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Abstract. Given a grayscale photograph as input, this paper attacks
the problem of hallucinating a plausible color version of the photograph.
This problem is clearly underconstrained, so previous approaches have
either relied on significant user interaction or resulted in desaturated col-
orizations. We propose a fully automatic approach that produces vibrant
and realistic colorizations. We embrace the underlying uncertainty of the
problem by posing it as a classification task and use class-rebalancing at
training time to increase the diversity of colors in the result. The sys-
tem is implemented as a feed-forward pass in a CNN at test time and is
trained on over a million color images. We evaluate our algorithm using a
“colorization Turing test,” asking human participants to choose between
a generated and ground truth color image. Our method successfully fools
humans on 32 % of the trials, significantly higher than previous meth-
ods. Moreover, we show that colorization can be a powerful pretext task
for self-supervised feature learning, acting as a cross-channel encoder.
This approach results in state-of-the-art performance on several feature
learning benchmarks.

Keywords: Colorization · Vision for graphics · CNNs · Self-supervised
learning

1 Introduction

Consider the grayscale photographs in Fig. 1. At first glance, hallucinating their
colors seems daunting, since so much of the information (two out of the three
dimensions) has been lost. Looking more closely, however, one notices that in
many cases, the semantics of the scene and its surface texture provide ample cues
for many regions in each image: the grass is typically green, the sky is typically
blue, and the ladybug is most definitely red. Of course, these kinds of semantic
priors do not work for everything, e.g., the croquet balls on the grass might not,
in reality, be red, yellow, and purple (though it’s a pretty good guess). However,
for this paper, our goal is not necessarily to recover the actual ground truth
color, but rather to produce a plausible colorization that could potentially fool a
human observer. Therefore, our task becomes much more achievable: to model
enough of the statistical dependencies between the semantics and the textures of
grayscale images and their color versions in order to produce visually compelling
results.
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Fig. 1. Example input grayscale photos and output colorizations from our algorithm.
These examples are cases where our model works especially well. Please visit http://
richzhang.github.io/colorization/ to see the full range of results and to try our model
and code. Best viewed in color (obviously). (Color figure online)

Given the lightness channel L, our system predicts the corresponding a and
b color channels of the image in the CIE Lab colorspace. To solve this problem,
we leverage large-scale data. Predicting color has the nice property that training
data is practically free: any color photo can be used as a training example, simply
by taking the image’s L channel as input and its ab channels as the supervisory
signal. Others have noted the easy availability of training data, and previous
works have trained convolutional neural networks (CNNs) to predict color on
large datasets [1,2]. However, the results from these previous attempts tend to
look desaturated. One explanation is that [1,2] use loss functions that encourage
conservative predictions. These losses are inherited from standard regression
problems, where the goal is to minimize Euclidean error between an estimate
and the ground truth.

We instead utilize a loss tailored to the colorization problem. As pointed out
by [3], color prediction is inherently multimodal – many objects can take on
several plausible colorizations. For example, an apple is typically red, green, or
yellow, but unlikely to be blue or orange. To appropriately model the multimodal
nature of the problem, we predict a distribution of possible colors for each pixel.
Furthermore, we re-weight the loss at training time to emphasize rare colors.
This encourages our model to exploit the full diversity of the large-scale data on
which it is trained. Lastly, we produce a final colorization by taking the annealed-
mean of the distribution. The end result is colorizations that are more vibrant
and perceptually realistic than those of previous approaches.

Evaluating synthesized images is notoriously difficult [4]. Since our ultimate
goal is to make results that are compelling to a human observer, we introduce
a novel way of evaluating colorization results, directly testing their perceptual
realism. We set up a “colorization Turing test,” in which we show participants
real and synthesized colors for an image, and ask them to identify the fake.
In this quite difficult paradigm, we are able to fool participants on 32% of

http://richzhang.github.io/colorization/
http://richzhang.github.io/colorization/
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the instances (ground truth colorizations would achieve 50 % on this metric),
significantly higher than prior work [2]. This test demonstrates that in many
cases, our algorithm is producing nearly photorealistic results (see Fig. 1 for
selected successful examples from our algorithm). We also show that our system’s
colorizations are realistic enough to be useful for downstream tasks, in particular
object classification, using an off-the-shelf VGG network [5].

