5.6 7.8 - -

Sparse-prop 5.7 6.3 7.6 8.2 8.0

DAPs 8.4 12.1 13.9 12.5 12.0

Table 2. Action detection state-of-the-art on THUMOS-14. We report the detection
performance of our method at 200 proposals. Our method is able to achieve a compet-
itive performance using a very limited number of proposals.

Method Karaman et al.
[19]

Caba Heilbron et al.
[4]

Oneata et al.
[25]

Shou et al.
[30]

Ours

mAP 2.0 13.5 15.0 19.0 13.9

after using more than 500 proposals. This is in part due to the fact that all
proposal methods are decoupled with the final action classifier. Therefore, it is
plausible to fluster the action classifier when the ratio of true positives starts to
decrease.

State-of-the-art comparison. Table 2 summarizes the action detection state-
of-the-art on THUMOS-14. Our method achieves a significantly higher perfor-
mance than Karaman et al. [19] which uses sliding window with a unique fixed
temporal length. We attribute this improvement to the fact that our approach
scans the video in a much more efficient way. We obtain a similar performance
to Caba Heilbron et al. [4] and Oneata et al. [25]. This result is encouraging
given that our detection pipeline operates at a much faster rate of 134 FPS. As
compared to Shou et al. [30] (SCNN-prop), our results are promising considering
that less number of windows are scanned to produce the final detection. In future
work, we plan to combine directly our proposal network with the classification
stage, as well as, fine tune the parameters of the C3D network to achieve further
improvement in our detection results.

3.4 Run-Time Performance

By definition, action proposals should reduce the effort of applying an accurate
and computationally expensive classifier on a large number of windows in a video.
This means that a good action proposal method is expected to achieve a high
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Table 3. Our DAPs network is the fastest action proposal method. We report the
average time needed to apply DAPs to an average length video from THUMOS-14
(3 min). Methods that we could not benchmark appear with “-”, while N.A. refers to
methods that do not require a specific stage (see text for more details).

Algorithm Time [seconds] Speedup FPS

Feature Proposal Total

APT 2828.5 5120.3 7948.8 1.0 0.68

BoFrag 90 5.5 95.5 83.23 1.88

Sparse-prop 191.1 342.5 533.6 14.9 10.2

SCNN-prop N.A - - - 60

DAPs N.A 1.34 1.34 5931.9 134.1

recall rate in the shortest amount of time possible. Table 3 summarizes the run-
time performance of different proposal methods. Specifically, we compute the
average run-time over all testing videos on a Titan-X GPU and report the time
in terms of the average length of videos in THUMOS-14 (3 min). The authors
of other methods kindly provided the run-time of their approach.

Table 2 shows that our algorithm is the fastest method to generate temporal
action proposals. This is due to: (i) an effective and efficient window scanning
approach; and (ii) the use of hardware acceleration units (GPUs) to speed-up
computation. A preliminary comparison with SCNN-prop, which also benefits
from GPUs, shows a relative improvement of 123.5 %. Disregarding implementa-
tion details that can increase the performance of both approaches, the improve-
ment on speed-up is a consequence of an effective encoding that reduces the
exploration of multiple temporal scales on overlapping regions.

3.5 Qualitative Results

Figure 6 shows the top ranked proposal retrieved from videos of THUMOS-14 as
well as two sample videos with the best-matched proposals out of 100. We include
examples where our method succeeds (True positive proposals) and fails (False
positive proposals) to match the ground truth with a tIoU of 50 %. We observe
that our method can produce tight segments around actions. We detect several
failure cases in actions like Shot put where either the annotation is ambigu-
ous or is hard to establish the temporal boundaries of the action. Interestingly,
our method can retrieve segments semantically relevant around miss-labeled or
incomplete actions in THUMOS-14. For example, the fourth row in Fig. 6 shows
a proposal that matches an action where a woman is trying to perform Pole
vault but fails.
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True positive proposalGround-truth False positive proposal

29.7 30.7 33.0

Time

177.9 178.6 183.4
Time

142.9 144.8 145.3

Time

109.2 224.0 228.0

Time

106.2

11.5 15.2 16.4

Time

8.0

Time

Top Ranked Proposals

Best Retrieved Proposals

Time

Fig. 6. Qualitative examples of retrieved segments by DAPs algorithm on sample videos
from THUMOS-14. The first five rows show the top ranked proposal, its nearest ground
truth action and the corresponding mapping to time (seconds). The first three rows
show examples where our approach generates tightly segments around action instances.
On the other hand, the next two rows correspond to failures modes of our model such
as an unlabeled occurrence of an incomplete action (fourth row). The last two row
visualize the best-matched segments retrieved in two different videos by DAPs out of
100 proposals.
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4 Conclusion and Future Work

We present Deep Action Proposals (DAPs), an effective and efficient network
that produces temporal segments over a long video sequence where it is likely to
find human actions. A comprehensive evaluation shows that our approach not
only produces high-quality segments in relationship to the state of the art, it
also is the fastest method. A follow-up version of this work will formulate an
end-to-end version of our approach in order to fine-tune the low-level filters of
the C3D architecture for the task of agnostic action localization. Similarly, we
expect to design novel architectures that reduce the computational footprint of
the current approach and increase the quality of the segments retrieved for a
large variety of activity lengths.
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