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Abstract. This paper proposes a novel saliency detection method by
combining region-level saliency estimation and pixel-level saliency pre-
diction with CNNs (denoted as CRPSD). For pixel-level saliency pre-
diction, a fully convolutional neural network (called pixel-level CNN) is
constructed by modifying the VGGNet architecture to perform multi-
scale feature learning, based on which an image-to-image prediction is
conducted to accomplish the pixel-level saliency detection. For region-
level saliency estimation, an adaptive superpixel based region generation
technique is first designed to partition an image into regions, based on
which the region-level saliency is estimated by using a CNN model (called
region-level CNN). The pixel-level and region-level saliencies are fused to
form the final salient map by using another CNN (called fusion CNN).
And the pixel-level CNN and fusion CNN are jointly learned. Exten-
sive quantitative and qualitative experiments on four public benchmark
datasets demonstrate that the proposed method greatly outperforms the
state-of-the-art saliency detection approaches.

Keywords: Saliency detection · Convolutional neural network · Region-
level saliency estimation · Pixel-level saliency prediction · Saliency fusion

1 Introduction

Visual saliency detection, which is an important and challenging task in com-
puter vision, aims to highlight the most important object regions in an image.
Numerous image processing applications incorporate the visual saliency to
improve their performance, such as image segmentation [1] and cropping [2],
object detection [3], and image retrieval [4], etc.

The main task of saliency detection is to extract discriminative features to
represent the properties of pixels or regions and use machine learning algorithms
to compute salient scores to measure their importances. A large number of
saliency detection approaches [5–36] have been proposed by exploiting different
salient cues recently. They can be roughly categorized as pixel based approaches
and region based approaches. For the pixel based approaches, the local and global
features, including edges [5], color difference [36], spatial information [6], distance
transformation [30], and so on, are extracted from pixels for saliency detection.
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Fig. 1. Three examples of saliency detection results estimated by the proposed method
and the state-of-the-art approaches. (a) The input images. (b) The ground truths. (c)
The salient maps detected by the proposed method. (d)-(g) The salient maps detected
by the state-of-the-art approaches MC [26], MDF [21], LEGS [28], and MB+ [30].

Generally, these approaches highlight high contrast edges instead of the salient
objects, or get low contrast salient maps. That is because the extracted features
are unable to capture the high-level and multi-scale information of pixels. As
we know that convolutional neural network (CNN) is powerful for high-level
and multi-scale feature learning and has been successfully used in many applica-
tions of computer vision, such as semantic segmentation [37,38], edge detection
[39,40], etc. This work will employ CNN for pixel-level saliency detection.

For the region based approaches, they first segment an image into a num-
ber of regions, and then many different kinds of hand-designed features [7–10,
17,18,23,25,27,32–35] and CNN based features [21,26,28] are extracted to com-
pute the salienies from these regions. Compared with the pixel based approaches,
these regions based approaches are more effective to detect the saliency since
more sophisticated and discriminative features can be extracted from regions. The
approaches based on CNN learned features have gotten better performance than
the ones based on hand-designed features. That is because CNN is able to extract
more robust and discriminative features with considering the global context infor-
mation of regions. Therefore, this work also employs CNN for region-level saliency
estimation. Recently, the best region based saliency detection approach proposed
by Zhao et al. [26] extracts superpixels as regions, then estimates the saliency for
each superpixel based on CNN. In their work, an inevitable problem is that it is
hard to decide the number of superpixels. If there are too few superpixels, the
regions belonging to salient objects may be under-segmented. If there are too many
superpixels, the regions belonging to saliency objects or backgrounds may be over-
segmented, which may cause that the saliencies are not uniform in salient objects
or backgrounds, and the superpixels around the boundaries of background and
salient objects may get wrong saliencies. Furthermore, the number of superpixels
should be different according to the complexity of images. In this paper, we follow
their work and propose an adaptive superpixel based region generation technique,
which can automatically determine the number of generated regions for different
images to solve the above-mentioned problems and improve the performance of
saliency detection.

Since pixel-level and region-level saliency detection approaches make use
of different information of images, these two salient maps are complementary.
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Fig. 2. The framework of the proposed method.

Hence, we propose a CNN network to fuse the pixel-level and the region-level
saliencies to improve the performance. Figure 1 shows some results of the pro-
posed method, which are very close to the ground truths.

