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Abstract. A significant weakness of most current deep Convolutional
Neural Networks is the need to train them using vast amounts of manu-
ally labelled data. In this work we propose a unsupervised framework to
learn a deep convolutional neural network for single view depth predic-
tion, without requiring a pre-training stage or annotated ground-truth
depths. We achieve this by training the network in a manner analogous
to an autoencoder. At training time we consider a pair of images, source
and target, with small, known camera motion between the two such as a
stereo pair. We train the convolutional encoder for the task of predicting
the depth map for the source image. To do so, we explicitly generate an
inverse warp of the target image using the predicted depth and known
inter-view displacement, to reconstruct the source image; the photomet-
ric error in the reconstruction is the reconstruction loss for the encoder.
The acquisition of this training data is considerably simpler than for
equivalent systems, requiring no manual annotation, nor calibration of
depth sensor to camera. We show that our network trained on less than
half of the KITTI dataset gives comparable performance to that of the
state-of-the-art supervised methods for single view depth estimation.

1 Introduction

The availability of very large human annotated datasets like Imagenet [6] has
led to a surge of deep learning approaches successfully addressing various vision
problems. Trained initially on tasks such as image classification, and fine-tuned
to fit other tasks, supervised CNNs are now state-of-the-art for object detection
[14], per-pixel image classification [28], depth and normal prediction from single
image [22], human pose estimation [9] and many other applications. A significant
and abiding weakness, however, is the need to accrue labeled data for the super-
vised learning. Providing per-pixel segmentation masks on large datasets like
CoCo [23], or classification labels for Imagenet requires significant human effort
and is prone to error. Supervised training for single view depth estimation for
outdoor scenes requires expensive hardware and careful acquisition [8,21,24,29].

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46484-8 45) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part VIII, LNCS 9912, pp. 740–756, 2016.
DOI: 10.1007/978-3-319-46484-8 45

http://dx.doi.org/10.1007/978-3-319-46484-8_45
http://dx.doi.org/10.1007/978-3-319-46484-8_45


Unsupervised CNN: Geometry to the Rescue 741

Fig. 1. We propose a stereopsis based auto-encoder setup: the encoder (Part 1) is a
traditional convolutional neural network with stacked convolutions and pooling layers
(See Fig. 2) and maps the left image (I1) of the rectified stereo pair into its depth
map. Our decoder (Part 2) explicitly forces the encoder output to be disparities (scaled
inverse depth) by synthesizing a backward warp image (Iw) by moving pixels from right
image I2 along the scan-line. We use the reconstructed output Iw to be matched with
the encoder input (Part 3) via a simple loss. For end-to-end training, we minimize the
reconstruction loss with a simple smoothness prior on disparities which deals with the
aperture problem, while at test time our CNN performs single-view disparity (inverse
depth) prediction, up to the scene scale given in form of fB at the time of training.

For example, despite using state-of-the-art 3D sensors, multiple calibrated cam-
eras and inertial sensors, a dataset like KITTI [13] provides sparse depthmaps
with less than 5 % density on the captured image resolutions and with only a
limited reliable depth range. A significant challenge now is to develop unsuper-
vised training regimes that can train networks that perform either as well as,
or better than those trained used using these supervised methods. This will be
a major step towards realizing in-situ learning, in which we can retrain or tune
a network for specific circumstances, and towards life-long learning, in which
continuous acquisition of data leads to improved performance over time.

In this paper we are particularly concerned with the task of single-view depth
estimation, in which the goal is to learn a non linear prediction function which
maps an image to its depth map. CNNs have achieved the state-of-the-art per-
formance on this task due to their ability to capture the complex and implicit
relationships between scene depth and the corresponding image textures, scene
semantics, and local and global context in the image. State-of-the-art supervised
learning methods for this task train a CNN to minimize a loss based on either
the scale invariant RMS [8], or the log RMS [24] of the depth predictions from
ground-truth. These networks have been trained using datasets that provide
both RGB images and corresponding depthmaps such as NYUv2 and KITTI.