We additionally explore colorization as a form of self-supervised representa-
tion learning, where raw data is used as its own source of supervision. The idea
of learning feature representations in this way goes back at least to autoencoders
[6]. More recent works have explored feature learning via data imputation, where
a held-out subset of the complete data is predicted (e.g., [7–13]). Our method fol-
lows in this line, and can be termed a cross-channel encoder. We test how well our
model performs in generalization tasks, compared to previous [8,10,14,15] and
concurrent [16] self-supervision algorithms, and find that our method performs
surprisingly well, achieving state-of-the-art performance on several metrics.

Our contributions in this paper are in two areas. First, we make progress
on the graphics problem of automatic image colorization by (a) designing an
appropriate objective function that handles the multimodal uncertainty of the
colorization problem and captures a wide diversity of colors, (b) introducing
a novel framework for testing colorization algorithms, potentially applicable to
other image synthesis tasks, and (c) setting a new high-water mark on the task by
training on a million color photos. Secondly, we introduce the colorization task
as a competitive and straightforward method for self-supervised representation
learning, achieving state-of-the-art results on several benchmarks.

Prior Work on Colorization. Colorization algorithms mostly differ in the
ways they obtain and treat the data for modeling the correspondence between
grayscale and color. Non-parametric methods, given an input grayscale image,
first define one or more color reference images (provided by a user or retrieved
automatically) to be used as source data. Then, following the Image Analogies
framework [17], color is transferred onto the input image from analogous regions
of the reference image(s) [18–21]. Parametric methods, on the other hand, learn
prediction functions from large datasets of color images at training time, posing
the problem as either regression onto continuous color space [1,2,22] or classifi-
cation of quantized color values [3]. Our method also learns to classify colors, but
does so with a larger model, trained on more data, and with several innovations
in the loss function and mapping to a final continuous output.

Concurrent Work on Colorization. Concurrently with our paper, Larsson
et al. [23] and Iizuka et al. [24] have developed similar systems, which leverage
large-scale data and CNNs. The methods differ in their CNN architectures and
loss functions. While we use a classification loss, with rebalanced rare classes,
Larsson et al. use an un-rebalanced classification loss, and Iizuka et al. use a
regression loss. In Sect. 3.1, we compare the effect of each of these types of loss
function in conjunction with our architecture. The CNN architectures are also
somewhat different: Larsson et al. use hypercolumns [25] on a VGG network [5],
Iizuka et al. use a two-stream architecture in which they fuse global and local



652 R. Zhang et al.

Fig. 2. Our network architecture. Each conv layer refers to a block of 2 or 3 repeated
conv and ReLU layers, followed by a BatchNorm [30] layer. The net has no pool layers.
All changes in resolution are achieved through spatial downsampling or upsampling
between conv blocks. (Color figure online)

features, and we use a single-stream, VGG-styled network with added depth
and dilated convolutions [26,27]. In addition, while we and Larsson et al. train
our models on ImageNet [28], Iizuka et al. train their model on Places [29]. In
Sect. 3.1, we provide quantitative comparisons to Larsson et al., and encourage
interested readers to investigate both concurrent papers.

2 Approach

We train a CNN to map from a grayscale input to a distribution over quantized
color value outputs using the architecture shown in Fig. 2. Architectural details
are described in the supplementary materials on our project webpage1, and the
model is publicly available. In the following, we focus on the design of the objec-
tive function, and our technique for inferring point estimates of color from the
predicted color distribution.

2.1 Objective Function

Given an input lightness channel X ∈ R
H×W×1, our objective is to learn a

mapping ̂Y = F(X) to the two associated color channels Y ∈ R
H×W×2, where

H,W are image dimensions. (We denote predictions with a ·̂ symbol and ground
truth without.) We perform this task in CIE Lab color space. Because distances
in this space model perceptual distance, a natural objective function, as used in
[1,2], is the Euclidean loss L2(·, ·) between predicted and ground truth colors:

L2( ̂Y,Y) =
1
2

∑

h,w

‖ Yh,w − ̂Yh,w

2

2 (1)

However, this loss is not robust to the inherent ambiguity and multimodal
nature of the colorization problem. If an object can take on a set of distinct
ab values, the optimal solution to the Euclidean loss will be the mean of the
set. In color prediction, this averaging effect favors grayish, desaturated results.
Additionally, if the set of plausible colorizations is non-convex, the solution will
in fact be out of the set, giving implausible results.
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Fig. 3. (a) Quantizedab color space with a grid size of 10. A total of 313 ab pairs
are in gamut. (b) Empirical probability distribution of ab values, shown in log scale.
(c) Empirical probability distribution of ab values, conditioned on L, shown in log scale.
(Color figure online)