Figure 2 shows the framework of proposed method, which consists of three
stages, i.e. pixel-level saliency prediction, region-level saliency estimation, and
the salient map fusion. For pixel-level saliency prediction, a pixel-level CNN is
constructed by modifying the VGGNet [41] and finetuning from the pre-trained
VGGNet model for pixel-level saliency prediction. For region-level saliency esti-
mation, the input image is first segmented into a number of regions by using an
adaptive superpixel based region generation technique. Then for each region, a
salient score is estimated based on a region-level CNN. For salient map fusion,
the pixel-level and region-level salient maps are fused to form the final salient
map by using a fusion CNN which is jointly trained with the pixel-level CNN.

The main contributions of this paper are summarized as follows. (1) A novel
multiple CNN framework is proposed to extract and combine pixel and region
information of images for saliency detection. (2) A pixel-level CNN is devised
for pixel-level saliency prediction. (3) An adaptive region generation technique
is developed to generate regions and based on which a region-level CNN is used
for region-level saliency estimation. (4) A fusion-level CNN is proposed to fuse
the pixel-level and region-level saliencies.

2 Pixel-Level Saliency Prediction

CNN has achieved a great success in various applications of computer vision,
such as classification and segmentation. Here, we proposed a CNN (denoted as
pixel-level CNN) to predict the saliency for each pixel. Pixel-level CNN takes the
original image as the input and the salient map as the output. To get an accurate
saliency prediction, the CNN architecture should be deep and have multi-scale
stages with different strides, so as to learn discriminative and multi-scale features
for pixels. Training such a deep network from scratch is difficult when the training
samples is not enough. However, there are several networks which have achieved
the state-of-the-art results in the ImageNet challenge, such as VGGNet [41] and
GoogleNet [42]. So it is an effective way to use these excellent models trained on
the large-scale dataset as the pre-trained model for finetuning.
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Fig. 3. The architecture of the pixel-level CNN network.

In this work, we construct a deep CNN architecture based on VGGNet for
pixel-level saliency prediction. The VGGNet consists of six blocks. The first five
blocks contain convolutional layers and pooling layers, as shown in Fig. 3. The
last block contains one pooling layer and two fully connected layer, which are
used to form the final feature vector for image classification. While for saliency
prediction, we need to modify the VGGNet to extract dense pixel-level features.
Therefore, the last block is removed in this work. There are two main reasons
for this modification. The first one is that the fully connected layers cost much
time and memory during training and testing. The second one is that the output
of the last pooling layer is too small compared with the original image, which
will reduce the accuracy of fullsize prediction. In order to capture the multi-
scale information, we combine the outputs of the last two blocks of the modified
VGGNet for the multi-scale feature learning. The benefits of doing such combi-
nation is two-fold. The first one is that the receptive field size becomes larger
when the output size of blocks becomes smaller. Therefore, the output combi-
nation of multiple blocks can automatically learn the multi-scale features. The
second one is that the shallow blocks mainly learn the local features, such as
edges and parts of objects, which are not very useful for saliency detection since
we hope to capture the global information of whole salient objects. Therefore,
the outputs of the last two blocks are combined for multi-scale feature learning.

Since the output sizes of the last two blocks are different and smaller than
the size of the input image. To make the whole CNN network automatically
learn the multi-scale features for pixel-level saliency prediction, we first perform
the deconvolutional operation for the outputs of the last two blocks to make
them have the same size with the input image, and concatenate them in the
channel direction. Then a convolutional kernel with size of 1× 1 is used to map
the concatenation feature maps into a probability map, in which larger values
mean more saliencies. For testing, the probability map actually is a salient map
of the input image. For training, a loss function is needed to compute the errors
between the probability map and the ground truth. For most of the images,
the numbers of salient and non-salient pixels are heavily imbalanced. Therefore,
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Fig. 4. Examples of pixel-level saliency prediction results. (a) Original images. (b)
Ground truths. (c) Pixel-level saliency prediction results. (d) Salient maps estimated
by the state-of-the-art approach MC [26].

given an image X and its ground truth Y , a cross-entropy loss function is used
to balance the loss between salient and non-salient classes as follows:

L (W) = −α

|Y+|∑

i=1

log P (yi = 1|X,W) − (1 − α)
|Y−|∑

i=1

log P (yi = 0|X,W) (1)

where α = |Y−|/ (|Y+| + |Y−|), |Y+| and |Y−| mean the number of salient pixels
and non-salient pixels in ground truth, and W denotes the parameters of all
network layers. Here and now, the whole pixel-level CNN architecture is con-
structed as shown in Fig. 3. The standard stochastic gradient descent algorithm
is used to minimize the above loss function during training. After training, given
an image, we can use the trained CNN model to predict a pixel-level salient map.
Figure 4 shows two examples of pixel-level saliency prediction results.