However as noted in [24], the networks learned by these systems do not
generalize well outside their immediate domain of application. For example, [24]
trained two separate networks, one for indoors (using NYUv2) and one for street
scenes (using KITTI), because the weights learned in one do not work well in
the other. To transfer the idea of single-view depth estimation into yet another
domain would require indulging in the expensive task of acquiring a new RGB-
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D dataset with well aligned image and depth values, and re-train the network.
An alternative to this would be to generate a large synthetic or semi-synthetic
dataset using graphical rendering, an approach that has met with some success
in [15]. However it is difficult to capture the full variability of real-world images
in such datasets.

Another possible approach would be to capture a large dataset of stereo
images, and use standard geometric methods to compute the disparity map for
each pair, yielding a large set of image-plus-disparity-map pairs. We could then
train a network to predict a disparity map from a single view. However such
system will likely learn the systematic errors in estimated depths, “baking in”
the failure modes of the stereo algorithm. Factors such as sensor flare, motion
blur, lighting changes, shadows, etc. are present in real images and rarely dealt
with adequately by standard stereo algorithms.

We adopt a different approach that moves towards a system capable of in-
situ training or even lifelong learning, using real un-annotated imagery. We take
inspiration from the idea of autoencoders, and leverage well-understood ideas
in visual geometry. The result is a convolutional neural network for single-view
depth estimation, the first of its kind that can be trained end-to-end from scratch,
in a fully unsupervised fashion, simply using data captured using a stereo rig.

2 Approach

In this section we give more detail of our approach. Figure 1 explains our idea
graphically. To train our network, we make use of pairs of images with a known
camera motion between the two, such as stereo pairs. Such data are considerably
more easily acquired than calibrated depthmaps and aligned images. In our case
we use large numbers of stereo pairs, but the method applies equally to data
acquired from a moving SLAM system in an otherwise static scene.

We learn a CNN to model the complex non-linear transformation which con-
verts the image to a depth-map. The loss we use for learning this CNN is the
photometric difference between the input – or source – image, and the inverse-
warped target image (the other image in the stereo pair). This loss is both
differentiable (to facilitate back-propagation) and is highly correlated with the
prediction error - i.e. can be used to accurately rank two different depth-maps
without using ground-truth labels.

This approach can be interpreted in the context of convolutional autoen-
coders. The task of the standard autoencoder is to encode the input with a
series of non-linear operations to a compressed code that captures sufficient core
information so that a decoder can reconstruct the input with minimal recon-
struction error. In our case we replace the decoder with a standard geometric
image warp, based on the predicted depth map and the relative camera posi-
tions. This has two advantages: first, the decoder in our case does not need to be
learned, since it is already a well-understood geometric operation; second, our
reconstruction loss naturally encourages the code to be the correct depth image.
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2.1 Autoencoder Loss

Every training instance i ∈ {1 · · · N} in our setup is a rectified stereo pair {Ii
1, I

i
2}

captured by a single pre-calibrated stereo rig with two cameras having focal
length f each which are separated horizontally by a distance B.1 Assuming that
the predicted depth of a pixel x for the left image of the rig via CNN is di(x),
the motion of the pixel along the scan-line Di(x) is then fB/di(x). Thus, using
the right image Ii

2, a warp Ii
w can be synthesized as Ii

2(x + fB/di(x)).
With this explicit parameterization of the warp, we propose to minimize

standard color constancy (photometric) error between the reconstructed image
Ii
w and the left image Ii

1:

Ei
recons =

∫
Ω

‖Ii
w(x) − Ii

1(x)‖2dx =
∫

Ω

‖Ii
2(x + Di(x)︸ ︷︷ ︸

fB/di(x)

) − Ii
1(x)‖2dx (1)

It is well known that this photometric loss function is non-informative in
homogeneous regions of the scene. Thus multiple disparities can generate equally
good warps Iw’s and a prior on the disparities is needed to get a unique
depthmap. We use very simple L2 regularization on the disparity discontinu-
ities as our prior to deal with the aperture problem:

Ei
smooth = ‖∇Di(x)‖2 (2)

This regularizer is known to over-smooth the estimated motion, however a
vast literature of more sophisticated edge preserving regularizers with robust
penalty functions like [2,33] for which gradients can be computed are at our
disposal and can be easily used with our setup to get sharper depthmaps. As the
main purpose of our work is to prove that end-to-end training of the proposed
autoencoder is feasible and helpful for depth prediction, we choose to minimize
the simplest suitable loss summed over all training instances:

E =
N∑

i=1

Ei
recons + γEi

smooth (3)

where γ is the strength of the regularization forcing the estimated depthmaps
to be smooth.