Instead, we treat the problem as multinomial classification. We quantize the
ab output space into bins with grid size 10 and keep the Q = 313 values which
are in-gamut, as shown in Fig. 3(a). For a given input X, we learn a mapping
̂Z = G(X) to a probability distribution over possible colors ̂Z ∈ [0, 1]HxWxQ,
where Q is the number of quantized ab values.

To compare predicted ̂Z against ground truth, we define function Z =
H−1

gt (Y), which converts ground truth color Y to vector Z, using a soft-encoding
scheme1. We then use multinomial cross entropy loss Lcl(·, ·), defined as:

Lcl(̂Z,Z) = −
∑

h,w

v(Zh,w)
∑

q

Zh,w,q log(̂Zh,w,q) (2)

where v(·) is a weighting term that can be used to rebalance the loss based
on color-class rarity, as defined in Sect. 2.2 below. Finally, we map probability
distribution ̂Z to color values ̂Y with function ̂Y = H(̂Z), which will be further
discussed in Sect. 2.3.

2.2 Class Rebalancing

The distribution of ab values in natural images is strongly biased towards values
with low ab values, due to the appearance of backgrounds such as clouds, pave-
ment, dirt, and walls. Figure 3(b) shows the empirical distribution of pixels in ab
space, gathered from 1.3M training images in ImageNet [28]. Observe that the

1 Each ground truth value Yh,w can be encoded as a 1-hot vector Zh,w by searching for
the nearest quantized ab bin. However, we found that soft-encoding worked well for
training, and allowed the network to quickly learn the relationship between elements
in the output space [31]. We find the 5-nearest neighbors to Yh,w in the output
space and weight them proportionally to their distance from the ground truth using
a Gaussian kernel with σ = 5.
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number of pixels in natural images at desaturated values are orders of magnitude
higher than for saturated values. Without accounting for this, the loss function
is dominated by desaturated ab values. We account for the class-imbalance prob-
lem by reweighting the loss of each pixel at train time based on the pixel color
rarity. This is asymptotically equivalent to the typical approach of resampling
the training space [32]. Each pixel is weighed by factor w ∈ R

Q, based on its
closest ab bin.

v(Zh,w) = wq∗ , where q∗ = arg max
q

Zh,w,q (3)

w ∝
(

(1 − λ)p̃ +
λ

Q

)−1

, E[w] =
∑

q

p̃qwq = 1 (4)

To obtain smoothed empirical distribution p̃ ∈ ΔQ, we estimate the empirical
probability of colors in the quantized ab space p ∈ ΔQ from the full ImageNet
training set and smooth the distribution with a Gaussian kernel Gσ. We then
mix the distribution with a uniform distribution with weight λ ∈ [0, 1], take
the reciprocal, and normalize so the weighting factor is 1 on expectation. We
found that values of λ = 1

2 and σ = 5 worked well. We compare results with and
without class rebalancing in Sect. 3.1.

2.3 Class Probabilities to Point Estimates

Finally, we define H, which maps the predicted distribution ̂Z to point estimate
̂Y in ab space. One choice is to take the mode of the predicted distribution for
each pixel, as shown in the right-most column of Fig. 4 for two example images.
This provides a vibrant but sometimes spatially inconsistent result, e.g., the red
splotches on the bus. On the other hand, taking the mean of the predicted distri-
bution produces spatially consistent but desaturated results (left-most column
of Fig. 4), exhibiting an unnatural sepia tone. This is unsurprising, as taking
the mean after performing classification suffers from some of the same issues as
optimizing for a Euclidean loss in a regression framework. To try to get the best
of both worlds, we interpolate by re-adjusting the temperature T of the softmax
distribution, and taking the mean of the result. We draw inspiration from the
simulated annealing technique [33], and thus refer to the operation as taking the
annealed-mean of the distribution:

H(Zh,w) = E
[

fT (Zh,w)
]

, fT (z) =
exp(log(z)/T )

∑

q exp(log(zq)/T )
(5)

