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Abstract. This work introduces a novel convolutional network archi-
tecture for the task of human pose estimation. Features are processed
across all scales and consolidated to best capture the various spatial rela-
tionships associated with the body. We show how repeated bottom-up,
top-down processing used in conjunction with intermediate supervision
is critical to improving the performance of the network. We refer to the
architecture as a “stacked hourglass” network based on the successive
steps of pooling and upsampling that are done to produce a final set of
predictions. State-of-the-art results are achieved on the FLIC and MPII
benchmarks outcompeting all recent methods.
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1 Introduction

A key step toward understanding people in images and video is accurate pose
estimation. Given a single RGB image, we wish to determine the precise pixel
location of important keypoints of the body. Achieving an understanding of a
person’s posture and limb articulation is useful for higher level tasks like action
recognition, and also serves as a fundamental tool in fields such as human-
computer interaction and animation (Fig. 1).

As a well established problem in vision, pose estimation has plagued
researchers with a variety of formidable challenges over the years. A good pose
estimation system must be robust to occlusion and severe deformation, success-
ful on rare and novel poses, and invariant to changes in appearance due to factors
like clothing and lighting. Early work tackles such difficulties using robust image
features and sophisticated structured prediction [1–9]: the former is used to pro-
duce local interpretations, whereas the latter is used to infer a globally consistent
pose.

This conventional pipeline, however, has been greatly reshaped by convolu-
tional neural networks (ConvNets) [10–14], a main driver behind an explosive
rise in performance across many computer vision tasks. Recent pose estimation
systems [15–20] have universally adopted ConvNets as their main building block,
largely replacing hand-crafted features and graphical models; this strategy has
yielded drastic improvements on standard benchmarks [1,21,22].
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Fig. 1. Our network for pose estimation consists of multiple stacked hourglass modules
which allow for repeated bottom-up, top-down inference.

We continue along this trajectory and introduce a novel “stacked hourglass”
network design for predicting human pose. The network captures and consoli-
dates information across all scales of the image. We refer to the design as an
hourglass based on our visualization of the steps of pooling and subsequent
upsampling used to get the final output of the network. Like many convolu-
tional approaches that produce pixel-wise outputs, the hourglass network pools
down to a very low resolution, then upsamples and combines features across
multiple resolutions [15,23]. On the other hand, the hourglass differs from prior
designs primarily in its more symmetric topology.

We expand on a single hourglass by consecutively placing multiple hourglass
modules together end-to-end. This allows for repeated bottom-up, top-down
inference across scales. In conjunction with the use of intermediate supervision,
repeated bidirectional inference is critical to the network’s final performance.
The final network architecture achieves a significant improvement on the state-
of-the-art for two standard pose estimation benchmarks (FLIC [1] and MPII
Human Pose [21]). On MPII there is over a 2 % average accuracy improvement
across all joints, with as much as a 4–5 % improvement on more difficult joints
like the knees and ankles1.

2 Related Work

With the introduction of “DeepPose” by Toshev et al. [24], research on human
pose estimation began the shift from classic approaches [1–9] to deep networks.
Toshev et al. use their network to directly regress the x, y coordinates of joints.
The work by Tompson et al. [15] instead generates heatmaps by running an
image through multiple resolution banks in parallel to simultaneously capture
features at a variety of scales. Our network design largely builds off of their work,
exploring how to capture information across scales and adapting their method
for combining features across different resolutions.

A critical feature of the method proposed by Tompson et al. [15] is the joint
use of a ConvNet and a graphical model. Their graphical model learns typical

1 Code is available at http://www-personal.umich.edu/∼alnewell/pose.

http://www-personal.umich.edu/~alnewell/pose
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Fig. 2. Example output produced by our network. On the left we see the final pose
estimate provided by the max activations across each heatmap. On the right we show
sample heatmaps. (From left to right: neck, left elbow, left wrist, right knee, right
ankle)

spatial relationships between joints. Others have recently tackled this in similar
ways [17,20,25] with variations on how to approach unary score generation and
pairwise comparison of adjacent joints. Chen et al. [25] cluster detections into
typical orientations so that when their classifier makes predictions additional
information is available indicating the likely location of a neighboring joint. We
achieve superior performance without the use of a graphical model or any explicit
modeling of the human body (Fig. 2).