Our loss function as described in (3) is similar to the standard Horn and
Schunck optic flow cost [17] for every frame. However, the major difference is that
our disparity maps Di’s are parametrized to be a non-linear function of the input
image and unknown weights of the CNN which are shared for estimating the
motion between every stereo pair. This parameter sharing enforces consistency in
the estimated depths over 1000’s of correlated training images of a large dataset
like KITTI. Our autoencoder’s reconstruction loss can be seen as a generalization
1 All training images are assumed to be taken with a fixed rectified stereo setup as

is the case in KITTI for simplicity but our method is generalizable to work with
instances taken by different calibrated stereos.
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of the multi-frame optic flow methods like [11,12]. The difference is, instead of
modeling the correlations in the estimated motions for a shorter video sequence
with a predefined linear subspace [11], our autoencoder learns (and models) valid
flows which are consistent throughout the dataset non-linearly.

Fig. 2. Coarse-to-fine stereo with CNN with results on a sample validation instance:
We adapt the convolution based upsampling architecture proposed in [26] to mimic
the coarse-to-fine stereo estimations. Our upsampling filter is initialized with simple
bilinear interpolation kernel and we initialize the corresponding pooling layer contribu-
tion by setting both bias and 1 × 1 convolution filter to be zero. The figure shows how
features coming from previous layers of the CNN (L3) combined with finer resolution
loss function generate better depthmaps at 44×172 from our bilinear upsampled initial
estimate of coarser prediction at 22 × 76.

3 Coarse-to-Fine Training with Skip Architecture

To compute the gradient for standard back-propagation on our cost (1), we need
to linearize the warp image at the current estimate of the disparities using Taylor
expansion:

I2(x + Dn(x)) = I2(x + Dn−1(x)) + (Dn(x) − Dn−1(x))I2h(x + Dn−1(x)) (4)

where I2h represents the horizontal gradient of the warp image computed at the
current disparity Dn−1 at iteration n.2 This linearization is valid only for small
values of Dn(x)−Dn−1(x) limiting the magnitude of estimated disparities in the
image. To estimate larger motions (smaller depths) accurately, a coarse-to-fine
strategy with iterative warping is well established in the stereo and optic flow
literature which facilitates gradient descent-based continuous optimization. We
2 We have dropped the training instance index i for simplicity.
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refer the readers to [30] for more detailed discussion of the requirements of this
linearization, its limitations and existing alternatives.

However, our disparities are a non-linear function of the CNN parameters
and the input image. To move from coarse-to-fine level, we not only need a good
disparity initialization at the finer resolutions to linearize the warps but also the
corresponding CNN parameters which predict these initial disparities for each
training instance. Fortunately, the recent fully-convolutional architecture with
upsampling, proposed in [26], is a suitable choice to enable coarse-to-fine warping
for our system. As depicted in Fig. 2, given a network which predicts an M × N
disparities, we can use a simple bilinear upsampling filter to initialize upscaled
disparities (to get 2M × 2N depthmaps) keeping the other network parameters
fixed. It has been shown that the finer details of the images are captured in the
previous layers of CNN, and fusing back such information is helpful for refining
a coarse CNN prediction. We use 1 × 1 convolution with the filter and bias both
initialized to zero and the convolved output is then fused with the upscaled
depths with an element-wise sum layer for refinement.