Setting T = 1 leaves the distribution unchanged, lowering the temperature
T produces a more strongly peaked distribution, and setting T → 0 results in a
1-hot encoding at the distribution mode. We found that temperature T = 0.38,
shown in the middle column of Fig. 4, captures the vibrancy of the mode while
maintaining the spatial coherence of the mean.
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Fig. 4. The effect of temperature parameter T on the annealed-mean output (Eq. 5).
The left-most images show the means of the predicted color distributions and the
right-most show the modes. We use T = 0.38 in our system. (Color figure online)

Our final system F is the composition of CNN G, which produces a predicted
distribution over all pixels, and the annealed-mean operation H, which produces
a final prediction. The system is not quite end-to-end trainable, but note that
the mapping H operates on each pixel independently, with a single parameter,
and can be implemented as part of a feed-forward pass of the CNN.

3 Experiments

In Sect. 3.1, we assess the graphics aspect of our algorithm, evaluating the per-
ceptual realism of our colorizations, along with other measures of accuracy. We
compare our full algorithm to several variants, along with recent [2] and concur-
rent work [23]. In Sect. 3.2, we test colorization as a method for self-supervised
representation learning. Finally, in Sect. 3.3, we show qualitative examples on
legacy black and white images.

3.1 Evaluating Colorization Quality

We train our network on the 1.3 M images from the ImageNet training set [28],
validate on the first 10 k images in the ImageNet validation set, and test on a
separate 10 k images in the validation set, same as in [23]. We show quantitative
results in Table 1 on three metrics. A qualitative comparison for selected success
and failure cases is shown in Fig. 5. For a comparison on a full selection of random
images, please see our project webpage.

To specifically test the effect of different loss functions, we train our CNN
with various losses. We also compare to previous [2] and concurrent methods [23],
which both use CNNs trained on ImageNet, along with naive baselines:
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Fig. 5. Example results from our ImageNet test set. Our classification loss with rebal-
ancing produces more accurate and vibrant results than a regression loss or a clas-
sification loss without rebalancing. Successful colorizations are above the dotted line.
Common failures are below. These include failure to capture long-range consistency,
frequent confusions between red and blue, and a default sepia tone on complex indoor
scenes. Please visit http://richzhang.github.io/colorization/ to see the full range of
results. (Color figure online)

http://richzhang.github.io/colorization/
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1. Ours (full) Our full method, with classification loss, defined in Eq. 2, and class
rebalancing, as described in Sect. 2.2. The network was trained from scratch
with k-means initialization [36], using the ADAM solver for approximately
450 k iterations2.

2. Ours (class) Our network on classification loss but no class rebalancing (λ = 1
in Eq. 4).

3. Ours (L2) Our network trained from scratch, with L2 regression loss,
described in Eq. 1, following the same training protocol.

4. Ours (L2, ft) Our network trained with L2 regression loss, fine-tuned from
our full classification with rebalancing network.

5. Larsson et al. [23] A CNN method that also appears in these proceedings.
6. Dahl[2] A previous model using a Laplacian pyramid on VGG features,

trained with L2 regression loss.
7. Gray Colors every pixel gray, with (a, b) = 0.
8. Random Copies the colors from a random image from the training set.

Evaluating the quality of synthesized images is well-known to be a difficult
task, as simple quantitative metrics, like RMS error on pixel values, often fail to
capture visual realism. To address the shortcomings of any individual evaluation,
we test three that measure different senses of quality, shown in Table 1.

1. Perceptual Realism (AMT): For many applications, such as those in
graphics, the ultimate test of colorization is how compelling the colors look to a
human observer. To test this, we ran a real vs. fake two-alternative forced choice
experiment on Amazon Mechanical Turk (AMT). Participants in the experiment
were shown a series of pairs of images. Each pair consisted of a color photo next
to a re-colorized version, produced by either our algorithm or a baseline. Par-
ticipants were asked to click on the photo they believed contained fake colors
generated by a computer program. Individual images of resolution 256×256 were
shown for one second each, and after each pair, participants were given unlim-
ited time to respond. Each experimental session consisted of 10 practice trials
(excluded from subsequent analysis), followed by 40 test pairs. On the practice
trials, participants were given feedback as to whether or not their answer was
correct. No feedback was given during the 40 test pairs. Each session tested
only a single algorithm at a time, and participants were only allowed to com-
plete at most one session. A total of 40 participants evaluated each algorithm.
To ensure that all algorithms were tested in equivalent conditions (i.e. time of
day, demographics, etc.), all experiment sessions were posted simultaneously and
distributed to Turkers in an i.i.d. fashion.