3 Region-Level Saliency Estimation

Inspired by the successful application of CNN in salient object detection [21,26,
28], all of which are based on regions (e.g. superpixels [26] and multi-scale regions
[21]), this work also employs CNN for the region-level saliency estimation.

3.1 Adaptive Region Generation

During the region-level saliency estimation, the first step is to generate a num-
ber of regions from the input image. Wang et al. [28] use the regions in slid-
ing windows to estimate their saliencies, which may result in the salient object
and background in the same sliding window having the same saliency. Li et al.
[21] use multi-scale hierarchical regions, which consumes much time to perform
the region segmentation and some generated regions are under-segmented. Zhao
et al. [26] use superpixels as the regions to estimate their saliencies, which is
difficult to decide the number of superpixels. If there are too few superpixels,
the regions belonging to salient objects may be under-segmented. If there are
too many superpixels, the regions belonging to saliency objects or backgrounds
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Fig. 5. Examples of our adaptive region generation technique. (a) Original images. (b)
Ground truths. (c) Superpixel segmentation results. (d) Region generation results.

may be over-segmented. Both over-segmentation and under-segmentation may
make the saliencies are not uniform in salient objects or backgrounds. Different
images should be segmented into different number of superpixels because of their
different properties.

Since the superpixels based approach [26] gets the state-of-the-art perfor-
mance, this work proposes an adaptive region generation technique based on
this approach to segment the images and solve the above mentioned problems.

Given an input image I, it is first over-segmented into n superpixels by using
SLIC algorithm [43]. Here, we set n = 300 with considering both of effectiveness
and efficiency. Then for each superpixel, a simple feature vector including its
average colors in L*a*b color space and average spatial coordinates is computed.
Then a graph-based agglomerative clustering algorithm (called Graph Degree
Linkage) [44], which takes the superpixel as nodes and assigns each node with k
edges whose weights are computed according to the Euclidean distances between
the feature vectors of the current node and its k nearest neighbor nodes, is
used to cluster the superpixels into different regions. The clustering process
is stopped when the least affinity between two clusters is larger than a given
threshold t. Therefore, for different images, the numbers of clustered regions are
different and are much less than n. The superpixels which are adjacent and have
similar colors are usually clustered into the same regions. The whole clustering
process has two important parameters k and t, which are set as k = 15 and
t = −0.04 through experiments in this work. Figure 5 shows two examples of
region generation results.

3.2 Region Saliency Estimation

After obtaining the regions, the next step is to estimate the regions saliencies.
This work employs CNN for region-level saliency estimation. The Clarifai model
[45], which is the winning model in the classification task of ImageNet 2013, is
used as our CNN model as done by [26]. It contains five convolutional layers
and two fully connected layers. For more detail information about this model,
please refer to the reference [45]. In this work, we use the CNN model provided
by the authors of [26] as the pre-trained model and finetune for the region-level
saliency estimation.
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Fig. 6. Examples of region-level saliency estimation results. (a) Original images. (b)
Ground truths. (c) Salient maps estimated by the proposed region-level saliency estima-
tion method. (d) Salient maps estimated by superpixel based region saliency estimation
method.

In [26], the region in a superpixel-centered large context window is resized
and fed into the CNN model to estimate the saliency of current superpixel.
If we follow the same way except using region-centered instead of superpixel-
centered, a problem will be introduced, that is some background regions may
have large saliencies, because the centers of some background regions may belong
to or close to the salient objects. To solve this problem, we randomly choose m
superpixels around the centerline of each region at first. Then we set these m
superpixels centers as the windows centers to construct m large context windows
including the full image as done by [26]. We choose superpixels around the regions
centerline to make the windows centers far away from the regions boundaries
as much as possible, and the constructed windows from different regions are
different as much as possible. Here, we set m = 5 if the number of superpixels
in a region is larger than 5. Otherwise, we set m as the number of superpixels.
Through experiments, we find that the performances of saliency detection vary
little when m > 5.