4 Network Architecture

The network architecture for our deep convolutional encoder is shown in Fig. 3
which is similar to the Alexnet architecture [19] up to the C5 layer. We replace
the fully connected layer of Alexnet by a fully convolutional layer with 2048
convolution filters of size 5 × 5 each.3 This reduces the number of parameters in
the network and allows for the network to accept variable size inputs at test time.
More importantly, it preserves the spatial information present in the image and
allows us to upsample the predictions in a stage-wise manner in the layers that
follow the L7 output of the figure, which is a requirement for our stereopsis based
autoencoder. Inspired by the observations from [26], that the finer details in the
images are lost in the last few layers of the deep convolutional network we employ
the “skip architecture” that combines the coarser depth prediction with the local
image information to get finer predictions. The effect of this is illustrated using
an example from the validation set in Fig. 2. The layers following the L9 output
(22×76 depthmap) in our network are simple 4×4 convolutions each converting
a coarser low resolution depth map to a higher resolution output.

5 Experiments

We evaluate our method on the publicly available KITTI dataset [13] that com-
prises several outdoor scenes captured using a stereo camera mounted on a mov-
ing vehicle. We employ the same train/test split used in [8]: from the 56 scenes
belonging to the categories “city”, “residential” and “road”, we choose 28 for
training and the remaining 28 for testing. We downsample the left images by a

3 A 5 × 18 convolution can be used instead to increase network capacity and replicate
the effect of a fully connected layer of [19].
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Fig. 3. Network architecture: The blocks C (red), P (yellow), L (dark blue), F (green),
D (blue) correspond to convolution, pooling, local response normalization, FCN and
upsampling layers respectively. The FCN blocks F1 and F2 upsample the predictions
from layers (L7, L8) and combine it with the input of the pooling layers P3 and P2
respectively. (Color figure online)

factor of 2 to bring them to 188 × 620, and at this resolution they are used as
input to the network. Each corresponding right image in a stereo pair is used
at the resolution of the predicted depthmap at each stage of our coarse-to-fine
training to generate the warp and match it with a resized left image.

The training set consists of 23488 stereo pairs out of which we use 22600
for training and the remaining for validation. Neither the right to left stereo nor
any data augmentation are used for the coarse-to-fine training in multiple stages.
For testing, we use the 697 images provided by [8]. We do not use any ground-
truth depths for training the network. To evaluate all the results produced by
our network we use simple upscaling of the low resolution disparity predictions
to the resolution at which the stereo images were captured. Using the stereo
baseline of 0.54 m, we convert the upsampled disparities to generate depthmaps
at KITTI resolution using d = fB/D.

For fair comparison with state-of-the-art single view depth prediction, we
evaluate our results on the same cropped region of interest as [8]. Since the super-
vised methods are trained using the ground-truth depth that ranges between 1
and 50 m whereas we can predict larger depths, we clamp the predicted depth
values for our method between 1 and 50 for evaluation. i.e. setting the depths big-
ger than 50 m to 50. We evaluate our method using the error measures reported
in [8,24]:

RMS :
√

1
T

∑
i∈T ‖di − dgt

i ‖2 log RMS :
√

1
T

∑
i∈T ‖log(di) − log(dgt

i )‖2
abs. relative: 1T

∑
i∈T

|di−dgt
i |

dgt
i

sq. relative: 1T
∑

i∈T
‖di−dgt

i ‖2

dgt
i

Accuracies: % of di s.t. max

(
di

dgt
i

,
dgt

i

di

)
= δ < thr
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Table 1. Performance of the proposed framework at various stages of training.

Methods Resolution RMS log RMS Absolute

relative

Square

relative

δ < 1.25 Accuracies

δ < 1.252
δ < 1.253

Ours L9 22 × 76 5.740 0.310 0.205 1.353 0.660 0.872 0.948

Ours L10

+ skipa
46 × 154 5.850 0.338 0.246 1.673 0.607 0.842 0.937

Ours L10 44 × 152 5.434 0.292 0.189 1.214 0.705 0.889 0.955

Ours L11 88 × 304 5.326 0.285 0.179 1.177 0.721 0.892 0.958

Ours L12 176 × 608 5.285 0.282 0.177 1.169 0.727 0.896 0.958

Ours L12,

Aug. 8x

5.104 0.273 0.169 1.08 0.740 0.904 0.962

a Layer 10 result while using 3rd skip-connection.