There are several examples of methods making successive predictions for pose
estimation. Carreira et al. [19] use what they refer to as Iterative Error Feedback.
A set of predictions is included with the input, and each pass through the network
further refines these predictions. Their method requires multi-stage training and
the weights are shared across each iteration. Wei et al. [18] build on the work
of multi-stage pose machines [26] but now with the use of ConvNets for feature
extraction. Given our use of intermediate supervision, our work is similar in spirit
to these methods, but our building block (the hourglass module) is different. Hu
and Ramanan [27] have an architecture more similar to ours that can also be used
for multiple stages of predictions, but their model ties weights in the bottom-up
and top-down portions of computation as well as across iterations.

Tompson et al. build on their work in [15] with a cascade to refine predic-
tions. This serves to increase efficency and reduce memory usage of their method
while improving localization performance in the high precision range [16]. One
consideration is that for many failure cases a refinement of position within a
local window would not offer much improvement since error cases often con-
sist of either occluded or misattributed limbs. For both situations, any further
evaluation at a local scale will not improve the prediction.

There are variations to the pose estimation problem which include the use
of additional features such as depth or motion cues. [28–30] Also, there is the
more challenging task of simultaneous annotation of multiple people [17,31]. In
addition, there is work like that of Oliveira et al. [32] that performs human part
segmentation based on fully convolutional networks [23]. Our work focuses solely
on the task of keypoint localization of a single person’s pose from an RGB image.

Our hourglass module before stacking is closely connected to fully convolu-
tional networks [23] and other designs that process spatial information at mul-
tiple scales for dense prediction [15,33–41]. Xie et al. [33] give a summary of
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Fig. 3. An illustration of a single “hourglass” module. Each box in the figure cor-
responds to a residual module as seen in Fig. 4. The number of features is consistent
across the whole hourglass.

typical architectures. Our hourglass module differs from these designs mainly
in its more symmetric distribution of capacity between bottom-up processing
(from high resolutions to low resolutions) and top-down processing (from low
resolutions to high resolutions). For example, fully convolutional networks [23]
and holistically-nested architectures [33] are both heavy in bottom-up process-
ing but light in their top-down processing, which consists only of a (weighted)
merging of predictions across multiple scales. Fully convolutional networks are
also trained in multiple stages.

The hourglass module before stacking is also related to conv-deconv and
encoder-decoder architectures [42–45]. Noh et al. [42] use the conv-deconv
architecture to do semantic segmentation, Rematas et al. [44] use it to pre-
dict reflectance maps of objects. Zhao et al. [43] develop a unified framework
for supervised, unsupervised and semi-supervised learning by adding a recon-
struction loss. Yang et al. [46] employ an encoder-decoder architecture without
skip connections for image generation. Rasmus et al. [47] propose a denoising
auto-encoder with special, “modulated” skip connections for unsupervised/semi-
supervised feature learning. The symmetric topology of these networks is similar,
but the nature of the operations is quite different in that we do not use unpooling
or deconv layers. Instead, we rely on simple nearest neighbor upsampling and
skip connections for top-down processing. Another major difference of our work
is that we perform repeated bottom-up, top-down inference by stacking multiple
hourglasses.

3 Network Architecture

3.1 Hourglass Design

The design of the hourglass is motivated by the need to capture information at
every scale. While local evidence is essential for identifying features like faces and
hands, a final pose estimate requires a coherent understanding of the full body.
The person’s orientation, the arrangement of their limbs, and the relationships
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of adjacent joints are among the many cues that are best recognized at different
scales in the image. The hourglass is a simple, minimal design that has the
capacity to capture all of these features and bring them together to output
pixel-wise predictions.