To check that participants were competent at this task, 10% of the trials
pitted the ground truth image against the Random baseline described above.
Participants successfully identified these random colorizations as fake 87% of
the time, indicating that they understood the task and were paying attention.

2 β1 = .9, β2 = .99, and weight decay = 10−3. Initial learning rate was 3 × 10−5 and
dropped to 10−5 and 3 × 10−6 when loss plateaued, at 200k and 375k iterations,
respectively. Other models trained from scratch followed similar training protocol.
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Fig. 6. Images sorted by how often AMT participants chose our algorithm’s coloriza-
tion over the ground truth. In all pairs to the left of the dotted line, participants
believed our colorizations to be more real than the ground truth on ≥ 50 % of the tri-
als. In some cases, this may be due to poor white balancing in the ground truth image,
corrected by our algorithm, which predicts a more prototypical appearance. Right of
the dotted line are examples where participants were never fooled.

Figure 6 gives a better sense of the participants’ competency at detecting
subtle errors made by our algorithm. The far right column shows example pairs
where participants identified the fake image successfully in 100% of the trials.
Each of these pairs was scored by at least 10 participants. Close inspection reveals
that on these images, our colorizations tend to have giveaway artifacts, such as
the yellow blotches on the two trucks, which ruin otherwise decent results.

Nonetheless, our full algorithm fooled participants on 32% of trials, as shown
in Table 1. This number is significantly higher than all compared algorithms
(p < 0.05 in each case) except for Larsson et al., against which the difference
was not significant (p = 0.10; all statistics estimated by bootstrap [34]). These
results validate the effectiveness of using both a classification loss and class-
rebalancing.

Note that if our algorithm exactly reproduced the ground truth colors, the
forced choice would be between two identical images, and participants would
be fooled 50% of the time on expectation. Interestingly, we can identify cases
where participants were fooled more often than 50% of the time, indicating our
results were deemed more realistic than the ground truth. Some examples are
shown in the first three columns of Fig. 6. In many case, the ground truth image
is poorly white balanced or has unusual colors, whereas our system produces a
more prototypical appearance.

2. Semantic Interpretability (VGG Classification): Does our method pro-
duce realistic enough colorizations to be interpretable to an off-the-shelf object
classifier? We tested this by feeding our fake colorized images to a VGG net-
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work [5] that was trained to predict ImageNet classes from real color photos. If
the classifier performs well, that means the colorizations are accurate enough to
be informative about object class. Using an off-the-shelf classifier to assess the
realism of synthesized data has been previously suggested by [12].

The results are shown in the second column from the right of Table 1. Classi-
fier performance drops from 68.3 % to 52.7 % after ablating colors from the input.
After re-colorizing using our full method, the performance is improved to 56.0 %
(other variants of our method achieve slightly higher results). The Larsson et al.
[23] method achieves the highest performance on this metric, reaching 59.4 %. For
reference, a VGG classification network fine-tuned on grayscale inputs reaches a
performance of 63.5 %.

In addition to serving as a perceptual metric, this analysis demonstrates a
practical use for our algorithm: without any additional training or fine-tuning, we
can improve performance on grayscale image classification, simply by colorizing
images with our algorithm and passing them to an off-the-shelf classifier.

3. Raw Accuracy (AuC): As a low-level test, we compute the percentage
of predicted pixel colors within a thresholded L2 distance of the ground truth
in ab color space. We then sweep across thresholds from 0 to 150 to produce
a cumulative mass function, as introduced in [22], integrate the area under the
curve (AuC), and normalize. Note that this AuC metric measures raw prediction
accuracy, whereas our method aims for plausibility.

Our network, trained on classification without rebalancing, outperforms our
L2 variant (when trained from scratch). When the L2 net is instead fine-tuned
from a color classification network, it matches the performance of the classifica-
tion network. This indicates that the L2 metric can achieve accurate coloriza-
tions, but has difficulty in optimization from scratch. The Larsson et al. [23]
method achieves slightly higher accuracy. Note that this metric is dominated
by desaturated pixels, due to the distribution of ab values in natural images
(Fig. 3(b)). As a result, even predicting gray for every pixel does quite well, and
our full method with class rebalancing achieves approximately the same score.