Input Image Results without aug. Results with aug.

Fig. 4. Data augmentation improves the predicted disparities for smaller objects. Look
at the biker in the first and the bottom right car in the second example.

5.1 Implementation Details

We train our network using the CNN toolbox MatConvnet [31]. We use SGD
for optimization with momentum 0.9 and weight decay of 0.0005. Our network
weights are initialized randomly for the first 5 layers of the Alexnet and we
append the 5 × 5 fully convolutional layer initialized with zero weights to get
zero disparity estimates. We subtract every pixel’s color by 128 and divide it
by 255 to have both left and right images ∈ [−0.5, 0.5]. The smoothness prior
strength γ was set to 0.01.

Due to the linearization of the loss function as explained in Sect. 3, we learn
the network proposed in Fig. 3 in multiple stages, starting from the coarsest
level (L7 in Fig. 3), and iteratively adding upsampling layers one at a time. The
learning rate for the network which predicts depths at the coarsest resolution
is initialized to 0.01 and gradually decreased after each epoch using the factor
1/(1 + α ∗ n)(n−1) where n is the index of current epoch and α = 0.0005. The
smoothness prior strength γ was set to 0.01. We train this coarse depth prediction
network (L1-L7) for 100 epochs.

5.2 Effect of Upsampling

Having the coarser depth estimates for the training-set, we iteratively add
upsampling layers which increases the resolution of the predictions by a fac-
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tor of ≈ 2.4 Since the number of pixels in the images are increased by a factor
of 4, the cost approximately increases by the same factor when moving from
coarser to finer level training. Hence we decrease the initial learning rate by a
factor of 4 for training the finer networks. Starting from the coarsest predic-
tions (L7) we progressively add upsampling layers L8 to L12 to get depths at
resolutions 10 × 37, 22 × 76, 44 × 152, 88 × 304 and 176 × 608 respectively. We
train each of the finer networks for 100 epochs with the decaying learning rate
as described in previous section. While adding the upsampling layers, we crop
and pad the layers such that the resolution of predictions in L8 and L9 matches
the resolution of the input to the pooling layers P3 and P2 respectively. For the
upsampling layers without skip-connection padding of 1 pixel is used.

Table 1 analyses the disparity estimation accuracy for our network on the
KITTI test-set at various stages of the training. Row 1 and 2 of our table corre-
spond to our L9 and L10 output with 2 and 3 FCN blocks respectively. Consistent
with [26] we also observe that after 2 upsampling layers, the skipped architecture
starts to give diminishing returns. As evident from the third row in Table 1 layer
L10 without skip-connection outperforms the counterpart. We believe that this
is due to the fact that the features learned in the first few layers of the CNN are
more relevant to ordinary photometric images than to the depth images. Thus,
a simple weighted sum of these features with that of the depth map does not
work well. However, higher resolution images still have richer information for
image correspondences which can be back-propagated via our loss function for
better predictions. The gradual improvement in disparity estimations using high
resolution images is evident in Table 1.

5.3 Fine Tuning with Augmentation

Once we have our base network trained in the stage-wise manner described above,
we further fine-tune this network (without coarse-to-fine training) for another
100 epochs with following augmentations:

– Color (2×): Color channels are multiplied by a factor c ∈ [0.9, 1.1] randomly.
– Scale (2×): We scale the input image by a factor of s ∈ [1, 1.6] and randomly

crop the images to match the network input size.
– Left-Right flips (2×): We flip left and right images horizontally and swap them

to get new training pair with positive disparities to keep consistency.

Consistent with other CNNs, fine tuning our network with this new augmented
dataset leads to noticeable improvements in depth prediction. Figure 4 illustrates
how 8× data for the fine tuning improves the reconstructions. Notice in particular
the improved localization of object edges. This is particularly encouraging for
our stereopsis loss based unsupervised training procedure as its fine tuning only
requires a cheap stereo-rig to collect new data in the wild. For example, we
can resort to much larger road scene understanding dataset like cityscapes [5]

4 Alexnet uses uneven padding for some convolutions leading to change in the aspect
ratio and the image size.
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Table 2. Comparison with state-of-the-art methods on KITTI dataset.

