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Abstract. We present a novel approach for the reconstruction of
dynamic geometric shapes using a single hand-held consumer-grade
RGB-D sensor at real-time rates. Our method builds up the scene model
from scratch during the scanning process, thus it does not require a pre-
defined shape template to start with. Geometry and motion are parame-
terized in a unified manner by a volumetric representation that encodes
a distance field of the surface geometry as well as the non-rigid space
deformation. Motion tracking is based on a set of extracted sparse color
features in combination with a dense depth constraint. This enables accu-
rate tracking and drastically reduces drift inherent to standard model-
to-depth alignment. We cast finding the optimal deformation of space as
a non-linear regularized variational optimization problem by enforcing
local smoothness and proximity to the input constraints. The problem
is tackled in real-time at the camera’s capture rate using a data-parallel
flip-flop optimization strategy. Our results demonstrate robust tracking
even for fast motion and scenes that lack geometric features.

1 Introduction

Nowadays, RGB-D cameras, such as the Microsoft Kinect, Asus Xtion Pro, or
Intel RealSense, have become an affordable commodity accessible to everyday
users. With the introduction of these sensors, research has started to develop
efficient algorithms for dense static 3D reconstruction. KinectFusion [1,2] has
shown that despite their low camera resolution and adverse noise characteris-
tics, high-quality reconstructions can be achieved, even in real time. Follow-up
work extended the underlying data structures and depth fusion algorithms in
order to provide better scalability for handling larger scenes [3—6] and a higher
reconstruction quality [7,8].
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Fig. 1. Real-time non-rigid reconstruction result overlayed on top of RGB input

While these approaches achieve impressive results on static environments,
they do not reconstruct dynamic scene elements such as non-rigidly moving
objects. However, the reconstruction of deformable objects is central to a wide
range of applications, and also the focus of this work. In the past, a variety
of methods for dense deformable geometry tracking from multi-view camera
systems [9] or a single RGB-D camera, even in real-time [10], were proposed.
Unfortunately, all these methods require a complete static shape template of the
tracked scene to start with; they then deform the template over time.

Object type specific templates limit applicability in general scenes, and are
often hard to construct in practice. Therefore, template-free methods that jointly
build up the shape model along with tracking its non-rigid deformations — from
partial scans only — have been investigated [11-16], but none of them achieves
real-time performance.

Recently, a first method has been proposed that tackles the hard joint model
reconstruction and tracking problem at real-time rates: DynamicFusion [17]
reconstructs an implicit surface representation — similar to KinectFusion — of
the tracked object, while jointly optimizing for the scene’s rigid and non-rigid
motion based on a coarse warping field. Although the obtained results are impres-
sive given the tight real-time constraint, we believe that this is not the end of
the line. For instance, their depth-only model-to-frame tracking strategy cannot
track tangential motion, since all color information is omitted. Without utilizing
global features as anchor points, model-to-frame tracking is also prone to drift
and error accumulation. In our work, we thus propose the use of sparse RGB
feature matching to improve tracking robustness and to handle scenes with little
geometric variation. In addition, we propose an alternative representation for
the deformation warp field.

In our new algorithm, we perform non-rigid surface tracking to capture shape
and deformations on a fine level of discretization instead of a coarse deformation
graph. This is realized by combining as-rigid-as-possible (ARAP) volume regu-
larization of the space embedding the surface [18] with automatically generated
volumetric control lattices to abstract geometric complexity. The regular struc-
ture of the lattice allows us to define an efficient multi-resolution approach for
solving the underlying non-linear optimization problem. Finally, we incorporate
globally-consistent sparse SIFT feature correspondences over the complete his-
tory of observed input frames to aid the alignment process. This minimizes the
risk of drift, and enables stable tracking for fast motions.
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Our real-time, non-rigid volumetric reconstruction approach is grounded on
the following three main contributions:

— a dense unified volumetric representation that encodes both the scene’s geom-
etry and its motion at the same resolution,

— the incorporation of global sparse SIFT correspondences into the alignment
process (e.g., allowing for robust loop closures),

— and a data-parallel optimization strategy that tackles the non-rigid alignment
problem at real-time rates.

2 Related Work

Online Static Reconstruction: Methods for offline static 3D shape recon-
struction from partial RGB-D scans differ in the employed scene representation,
such as point-based representations [19-21] or meshes [22]. In the context of com-
modity range sensors, implicit surface representations became popular [23-26]
since they are able to efficiently regularize out noise from low-quality input data.
Along with an appropriate surface representation, methods were developed that
are able to reconstruct small scenes in real time [27,28]. One prominent example
for online static 3D scene reconstruction with a hand-held commodity sensor
is KinectFusion [1,2]. A dense reconstruction is obtained based on a truncated
signed distance field (TSDF) [23] that is updated at framerate, and model-to-
frame tracking is performed using fast variants of the Iterative Closest Point
(ICP) algorithm [29]. Recently, the scene representation has been extended to
scale to larger reconstruction volumes [3-6,8,30].