For each region, we can construct m window images and feed them into the
CNN model to obtain m saliencies. In this work, the mean saliency is com-
puted as the regions saliency due to its robustness to noises. Compared with
the superpixel-centered saliency estimation approach, the proposed region-level
saliency estimation method has three advantages described as follows. (1) More
efficiency, because the constructed images are much less than the superpixels. (2)
Less boundary effect, which is that the salient regions around the boundaries of
salient objects and backgrounds may have small saliencies while the background
regions around the boundaries may have large saliencies, as shown in Fig. 6. (3)
More uniform salient map, since the pixels in a region are assigned the same
salient values, as shown in Fig. 6.

4 Salient Map Fusion

Given an input RGB image, the proposed saliency detection method efficiently
produces two salient maps, i.e. region-level salient map and the pixel-level salient
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Fig. 7. The architecture of the fusion CNN network.

map. These two salient maps are computed by using different information of
images, hence they are complementary and can be fused to further improve the
performance.

There are many fusion strategies, such as establishing some measures to select
a better individual salient map [11] or combining salient maps with weighted
values [7]. They don’t use the information of all salient maps or only linearly
combine them. In this work, we sufficiently dig their complementary information
with a nonlinear manner to improve the performance by using a CNN network.
The CNN network contains one concatenation layer, three convolutional layers,
and a loss layer, as shown in Fig. 7. The input image and its two salient maps
are concatenated into a 5-channel image, and then through three convolutional
layers whose configures are given in Fig. 7. For testing, the output of the last
convolutional layer is the prediction salient map. For training, the loss layer is
used to compute the errors between the output of the last convolutional layer
and the ground truth with the cross-entropy loss function described before. It is
needed to be noticed that the original image also is used for fusion except two
salient maps. That’s because richer information of original images is incorporated
to correct some errors which cannot be solved by only using the salient maps.

The fusion CNN network can be trained separately. But as we know that joint
training multiple sub-networks can gain the performance improvement. In this
work, the region-level salient estimation needs to generate a number of regions at
the beginning and the region-level CNN has a big different with the pixel-level
CNN and fusion CNN. So it is hard to treat all of these three CNN network
as an end-to-end network for joint training. Finally, the region-level CNN is
trained alone, and after that, the pixel-level CNN and fusion CNN are jointly
trained to get the final salient map as shown in Fig. 2. Based on the final salient
maps, some post-processings, such as fully connected CRF [46], can be used to
further improve the performance. But in this work, to focus on the performance
of saliency detection models, we don’t conduct any post-processing.

5 Experiments

5.1 Implementation

We use the popular Caffe library [47] to implement the proposed saliency detec-
tion framework. The THUS-10000 dataset [34] contains 10,000 images and their
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corresponding ground truths, which is used for CNN model training. For the
region-level CNN network training, we use the Clarifai model trained by [26] as
the pre-trained model to finetune on the training dataset. Before joint training
the pixel-level CNN and fusion CNN network, we separately train them to get
the initial models. For the pixel-level CNN network, since it is a fully convo-
lutional network, arbitrary images don’t need to be resized. And the weights
of the first five blocks of VGGNet model trained on ImageNet are used to do
the weight initialization, based on which the modified VGGNet is finetuned for
pixel-level saliency prediction. For the fusion CNN network, we train the model
from scratch. After obtaining the initial models of pixel-level and fusion CNN
network, we use the weights of these models as weight initialization of the joint
CNN network and use the training dataset to do the end-to-end training. The
above training process costs about 49 h for 30,000 iterations on a PC with an Intel
i7-4790k CPU, a TESLA k40c GPU, and 32 G RAM. For testing on an image
with the size of 300× 400, the region-level saliency estimation takes about 0.5 s,
the process of pixel-level saliency prediction and saliency fusion takes about 0.38
s. Therefore, the whole process time of our saliency detection method is about
0.88 s.

5.2 Datasets and Evaluation Criteria

Datasets. We evaluate the proposed method on four standard benchmark
datasets: SED [48], ECSSD [7], PASCAL-S [19], and HKU-IS [21].

SED [48] contains 200 images with one or two salient object, in which objects
have largely different sizes and locations. This dataset is the combination of
SED1 and SED2 dataset.