Methods Resolution RMS logRMS Absolute

relative

Square

relative

δ < 1.25 Accuracies

δ < 1.252
δ < 1.253

Ours L12 176 × 608 5.285 0.282 0.177 1.169 0.727 0.896 0.958

Ours L12,

Aug 8x

5.104 0.273 0.169 1.080 0.740 0.904 0.962

Mean - 9.635 0.444 0.412 5.712 0.556 0.752 0.870

Make3D

[29]

Dense 8.734 0.361 0.280 3.012 0.601 0.820 0.926

Eigen et al.

(ca) [8]

28 × 144 7.216 0.273 0.194 1.531 0.679 0.897 0.967

Eigen et al.

(f) [8]

27 × 142 7.156 0.270 0.190 1.515 0.692 0.899 0.967

Fayao et

al. (pt)

[24]

superpix 7.421 - - - 0.613 0.858 0.949

Fayao et

al. (ft) [24]

superpix 7.046 - - - 0.656 0.881 0.958

ac and f indicates the coarse and fine networks of [8]. Also pt and ft indicates the pre-trained

and fine-tuned networks of [24]

Input Image L9 predictions Final predictions Eigen etal
27 × 76 176 × 608 27 × 144∗

Fig. 5. Inverse Depths visualizations. Brighter color means closer pixel.
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(captured without laser sensor) or a vast collection of 3D movies much like
recently published work Deep3D [32] to repeat this fine-tuning experiment for
single view depth prediction in the wild.

5.4 Comparison with State-of-the-Art Methods on KITTI Dataset

In Table 2, we compare the performance our network with state-of-the-art single
view depth prediction methods [8,24,29]. Errors for other methods are taken
from [8,24]. Our method achieves the lowest RMS and Square relative error on
the dataset and significantly outperforms other methods for these measures. It
performs on par with the state-of-the-art methods on all other evaluation mea-
sures. Eigen et al. [8] obtains slightly lower error in terms of log RMS compared
to ours. However, as [8,24] are trained by minimizing log RMS error with respect
to the true depths, we expect the best performance of these methods under same
metric.

The most noteworthy point is that our is a completely unsupervised network
trained with randomly initialized weights, whereas [8,24] initialize the networks
using Alexnet and VGG-16 respectively, and are supervised.

Figure 5 compares the output inverse depthmaps (scaled to [0 1]) for the L9
(2nd column) and L12 (3rd column) layers of the proposed method and [8]. We
appropriately pad the predictions provided by the authors of [8] to generate the
visualizations at the correct scale. It is evident from the figure that both L9
and L12 are able to capture objects that are closer to the camera with signifi-
cantly more details. For example, notice the traffic light in Row 4, truck in Row
5 and pedestrians in Row 6 and Row 10; these important scene elements are
“washed out” in the predictions generated by [8]. Edges are localized more accu-
rately in L12 results compared to L9. This depicts that even with the simple
linear interpolation of the coarse depth estimation, the finer image alignment
errors are correctly back-propagated leading to the performance boost. Blurred
object boundaries in the finer reconstructions point to well-known limitations of
upsampling based approaches which to a certain extent can be addressed with
the atrous algorithm [3], a fully connected CRF [18,35] or polynomial interpo-
lations replacing simple linear interpolation layers.

In summary, our simple, skinnier network than [8] gives on par results without
any supervision, and which look visually more appealing. Our results could be
further refined using better loss functions and replacing linear interpolation filter
with a learned CRF. As our method is completely unsupervised, it can be trained
on theoretically limitless data with deeper networks to capture variation and give
depthmaps at full image resolutions.