The network must have some mechanism to effectively process and consoli-
date features across scales. Some approaches tackle this with the use of separate
pipelines that process the image independently at multiple resolutions and com-
bine features later on in the network [15,18]. Instead, we choose to use a single
pipeline with skip layers to preserve spatial information at each resolution. The
network reaches its lowest resolution at 4× 4 pixels allowing smaller spatial fil-
ters to be applied that compare features across the entire space of the image.

The hourglass is set up as follows: Convolutional and max pooling layers are
used to process features down to a very low resolution. At each max pooling
step, the network branches off and applies more convolutions at the original
pre-pooled resolution. After reaching the lowest resolution, the network begins
the top-down sequence of upsampling and combination of features across scales.
To bring together information across two adjacent resolutions, we follow the
process described by Tompson et al. [15] and do nearest neighbor upsampling
of the lower resolution followed by an elementwise addition of the two sets of
features. The topology of the hourglass is symmetric, so for every layer present
on the way down there is a corresponding layer going up.

After reaching the output resolution of the network, two consecutive rounds
of 1× 1 convolutions are applied to produce the final network predictions. The
output of the network is a set of heatmaps where for a given heatmap the network
predicts the probability of a joint’s presence at each and every pixel. The full
module (excluding the final 1× 1 layers) is illustrated in Fig. 3.

3.2 Layer Implementation

While maintaining the overall hourglass shape, there is still some flexibility in the
specific implementation of layers. Different choices can have a moderate impact
on the final performance and training of the network. We explore several options
for layer design in our network. Recent work has shown the value of reduction
steps with 1× 1 convolutions, as well as the benefits of using consecutive smaller
filters to capture a larger spatial context. [12,14] For example, one can replace a
5× 5 filter with two separate 3× 3 filters. We tested our overall network design,
swapping in different layer modules based off of these insights. We experienced
an increase in network performance after switching from standard convolutional
layers with large filters and no reduction steps to newer methods like the residual
learning modules presented by He et al. [14] and “Inception”-based designs [12].
After the initial performance improvement with these types of designs, various
additional explorations and modifications to the layers did little to further boost
performance or training time.

Our final design makes extensive use of residual modules. Filters greater
than 3× 3 are never used, and the bottlenecking restricts the total number of
parameters at each layer curtailing total memory usage. The module used in
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Fig. 4. Left: Residual Module [14] that we use throughout our network. Right: Illus-
tration of the intermediate supervision process. The network splits and produces a set
of heatmaps (outlined in blue) where a loss can be applied. A 1× 1 convolution remaps
the heatmaps to match the number of channels of the intermediate features. These
are added together along with the features from the preceding hourglass. (Color figure
online)

our network is shown in Fig. 4. To put this into the context of the full network
design, each box in Fig. 3 represents a single residual module.

Operating at the full input resolution of 256× 256 requires a significant
amount of GPU memory, so the highest resolution of the hourglass (and thus
the final output resolution) is 64× 64. This does not affect the network’s ability
to produce precise joint predictions. The full network starts with a 7× 7 convo-
lutional layer with stride 2, followed by a residual module and a round of max
pooling to bring the resolution down from 256 to 64. Two subsequent residual
modules precede the hourglass shown in Fig. 3. Across the entire hourglass all
residual modules output 256 features.

3.3 Stacked Hourglass with Intermediate Supervision

We take our network architecture further by stacking multiple hourglasses end-
to-end, feeding the output of one as input into the next. This provides the
network with a mechanism for repeated bottom-up, top-down inference allowing
for reevaluation of initial estimates and features across the whole image. The
key to this approach is the prediction of intermediate heatmaps upon which we
can apply a loss. Predictions are generated after passing through each hourglass
where the network has had an opportunity to process features at both local and
global contexts. Subsequent hourglass modules allow these high level features to
be processed again to further evaluate and reassess higher order spatial relation-
ships. This is similar to other pose estimations methods that have demonstrated
strong performance with multiple iterative stages and intermediate supervision
[18,19,30].