ECSSD [7] contains 1,000 images with complex backgrounds, which makes
the detection tasks much more challenging.

PASCAL-S [19] is constructed on the validation set of the PASCAL VOC
2012 segmentation challenge. This dataset contains 850 natural images with
multiple complex objects and cluttered backgrounds. The PASCAL-S data set
is arguably one of the most challenging saliency data sets without various design
biases (e.g., center bias and color contrast bias).

HKU-IS [21] contains 4447 challenging images, which is newly developed by
considering at least one of the following criteria: (1) there are multiple discon-
nected salient objects, (2) at least one of the salient objects touches the image
boundary, (3) the color contrast (the minimum Chi-square distance between the
color histograms of any salient object and its surrounding regions) is less than
0.7.

All datasets provide the corresponding ground truths in the form of accurate
pixel-wise human-marked labels for salient regions.

Evaluation Criteria. The standard precision-recall (PR) curves are used for
performance evaluation. Precision corresponds to the percentage of salient pixels
correctly assigned, while recall corresponds to the fraction of detected salient
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pixels in relation to the ground truth number of salient pixels. The PR curves
are obtained by binarizing the saliency map in the range of 0 and 255. The F-
measure (Fβ) is the overall performance measurement computed by the weighted
harmonic of precision and recall:

Fβ =

(
1 + β2

) × Precision × Recall

β2 × Precision + Recall
(2)

where we set β2 = 0.3, as done by other approaches.
The mean absolute error (MAE ), which is the average per-pixel difference

between the ground truth GT and the saliency map S, is also evaluated. Here,
GT and S are normalized to the interval [0, 1]. MAE is defined as

MAE =

W∑
x=1

H∑
y=1

|S (x, y) − GT (x, y) |

W × H
(3)

where W and H are the width and height of the image.
We also adopt the weighted Fβ metric [49] (denoted as wFβ) for evaluation,

which suffers less from curve interpolation flaw, improper assumptions about the
independence between pixels, and equal importance assignment to all errors. We
use the code and the default setting of wFβ provided by the authors of [49].

5.3 Performance Comparisons with State-of-the-Art Approaches

We compare the proposed method (denoted as CRPSD) and the two submod-
ules (pixel-level saliency prediction, denoted as PSD, and region-level saliency
estimation, denoted as RSD) with seventeen existing state-of-the-art saliency
detection approaches on four datasets, including MC [26], MDF [21], LEGS [28],
CPISA [31], MB+ [30], SO [17], BSCA [25], DRFI [10], DSR [9], LPS [32], MAP
[33], MR [8], RC [34], RRWR [27], SGTD [35], BL [23], and HS [7]. For fair
comparison, the source codes of these state-of-the-art approaches released by
the authors are used for test with recommended parameter settings in this work.

According to Fig. 8 and Table 1, the proposed method (CRPSD) significantly
outperforms all of the state-of-the-art approaches on all test datasets in terms of
all evaluation criterions, which convincingly demonstrates the effectiveness of the
proposed method. In these four test datasets, the most complex one is PASCAL-
S. Therefore, all methods get the worst performance on this dataset. For all
datasets, our method gets the largest gain on PASCAL-S dataset compared
with the best state-of-the-art approach (MC) or our PSD, which demonstrates
that our method can better deal with the complex cases than other approaches.

From the experimental results, three benefits of our method can be confirmed.
(1) Although only the submodule region-level saliency estimation is used, it still
gets the best performance compared with the state-of-the-art approaches on four
datasets. Compared with MC [26], the RSD estimates the region saliency based
on the regions generated by the proposed adaptive region generation technique
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while MC is based on superpixels, and the RSD uses a different strategy to
form the context windows. The good performance of the RSD demonstrates the
effectiveness of these improvements. (2) The submodule PSD also gets the best
performance compared with the state-of-the-art approaches, which validates that
the pixel-level CNN modified from VGGNet can well extract the multi-scale deep
features for pixels to decide its saliency. (3) The proposed CRPSD by using the
fusion network and joint training with the pixel-level CNN network can greatly
improve the performance of the submodules, which demonstrates that CRPSD
can well dig the complementary information of saliencies estimated by RSD and
PSD for saliency detection.