Perceptually interesting regions of images, on the other hand, tend to have a
distribution of ab values with higher values of saturation. As such, we compute
a class-balanced variant of the AuC metric by re-weighting the pixels inversely
by color class probability (Eq. 4, setting λ = 0). Under this metric, our full
method outperforms all variants and compared algorithms, indicating that class-
rebalancing in the training objective achieved its desired effect.

Figure 7. Task Generalization on ImageNet. We freeze pre-trained net-
works and learn linear classifiers on internal layers for ImageNet [28] classifi-
cation. Features are average-pooled, with equal kernel and stride sizes, until
feature dimensionality is below 10k. ImageNet [38], k-means [36], and Gaussian
initializations were run with grayscale inputs, shown with dotted lines, as well
as color inputs, shown with solid lines. Previous [10,14] and concurrent [16]
self-supervision methods are shown.
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Fig. 7. ImageNet Linear Classifi-
cation

Table 2. PASCAL Tests.

Dataset and task generalization on PASCAL [37]
Classification Detection Segmentation
(% mAP) (% mAP) (% mIU)

Fine-tuned
layers

fc8 fc6-fc8 All All All

ImageNet [38] 76.8 78.9 79.9 56.8 48.0
Gaussian – – 53.3 43.4 19.8
Autoencoder 24.8 16.0 53.8 41.9 25.2
k-means [38] 32.0 39.2 56.6 45.6 32.6
Agrawal et al.
[8]

31.2 31.0 54.2 43.9 –

Wang &
Gupta [15]

28.1 52.2 58.7 44.0 –

*Doersch
et al. [14]

44.7 55.1 65.3 51.1 –

*Pathak et al.
[10]

– – 56.5 44.5 29.7

*Donahue
et al. [16]

38.2 50.2 58.6 45.1 34.9

Ours (gray) 52.4 61.5 65.9 46.9 35.0
Ours (color) 52.4 61.5 65.6 47.9 35.6

Table 2. Task and Dataset Generalization on PASCAL. Classification
and detection on PASCAL VOC 2007 [39] and segmentation on PASCAL VOC
2012 [40], using standard mean average precision (mAP) and mean intersection
over union (mIU) metrics for each task. We fine-tune our network with grayscale
inputs (gray) and color inputs (color). Methods noted with a * only pre-trained
a subset of the AlexNet layers. The remaining layers were initialized with [36].

3.2 Cross-Channel Encoding as Self-supervised Feature Learning

In addition to making progress on the graphics task of colorization, we evaluate
how colorization can serve as a pretext task for representation learning. Our
model is akin to an autoencoder, except that the input and output are different
image channels, suggesting the term cross-channel encoder.

To evaluate the feature representation learned through this kind of cross-
channel encoding, we run two sets of tests on our network. First, we test the
task generalization capability of the features by fixing the learned representa-
tion and training linear classifiers to perform object classification on already
seen data (Fig. 7). Second, we fine-tune the network on the PASCAL dataset
[37] for the tasks of classification, detection, and segmentation. Here, in addition
to testing on held-out tasks, this group of experiments tests the learned represen-
tation on dataset generalization. To fairly compare to previous feature learning
algorithms, we retrain an AlexNet [38] network on the colorization task, using
our full method, for 450 k iterations. We find that the resulting learned repre-
sentation achieves higher performance on object classification and segmentation
tasks relative to previous methods tested (Table 2).

ImageNet Classification. The network was pre-trained to colorize images from
the ImageNet dataset, without semantic label information. We test how well the
learned features represent the object-level semantics. To do this, we freeze the
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weights of the network, provide semantic labels, and train linear classifiers on
each convolutional layer. The results are shown in Fig. 7.

AlexNet directly trained on ImageNet classification achieves the highest per-
formance, and serves as the ceiling for this test. Random initialization, with
Gaussian weights or the k-means scheme implemented in [36], peak in the mid-
dle layers. Because our representation is learned on grayscale images, the network
is handicapped at the input. To quantify the effect of this loss of information,
we fine-tune AlexNet on grayscale image classification, and also run the random
initialization schemes on grayscale images. Interestingly, for all three methods,
there is a 6 % performance gap between color and grayscale inputs, which remains
approximately constant throughout the network.