Consider the limits of applying intermediate supervision with only the use of
a single hourglass module. What would be an appropriate place in the pipeline
to generate an initial set of predictions? Most higher order features are present
only at lower resolutions except at the very end when upsampling occurs. If
supervision is provided after the network does upsampling then there is no way
for these features to be reevaluated relative to each other in a larger global
context. If we want the network to best refine predictions, these predictions
cannot be exclusively evaluated at a local scale. The relationship to other joint
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predictions as well as the general context and understanding of the full image is
crucial. Applying supervision earlier in the pipeline before pooling is a possibility,
but at this point the features at a given pixel are the result of processing a
relatively local receptive field and are thus ignorant of critical global cues.

Repeated bottom-up, top-down inference with stacked hourglasses alleviates
these concerns. Local and global cues are integrated within each hourglass mod-
ule, and asking the network to produce early predictions requires it to have a
high-level understanding of the image while only partway through the full net-
work. Subsequent stages of bottom-up, top-down processing allow for a deeper
reconsideration of these features.

This approach for going back and forth between scales is particularly impor-
tant because preserving the spatial location of features is essential to do the final
localization step. The precise position of a joint is an indispensable cue for other
decisions being made by the network. With a structured problem like pose esti-
mation, the output is an interplay of many different features that should come
together to form a coherent understanding of the scene. Contradicting evidence
and anatomic impossiblity are big giveaways that somewhere along the line a
mistake was made, and by going back and forth the network can maintain precise
local information while considering and then reconsidering the overall coherence
of the features.

We reintegrate intermediate predictions back into the feature space by map-
ping them to a larger number of channels with an additional 1× 1 convolution.
These are added back to the intermediate features from the hourglass along with
the features output from the previous hourglass stage (visualized in Fig. 4). The
resulting output serves directly as the input for the following hourglass module
which generates another set of predictions. In the final network design, eight
hourglasses are used. It is important to note that weights are not shared across
hourglass modules, and a loss is applied to the predictions of all hourglasses using
the same ground truth. The details for the loss and ground truth are described
below.

3.4 Training Details

We evaluate our network on two benchmark datasets, FLIC [1] and MPII Human
Pose [21]. FLIC is composed of 5003 images (3987 training, 1016 testing) taken
from films. The images are annotated on the upper body with most figures facing
the camera straight on. MPII Human Pose consists of around 25k images with
annotations for multiple people providing 40k annotated samples (28k training,
11k testing). The test annotations are not provided so in all of our experiments
we train on a subset of training images while evaluating on a heldout validation
set of around 3000 samples. MPII consists of images taken from a wide range of
human activities with a challenging array of widely articulated full-body poses.

There are often multiple people visible in a given input image, but without a
graphical model or other postprocessing step the image must convey all necessary
information for the network to determine which person deserves the annotation.
We deal with this by training the network to exclusively annotate the person in
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Fig. 5. Example output on MPII’s test set.

the direct center. This is done in FLIC by centering along the x-axis according to
the torsobox annotation - no vertical adjustment or scale normalization is done.
For MPII, it is standard to utilize the scale and center annotations provided with
all images. For each sample, these values are used to crop the image around the
target person. All input images are then resized to 256× 256 pixels. We do data
augmentation that includes rotation (±30◦), and scaling (.75–1.25). We avoid
translation augmentation of the image since location of the target person is the
critical cue determining who should be annotated by the network.

The network is trained using Torch7 [48] and for optimization we use rmsprop
[49] with a learning rate of 2.5e−4. Training takes about 3 days on a 12 GB
NVIDIA TitanX GPU. We drop the learning rate once by a factor of 5 after
validation accuracy plateaus. Batch normalization [13] is also used to improve
training. A single forward pass of the network takes 75 ms. For generating final
test predictions we run both the original input and a flipped version of the image
through the network and average the heatmaps together (accounting for a 1 %
average improvement on validation). The final prediction of the network is the
max activating location of the heatmap for a given joint.