Also, we qualitatively compare the salient maps detected by different
approaches, as shown in the first ten rows of Fig. 9. Obviously, the proposed
method is able to highlight saliencies of salient objects and suppress the saliencies

SE
D

 

CR
PS
D
PS
D
RS
D MC

LE
GSMD

F
MB

+

RR
WR BL

BS
CA
SG

TD LP
S
MA

P RC
CP
ISA MRDR

FI HS SO DS
R

E
C

SSD
 

CR
PS
D
PS
D
RS
D MC

LE
GSMD

F
MB

+

RR
WR BL

BS
CA
SG

TD LP
S
MA

P RC
CP
ISA MRDR

FI HS SO DS
R

PA
SC

A
L

-S 
H

K
U

-IS 

CRPSD
PSD
RSD
MC
LEGS
MDF
MB+
RRWR
BL
BSCA
SGTD
LPS
MAP
RC
CPISA
MR
DRFI
HS
SO
DSR

CR
PS
D
PS
D
RS
D MC

LE
GSMD

F
MB

+

RR
WR BL

BS
CA
SG

TD LP
S
MA

P RC
CP
ISA MRDR

FI HS SO DS
R

)b()a(

Fig. 8. Results of all test approaches on four standard benchmark datasets, i.e. SED,
ECSSD, PASCAL-S, and HKU-IS. (a) presents the PR curves, (b) presents the mean
Fβ and the adaptive Fβ/precision/recall which are computed from the binary images
obtained by using Otsu algorithm on the salient maps.
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Table 1. The wFβ and MAE of different saliency detection method on different test
datasets (red, blue, and green texts respectively indicate rank 1, 2, and 3).

Method Year SED ECSSD PASCAL-S HKU-IS

wFβ MAE wFβ MAE wFβ MAE wFβ MAE

CRPSD / 0.8292 0.0509 0.8485 0.0455 0.7761 0.0636 0.8209 0.0431

PSD / 0.7590 0.0758 0.7572 0.0798 0.7113 0.1057 0.7371 0.0693

RSD / 0.7759 0.0922 0.7569 0.0915 0.6195 0.1338 0.7286 0.0813

MC CVPR2015 0.7387 0.1032 0.7293 0.1019 0.6064 0.1422 0.6899 0.0914

LEGS CVPR2015 0.6498 0.1279 0.6722 0.1256 0.5791 0.1593 0.5911 0.1301

MDF CVPR2015 0.6748 0.1196 0.6194 0.1377 0.5386 0.1633 0.6135 0.1152

MB+ ICCV2015 0.6555 0.1364 0.5632 0.1717 0.5307 0.1964 0.5438 0.1497

RRWR CVPR2015 0.6117 0.1547 0.5026 0.1850 0.4435 0.2262 0.4592 0.1719

BL CVPR2015 0.4986 0.1887 0.4615 0.2178 0.4464 0.2478 0.4119 0.2136

BSCA CVPR2015 0.5671 0.1576 0.5159 0.1832 0.4703 0.2220 0.4643 0.1760

SGTD TIP2015 0.6216 0.1475 0.4689 0.2007 0.4385 0.2269 0.4785 0.1627

LPS TIP2015 0.5976 0.1477 0.4585 0.1877 0.3882 0.2162 0.4252 0.1635

MAP TIP2015 0.5567 0.1621 0.4953 0.1861 0.4361 0.2222 0.4533 0.1717

RC TPAMI2015 0.5652 0.1588 0.5118 0.1868 0.4694 0.2253 0.4768 0.1714

CPISA TIP2015 0.6174 0.1474 0.5735 0.1596 0.4478 0.1983 0.5575 0.1374

MR CVPR2013 0.6052 0.1586 0.4985 0.1875 0.4406 0.2288 0.4556 0.1740

DRFI CVPR2013 0.6464 0.1360 0.5433 0.1658 0.4817 0.2042 0.5180 0.1444

HS CVPR2013 0.5828 0.1948 0.4571 0.2283 0.4516 0.2625 0.4213 0.2151

SO CVPR2014 0.6568 0.1351 0.5134 0.1733 0.4723 0.1986 0.5162 0.1426

DSR ICCV2013 0.6055 0.1476 0.5162 0.1728 0.4385 0.2043 0.5079 0.1429

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s) (t) (u) (v) 

Fig. 9. Visual Comparisons of different saliency detection approaches in various chal-
lenging scenarios. (a) Original images, (b) Ground truths, (c) CRPSD, (d) PSD, (e)
RSD, (f) MC, (g) LEGS, (h) MDF, (i) MB+, (j) RRWR, (k) BL, (l) BSCA, (m) SGTD,
(n) LPS, (o) MAP, (p) RC, (q) CPISA, (r) MR, (s) DRFI, (t) HS, (u) SO, (v) DSR.
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of background better than other approaches, and the salient maps of the proposed
method are much close to the ground truths in various challenging scenarios.