We compare our model to other recent self-supervised methods pre-trained on
ImageNet [10,14,16]. To begin, our conv1 representation results in worse linear
classification performance than competiting methods [14,16], but is comparable
to other methods which have a grayscale input. However, this performance gap
is immediately bridged at conv2, and our network achieves competitive perfor-
mance to [14,16] throughout the remainder of the network. This indicates that
despite the input handicap, solving the colorization task encourages representa-
tions that linearly separate semantic classes in the trained data distribution.

PASCAL Classification, Detection, and Segmentation. We test our model
on the commonly used self-supervision benchmarks on PASCAL classification,
detection, and segmentation, introduced in [10,14,36]. Results are shown in
Table 2. Our network achieves strong performance across all three tasks, and
state-of-the-art numbers in classification and segmentation. We use the method
from [36], which rescales the layers so they “learn” at the same rate. We test
our model in two modes: (1) keeping the input grayscale by disregarding color
information (Ours (gray)) and (2) modifying conv1 to receive a full 3-channel
Lab input, initializing the weights on the ab channels to be zero (Ours (color)).

We first test the network on PASCAL VOC 2007 [39] classification, following
the protocol in [16]. The network is trained by freezing the representation up to
certain points, and fine-tuning the remainder. Note that when conv1 is frozen,
the network is effectively only able to interpret grayscale images. Across all three
classification tests, we achieve state-of-the-art accuracy.

We also test detection on PASCAL VOC 2007, using Fast R-CNN [41], fol-
lowing the procedure in [36]. Doersch et al. [14] achieves 51.5 %, while we reach
46.9 % and 47.9 % with grayscale and color inputs, respectively. Our method is
well above the strong k-means [36] baseline of 45.6 %, but all self-supervised
methods still fall short of pre-training with ImageNet semantic supervision,
which reaches 56.8 %.

Finally, we test semantic segmentation on PASCAL VOC 2012 [40], using
the FCN architecture of [42], following the protocol in [10]. Our colorization
task shares similarities to the semantic segmentation task, as both are per-pixel
classification problems. Our grayscale fine-tuned network achieves performance
of 35.0 %, approximately equal to Donahue et al. [16], and adding in color infor-
mation increases performance to 35.6 %, above other tested algorithms.
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Fig. 8. Applying our method to legacy black and white photos. Left to right: photo
by David Fleay of a Thylacine, now extinct, 1936; photo by Ansel Adams of Yosemite;
amateur family photo from 1956; Migrant Mother by Dorothea Lange, 1936

3.3 Legacy Black and White Photos

Since our model was trained using “fake” grayscale images generated by strip-
ping ab channels from color photos, we also ran our method on real legacy black
and white photographs, as shown in Fig. 8 (additional results can be viewed
on our project webpage). One can see that our model is still able to produce
good colorizations, even though the low-level image statistics of the legacy pho-
tographs are quite different from those of the modern-day photos on which it
was trained.

4 Conclusion

While image colorization is a boutique computer graphics task, it is also an
instance of a difficult pixel prediction problem in computer vision. Here we have
shown that colorization with a deep CNN and a well-chosen objective function
can come closer to producing results indistinguishable from real color photos.
Our method not only provides a useful graphics output, but can also be viewed
as a pretext task for representation learning. Although only trained to color,
our network learns a representation that is surprisingly useful for object clas-
sification, detection, and segmentation, performing strongly compared to other
self-supervised pre-training methods.
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36. Krähenbühl, P., Doersch, C., Donahue, J., Darrell, T.: Data-dependent initializa-
tions of convolutional neural networks. In: International Conference on Learning
Representations (2016)

37. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

38. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

39. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.
pascal-network.org/challenges/VOC/voc2007/workshop/index.html

http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1503.02531
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html


666 R. Zhang et al.

40. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.:The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.
pascal-network.org/challenges/VOC/voc2012/workshop/index.html

41. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1440–1448 (2015)

42. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

	Colorful Image Colorization
	1 Introduction
	2 Approach
	2.1 Objective Function
	2.2 Class Rebalancing
	2.3 Class Probabilities to Point Estimates

	3 Experiments
	3.1 Evaluating Colorization Quality
	3.2 Cross-Channel Encoding as Self-supervised Feature Learning
	3.3 Legacy Black and White Photos

	4 Conclusion
	References