The same technique as Tompson et al. [15] is used for supervision. A Mean-
Squared Error (MSE) loss is applied comparing the predicted heatmap to a
ground-truth heatmap consisting of a 2D gaussian (with standard deviation of
1 px) centered on the joint location. To improve performance at high precision
thresholds the prediction is offset by a quarter of a pixel in the direction of its
next highest neighbor before transforming back to the original coordinate space
of the image. In MPII Human Pose, some joints do not have a corresponding
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Fig. 6. PCK comparison on FLIC

Table 1. FLIC results (PCK@0.2)

Elbow Wrist

Sapp et al. [1] 76.5 59.1

Toshev et al. [24] 92.3 82.0

Tompson et al. [16] 93.1 89.0

Chen et al. [25] 95.3 92.4

Wei et al. [18] 97.6 95.0

Our model 99.0 97.0

Fig. 7. PCKh comparison on MPII

Table 2. Results on MPII Human Pose (PCKh@0.5)

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Tompson et al. [16], CVPR 2015 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0

Carreira et al. [19], CVPR 2016 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3

Pishchulin et al. [17], CVPR 2016 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4

Hu et al. [27], CVPR 2016 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4

Wei et al. [18], CVPR 2016 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5

Our model 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

ground truth annotation. In these cases the joint is either truncated or severely
occluded, so for supervision a ground truth heatmap of all zeros is provided.

4 Results

4.1 Evaluation

Evaluation is done using the standard Percentage of Correct Keypoints (PCK)
metric which reports the percentage of detections that fall within a normalized
distance of the ground truth. For FLIC, distance is normalized by torso size, and
for MPII, by a fraction of the head size (referred to as PCKh).
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FLIC: Results can be seen in Fig. 6 and Table 1. Our results on FLIC are very
competitive reaching 99 % PCK@0.2 accuracy on the elbow, and 97 % on the
wrist. It is important to note that these results are observer-centric, which is
consistent with how others have evaluated their output on FLIC.

MPII: We achieve state-of-the-art results across all joints on the MPII Human
Pose dataset. All numbers can be seen in Table 2 along with PCK curves in
Fig. 7. On difficult joints like the wrist, elbows, knees, and ankles we improve
upon the most recent state-of-the-art results by an average of 3.5 % (PCKh@0.5)
with an average error rate of 12.8 % down from 16.3 %. The final elbow accuracy
is 91.2 % and wrist accuracy is 87.1 %. Example predictions made by the network
on MPII can be seen in Fig. 5.

4.2 Ablation Experiments

We explore two main design choices in this work: the effect of stacking hourglass
modules together, and the impact of intermediate supervision. These are not
mutually independent as we are limited in how we can apply intermediate super-
vision depending on the overall architectural design. Applied separately, each has
a positive impact on performance, and together we see a further improvements
to training speed and in the end, final pose estimation performance. We look at
the rate of training of a few different network designs. The results of which can
be seen in Fig. 8 which shows average accuracy on the validation set as training
progresses. The accuracy metric considers all joints excluding those associated
with the head and torso to allow for easier differentiation across experiments.

Fig. 8. Comparison of validation accuracy as training progresses. The accuracy is
averaged across the wrists, elbows, knees, and ankles. The different network designs
are illustrated on the right, the circle is used to indicate where a loss is applied

First, to explore the effect of the stacked hourglass design we must demon-
strate that the change in performance is a function of the architecture shape
and not attributed to an increase in capacity with a larger, deeper network. To
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make this comparison, we work from a baseline network consisting of eight hour-
glass modules stacked together. Each hourglass has a single residual module at
each resolution as in Fig. 3. We can shuffle these layers around for various net-
work arrangements. A decrease in the number of hourglasses would result in an
increase in the capacity of each hourglass. For example, a corresponding network
could stack four hourglasses and have two consecutive residual modules at each
resolution (or two hourglasses and four residual modules). This is illustrated in
Fig. 9. All networks share the same number of parameters and layers, though a
slight difference is introduced when more intermediate supervision is applied.