The last three rows of Fig. 9 show some cases in which the proposed method
fails. For example, the colors of salient objects and backgrounds are very similar,
the salient objects are too small, and the backgrounds are too complex. In these
cases, the other approaches also cannot correctly detect the salient objects and
it is not easy to accurately locate the salient objects even for human eyes.

5.4 Performance Comparisons with Baselines

As pixel labeling task, saliency detection and semantic segmentation are very
similar. And recently, many CNN models [37,38,50] have been proposed for
semantic segmentation. In order to test their performance on saliency detection,
the most powerful model of deeplab [50], i.e. the DeepLab-MSc-LargeFOV model
(DML), is chosen as a baseline, which is trained on THUS-10000 dataset for
saliency detection. And its pretrained DeepLab-LargeFOV-COCO-MSC model
(pre-DML) on semantic image segmentation is used as another baseline, which
is directly used for saliency detection by summing up the probability predictions
across all 20 object classes and using these sumed-up probabilities as a salient
map. And to demonstrate the benefit of joint training of our method, we also
test the performance of our method with separate training (sep-CRPSD).

Table 2. The wFβ of baselines and our methods on all test datasets.

Method SED ECSSD PASCAL-S HKU-IS

pre-DML 0.5140 0.6530 0.7322 0.6755

DML 0.7439 0.7482 0.6948 0.7258

sep-CRPSD 0.8109 0.8249 0.7621 0.7942

CRPSD 0.8292 0.8485 0.7761 0.8209

Table 2 lists the wFβ of baselines and our methods on all test datasets.
According to Table 2, three conclusions can be summarized: (1) The perfor-
mance of pre-DML is very good on PASCAL-S, while dramatically drops on
other datasets. Because many salient objects in other datasets don’t belong
to the trained classes, and hence are considered as non-salient objects during
saliency detection. (2) The DML trained for saliency detection gets better results
than pre-DML on all datasets except PASCAL-S, but still much worse than our
method, which further demonstrates that our method with multiple CNNs is
powerful for saliency detection. (3) Our method with joint training (CRPSD)
gets better performance than separate training (sep-CRPSD), which demon-
strates the effectiveness of joint training.
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Table 3. The mean shuffled-AUC of different fixation prediection methods on test
datasets.

Dataset PSD Mr-CNN [51] SDAE [55] BMS [54]

MIT 0.7587 0.7184 0.7095 0.7105

Toronto 0.7606 0.7221 0.7230 0.7243

5.5 Performance of Fixation Prediction with Pixel-Level CNN

The model (PSD) for pixel-level saliency prediction also can be used for fixa-
tion prediction. To validate its performance for fixation prediction, we use the
same experimental setting with Mr-CNN [51] to test our model on MIT [52] and
Toronto [53] datasets. The evaluation metric is mean shuffled-AUC [54]. Table 3
lists the experimental results of our model and the other three state-of-the-art
fixation prediction approaches on these two datasets. According to Table 3, PSD
gets the best performance, which means that our model has powerful ability of
fixation prediction. Above experimental results further demonstrate the effec-
tiveness of our pixel-level CNN model.

6 Conclusions

This paper proposes a novel saliency detection method by combining region-level
saliency estimation and pixel-level saliency prediction (denoted as CRPSD). A
multiple CNN framework, composed of pixel-level CNN, region-level CNN and
fusion CNN, is proposed for saliency detection. The pixel-level CNN, which is
a modification of VGGNet, can predict the saliency at pixel-level by extracting
multi-scale features of images. The region-level CNN can effectively estimate the
saliencies of these regions generated by the proposed adaptive region generation
technique. The fusion CNN can take full advantage of the original image, the
pixel-level and region-level saliencies for final saliency detection. The proposed
method can effectively detect the salient maps of images in various scenarios and
greatly outperform the state-of-the-art saliency detection approaches.
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