5.5 Comparisons with Baseline Supervised Networks and Stereo

As discussed in Sect. 1, an alternative to our proposal of directly minimizing
the loss (3), would be to train with a standard “depth loss” using the output
of an off-the-shelf stereo algorithm to generate proxy ground-truth depth for
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Table 3. Comparison of proposed auto-encoder framework with a supervised CNN
trained on stereo data, and stereo baselines on the KITTI dataset.

Methods Coverage RMS log RMS Absolute

relative

Square

relative

δ < 1.25 Accuracies

δ < 1.252
δ < 1.253

Ours L12 100% 5.285 0.282 0.177 1.169 0.727 0.896 0.958

HS→
CNN,γ = .01

100% 6.691 0.385 0.309 2.657 0.476 0.750 0.891

HS→ CNN 100% 6.292 0.338 0.238 1.639 0.573 0.841 0.941

SGM→ CNN 100% 5.680 0.300 0.185 1.370 0.703 0.886 0.955

HS-Stereo,

γ = .01

100% 6.077 0.381 0.299 3.264 0.677 0.822 0.90

HS-Stereo 100% 6.760 0.366 0.254 4.040 0.754 0.872 0.928

SGM-Stereo 87% 3.030 0.150 0.064 0.506 0.955 0.979 0.989

training. In this section, we substantiate that the proposed autoencoder frame-
work is superior to this alternative approach (which we denote as Stereo →
CNN). For this purpose, we train the network described in Fig. 3, end-to-end,
with least square loss on the disparity difference between CNN prediction and
stereo prediction.5

oeretS-SHoeretS-MGSegamItupnI

Our Predictions SGM→CNN HS→CNN

Our Errors SGM→CNN Errors HS→CNN Errors

Fig. 6. Comparing depth predictions baseline stereo methods (top row), with the pro-
posed unsupervised CNN (left column-middle row) and Stereo→CNN approaches (cen-
ter/right column-middle row). Bottom row shows the depth estimation errors as heat-
maps for the corresponding methods in middle row.

To generate the stereo prediction, we use a variational Horn-Schunck algo-
rithm. While this is clearly not a state-of-the-art stereo algorithm, it is a fair
baseline since this is the same loss on which we train our photometric loss net-
work. We use the OpenCV implementation, with 6 coarse-to-fine pyramid lev-
els with scale factor 0.5. To make sure the algorithm converges properly, we
5 Much like the log depth, inverse depth parametrization is less prone to the higher

depth errors at very distant points and is used successfully in many stereo [13] and
SLAM frameworks [27].
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increased the number of warp iterations to 1000. We additionally tried HS →
CNN with the disparity regularization strength γ = 0.01 as well, but the results
were less accurate.

As shown in Table 3, depth prediction accuracy of this HS → CNN baseline
falls significantly short of the proposed framework on all accuracy measures. We
also incorporate the test-set depth estimation accuracies for the baseline HS-
stereo method (which uses both left and right image) for the reference. A very
surprising observation is that our single view depth prediction network works
on par with even HS-stereo thanks to the common structure present in the
road scenes that our network successfully learns. Having access to two images,
HS-stereo was able to estimate disparity of the closer points with much more
precision but over-reliance on the depth regularization and unawareness of the
scene context results in wrong depths near edges – where the single view depth
estimation even outperforms the HS Stereo.

In addition to HS-Stereo, we also used Semi Global Matching (SGM) algo-
rithm [16] to supervise the CNN. Semi Global matching is known to produce
more accurate depths and is an integral part of many of the state-of-the-art
stereo algorithms on KITTI stereo dataset [13]. This stereo method gave very
accurate results on the test-set for 87 % of the pixels but left holes in the recon-
structions. We train SGM → CNN by minimizing the sum of least square error
for predicted disparities on the training data, ignoring the points where SGM
gave no disparity. We observed SGM → CNN performed on par with the state-
of-the-art fully supervised single view depth estimation algorithm but the results
were not as accurate as the proposed approach. We believe that the reason for
this was the systematic holes which were left in the SGM-Stereo reconstructions.