To see the effect of these choices we first compare a two-stacked network
with four residual modules at each stage in the hourglass, and a single hourglass
but with eight residual modules instead. In Fig. 8 these are referred to as HG-
Stacked and HG respectively. A modest improvement in training can be seen
when using the stacked design despite having approximately the same number
of layers and parameters. Next, we consider the impact of intermediate supervi-
sion. For the two-stack network we follow the procedure described in the paper
to apply supervision. Applying this same idea with a single hourglass is nontriv-
ial since higher order global features are present only at lower resolutions, and
the features across scales are not combined until late in the pipeline. We explore
applying supervision at various points in the network, for example either before
or after pooling and at various resolutions. The best performing method is shown
as HG-Int in Fig. 8 with intermediate supervision applied after upsampling at
the next two highest resolutions before the final output resolution. This super-
vision does offer an improvement to performance, but not enough to surpass the
improvement when stacking is included (HG-Stacked-Int).

In Fig. 9 we compare the validation accuracy of 2-, 4-, and 8-stack models
that share approximately the same number of parameters, and include the accu-
racy of their intermediate predictions. There is a modest improvement in final
performance for each successive increase in stacking from 87.4 % to 87.8 % to
88.1 %. The effect is more notable at intermediate stages. For example, halfway

Fig. 9. Left: Example validation images illustrating the change in predictions from
an intermediate stage (second hourglass) (left) to final predictions (eighth hourglass)
(right). Right: Validation accuracy at intermediate stages of the network compared
across different stacking arrangements.
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through each network the corresponding accuracies of the intermediate predic-
tions are: 84.6 %, 86.5 %, and 87.1 %. Note that the accuracy halfway through
the 8-stack network is just short of the final accuracy of the 2-stack network.

It is interesting to observe the mistakes made early and corrected later on by
the network. A few examples are visualized in Fig. 9. Common mistakes show up
like a mix up of other people’s joints, or misattribution of left and right. For the
running figure, it is apparent from the final heatmap that the decision between
left and right is still a bit ambiguous for the network. Given the appearance
of the image, the confusion is justified. One case worth noting is the middle
example where the network initially activates on the visible wrists in the image.
Upon further processing the heatmap does not activate at all on the original
locations, instead choosing a reasonable position for the occluded wrist.

5 Further Analysis

5.1 Multiple People

The issue of coherence becomes especially important when there are multiple
people in an image. The network has to decide who to annotate, but there
are limited options for communicating who exactly deserves the annotation.
For the purposes of this work, the only signal provided is the centering and
scaling of the target person trusting that the input will be clear enough to parse.
Unfortunately, this occasionally leads to ambiguous situations when people are
very close together or even overlapping as seen in Fig. 10. Since we are training
a system to generate pose predictions for a single person, the ideal output in
an ambiguous situation would demonstrate a commitment to the joints of just
one figure. Even if the predictions are lower quality, this would show a deeper
understanding of the task at hand. Estimating a location for the wrist with a
disregard for whom the wrist may belong is not desired behavior from a pose
estimation system.

Fig. 10. The difference made by a slight translation and change of scale of the input
image. The network determines who to generate an annotation for based on the central
figure. The scaling and shift right of the input image is enough for the network to switch
its predictions.

The results in Fig. 10 are from an MPII test image. The network must produce
predictions for both the boy and girl, and to do so, their respective center and
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scale annotations are provided. Using those values to crop input images for the
network result in the first and third images of the figure. The center annotations
for the two dancers are off by just 26 pixels in a 720× 1280 image. Qualitatively,
the most perceptible difference between the two input images is the change in
scale. This difference is sufficient for the network to change its estimate entirely
and predict the annotations for the correct figure.

A more comprehensive management of annotations for multiple people is
out of the scope of this work. Many of the system’s failure cases are a result of
confusing the joints of multiple people, but it is promising that in many examples
with severe overlap of figures the network will appropriately pick out a single
figure to annotate.

5.2 Occlusion

Occlusion performance can be difficult to assess as it often falls into two distinct
categories. The first consists of cases where a joint is not visible but its position
is apparent given the context of the image. MPII generally provides ground
truth locations for these joints, and an additional annotation indicates their
lack of visibility. The second situation, on the other hand, occurs when there is
absolutely no information about where a particular joint might be. For example,
images where only the upper half of the person’s body is visible. In MPII these
joints will not have a ground truth annotation associated with them.

Our system makes no use of the additional visibility annotations, but we can
still take a look at the impact of visibility on performance. About 75 % of the
elbows and wrists with annotations are labeled visible in our held-out validation
set. In Fig. 11, we compare performance averaged across the whole validation set
with performance on the three-quarters of joints that are visible and performance
on the remaining quarter that are not. While only considering visible joints,
wrist accuracy goes up to 93.6 % from 85.5 % (validation performance is slightly
worse than test set performance of 87.1 %). On the other hand, performance
on exclusively occluded joints is 61.1 %. For the elbow, accuracy goes from a
baseline of 90.5 % to 95.1 % for visible joints and down to 74.0 % for occluded
joints. Occlusion is clearly a significant challenge, but the network still makes
strong estimates in most cases. In many examples, the network prediction and
ground-truth annotation may not agree while both residing in valid locations,
and the ambiguity of the image means there is no way to determine which one
is truly correct.

We also consider the more extreme case where a joint may be severely
occluded or truncated and therefore have no annotation at all. The PCK metric
used when evaluating pose estimation systems does not reflect how well these
situations are recognized by the network. If there is no ground truth annota-
tion provided for a joint it is impossible to assess the quality of the prediction
made by the system, so it is not counted towards the final reported PCK value.
Because of this, there is no harm in generating predictions for all joints even
though the predictions for completely occluded or truncated joints will make
no sense. For use in a real system, a degree of metaknowledge is essential, and
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Fig. 11. Left: PCKh curves on validation comparing performance when exclusively
considering joints that are visible (or not). Right: Precision recall curves showing the
accuracy of predicting whether an annotation is present for a joint when thresholding
on either the mean or max activation of a heatmap.

the understanding that no good prediction can be made on a particular joint
is very important. We observe that our network gives consistent and accurate
predictions of whether or not a ground truth annotation is available for a joint.

We consider the ankle and knee for this analysis since these are occluded
most often. Lower limbs are frequently cropped from images, and if we were to
always visualize all joint predictions of our network, example pose figures would
look unacceptable given the nonsensical lower body predictions made in these
situations. For a simple way to filter out these cases we examine how well one
can determine the presence of an annotation for a joint given the corresponding
heatmap activation. We consider thresholding on either the maximum value of
the heatmap or its mean. The corresponding precision-recall curves can be seen
in Fig. 11. We find that based solely off of the mean activation of a heatmap it
is possible to correctly assess the presence of an annotation for the knee with
an AUC of 92.1 % and an annotation for the ankle with an AUC of 96.0 %.
This was done on a validation set of 2958 samples of which 16.1 % of possible
knees and 28.4 % of possible ankles do not have a ground truth annotation. This
is a promising result demonstrating that the heatmap serves as a useful signal
indicating cases of truncation and severe occlusion in images.

6 Conclusion

We demonstrate the effectiveness of a stacked hourglass network for producing
human pose estimates. The network handles a diverse and challenging set of
poses with a simple mechanism for reevaluation and assessment of initial predic-
tions. Intermediate supervision is critical for training the network, working best
in the context of stacked hourglass modules. There still exist difficult cases not
handled perfectly by the network, but overall our system shows robust perfor-
mance to a variety of challenges including heavy occlusion and multiple people
in close proximity.
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