To validate this, in Fig. 6 we analyze if regions with lower depth accuracy
of SGM→CNN coincide with the holes left by SGM-Stereo. The correlation in
errors SGM-Stereo depthmap with that of SGM →CNN suggests that the super-
vised training with proxy ground-truth indeed is prone to learn systematic errors
in the proxy ground truth and advocates need for a more principled integration of
a state-of-the-art stereo method with deep learning. The proposed autoencoder
setup is the reasonable first step towards this goal.

6 Related Work

In this work we have proposed a geometry-inspired unsupervised setup for visual
learning, in particular addressing the problem of single view depth estimation.
Our main objective was to address the downsides of training deep networks with
large amount of labeled data. Another body of work which attempts to address
this issue is the set of methods like [7,15,20] which rely mainly on generating
synthetic/semi-synthetic training data with the aim to mimic the real world and
use it to train deep network in a supervised fashion. For example, in [7], CNN
is used to discriminate a set of surrogate classes where the data for each class
is generated automatically from unlabeled images. The network thus learned is
shown to perform well on the task image classification. Handa et al. [15] learn
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a network for semantic segmentation using synthetic data of indoor scenes and
show that the network can generalize well on the real-world scenes. Similarly,
[20] employs a CNN to learn local image descriptors where the correspondences
between the patches are obtained using a multi-view stereo algorithm.

Recently, many methods have used CNN to learn good visual features for
matching patches which are sampled from stereo datasets like KITTI [4,34],
and match these features while doing classical stereo to achieve state-of-the-
art depth estimation. These methods are reliant on local matching and lose
global information about the scene; furthermore they use ground-truth. But their
success is already an indicator that a joint visual learning and depth estimation
approach like ours could be extended at the test time to use a pair of images.

There have been few works recently that approach the problem of novel view
synthesis with CNN [10,32]. Deep stereo [10] uses a large set of posed images
to learn a CNN that can interpolate between the set of input views that are
separated by a wide baseline. A concurrent work with ours, [32] addresses the
problem of generating 3D stereo pairs from 2D images. It employs a CNN to
infer a soft disparity map from a single view image which in turn is used to
render the second view. Although, these methods generate depth-like maps as
an intermediate step in the pipeline, their goal however is to generate new views
and hence do not evaluate the computed depth maps

Using camera motion as the information for visual learning is also explored
in the works like [1,25] which directly regress over the 6DOF camera poses to
learn a deep network which performs well on various visual tasks. In contrast
to that work, we train our CNN for a more generic task of synthesizing image
and get the state-of-the-art single view depth estimation. It will be of immense
interest to evaluate the quality of the features learned with our framework on
other semantic scene understand tasks.

7 Conclusions

In spite of the enormous growth and success of deep neural networks for a variety
of visual tasks, an abiding weakness is the need for vast amounts of annotated
training data. We are motivated by the desire to build systems that can be
trained relatively cheaply without the need for costly manual labeling or even
trained on the fly. To this end we have presented the first convolutional neural
network for single-view depth estimation that can be trained end-to-end from
scratch, in a fully unsupervised fashion, simply using data captured using a stereo
rig. We have shown that our network trained on less than half of the KITTI
dataset gives comparable performance to the current state-of-the-art supervised
methods for single view depth estimation.

Various natural extensions to our work present themselves. Instead of train-
ing on KITTI data (which is nevertheless convenient because it provides a clear
baseline) we aim to train on a continuous feed from a stereo rig “in the wild”, and
to explore the effect on accuracy by augmenting the KITTI data with new stereo
pairs. Furthermore, as intimated in the Introduction, our method is not restricted
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to stereo pairs, and a natural extension is to use a monocular SLAM system to
compute camera motion, and use this known motion within our autoencoder
framework; here the warp function is slightly more complex than for rectified
stereo, but still well understood. The resulting single-view depth estimation sys-
tem could be used for bootstrapping structure, or generating useful priors on the
scene structure that capture much richer information than typical continuity or
smoothness assumptions. It also seems likely that the low-level features learned
by our system will prove effective for other tasks such as classification, in a man-
ner analogous to [1,7], but this hypothesis remains to be proven experimentally.
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