Non-rigid Deformation Tracking: One way to handle dynamics is by track-
ing non-rigid surface deformations over time. For instance, objects of certain
types can be non-rigidly tracked using controlled multi-RGB [31] or multi-
depth [32,33] camera input. Template-based methods for offline deformable
shape tracking or performance capture of detailed deforming meshes [34-41]
were also proposed. Non-rigid structure-from-motion methods can capture dense
deforming geometry from monocular RGB video [42]; however, results are very
coarse and reconstruction is far from real-time. The necessity to compensate
for non-rigid distortions in shape reconstruction from partial RGB-D scans may
also arise when static reconstruction is the goal. For instance, it is hard for
humans to attain the exact same pose in multiple partial body scans. Human
scanning methods address this by a non-rigid compensation of posture differ-
ences [11,43,44], or use template-based pose alignment to fuse information from
scans in various poses [15,45]. Real-time deformable tracking of simple motions
of a wide range of objects has been demonstrated [10], but it requires a Kinect-
Fusion reconstruction of a static template before acquisition. Hence, template-
free methods that simultaneously track the non-rigidly deforming geometry of a
moving scene and build up a shape template over time were investigated. This
hard joint reconstruction and tracking problem has mostly been looked at in
an offline context [11-16,46,47]. In addition to runtime, drift and oversmooth-
ing of the shape model are a significant problem that arises with longer input
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sequences. The recently proposed DynamicFusion approach [17] is the first to
jointly reconstruct and track a non-rigidly deforming shape from RGB-D input
in real-time (although the color channel is not used). It reconstructs an implicit
surface representation - similar to the KinectFusion approach - while jointly
optimizing for the scene’s rigid and non-rigid motion based on a coarse warping
field parameterized by a sparse deformation graph [48]. Our approach tackles
the same setting, but uses a dense volumetric representation to embed both the
reconstructed model and the deformation warp field. While DynamicFusion only
uses geometric correspondences, we additionally employ sparse photometric fea-
ture correspondences over the complete history of frames. These features serve
as global anchor points and mitigate drift, which typically appears in model-to-
frame tracking methods.

3 Method Overview

Input to our method is a 30 Hz stream captured by a commodity RGB-D sensor.
At each time step t, a color map C; and a depth map D; are recorded, both
at a resolution of 640 x 480 pixels. Color and depth are assumed to be spa-
tially and temporally aligned. For reconstruction and non-rigid tracking of the
observed scene, we use a unified volumetric representation (Sect.4) that models
both the scene’s geometry as well as its deformation. The scene is fused into a
truncated signed distance field (TSDF) [23], which stores the scene’s geometry
and color in its initial, undeformed shape. A deformation field is stored at the
same resolution as the TSDF in order to define a rigid transformation per voxel.
In each frame, we continuously update the deformation field and fuse new RGB-
D images into the undeformed shape. An overview of the steps performed each
frame is shown in Fig.2. We first generate a polygonal mesh of the shape P,
which is the current isosurface of D with the current deformation field applied.
Next, we search for suitable correspondences between P and the input depth and
color map (Sect.b5), based on sparse color feature matching as well as a dense
depth-based correspondence search. Based on the correspondences, we adapt the
space deformation (Sect. 6) such that the scene’s geometry and color best match
the observed input depth and detected features. The update of the deformation
field is repeated in an Tterative Closest Point (ICP) fashion. Finally, we fuse the
per-frame captured depth and color data into the TSDF (Sect.8). The under-
lying high-dimensional non-linear optimization problem is solved in every step
using a data-parallel flip-flop iteration strategy (Sect. 7). We demonstrate online
non-rigid reconstruction results at framerate and compare to template-free and
template-based state-of-the-art reconstruction and tracking approaches (Sect. 9).
Finally, we discuss limitations (Sect. 10) and future directions (Sect. 11).

4 Scene Representation

We reconstruct non-rigid scenes incrementally by joint motion tracking and sur-
face reconstruction. The two fundamental building blocks are a truncated signed
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deformed SDF triangle mesh correspondences
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rendered depth map observed RGB-D map

Fig. 2. Method overview: first, a deformed 3D mesh is extracted from the signed dis-
tance field using Marching Cubes. The mesh is rendered to obtain a depth map, which
is used to generate dense depth correspondences. Next, we match SIFT features of
the current frame with those of all previous frames. Based on all correspondences, we
optimize the deformation field such that the resulting model explains the current depth
and color observation. Finally, we integrate the RGB-D data of the current frame

distance (TSDF) function [23] for reconstruction of the shape in its initial, unde-
formed pose and a space deformation field to track the deformations. We dis-
cretize both in a unified manner on a shared regular volumetric grid G. The grid
is composed of a set of grid points enumerated by a three-dimensional index
i. Each grid point stores six attributes. The first three attributes represent the
scene in its undeformed pose by a truncated signed distance D; € R, a color
C; € [0,255)%, and a confidence weight W; € R. The zero level set of D is the
undeformed shape P= D~1(0), which we call canonical pose in the following.
New depth data is continuously integrated into this canonical frame, where the
confidence weights are used to update D based on a weighted floating average
(see Sect. 8). The grid points also maintain information about the current space
deformation. For the i*" gridpoint, we store its position after deformation t;,
as well as its current local rotation R;, stored as three Euler angles. On top
of the deformation field, we model the global motion of the scene by a global
rotation R and translation t. Initially, all per grid point data is set to zero,
except for the positions t;, which are initialized to represent a regular grid. In
contrast to the DynamicFusion approach [17], this grid-based deformation rep-
resentation operates on a finer scale. Attribute values inbetween grid points are
obtained via trilinear interpolation. A point x is deformed via the space defor-
mation S(x) = R - [Zlg:‘l a;(x) - t;] + t. Here, |G| is the total number of grid
points and the «;(x) are the trilinear interpolation weights of x. We denote as
P the current deformed surface; i.e., P = S(P).

Since the deformation field stores deformation only in forward direction, an
isosurface extraction via raycasting [1,2] is not easily applicable. Thus, we use
a data-parallel implementation of marching cubes [49] to obtain a polygonal
representation of P, and then apply the deformation to the vertices. We first find
all grid cells that contain a zero crossing based on a data-parallel prefix sum. One
thread per valid grid cell is used to extract the final list of triangles. The resulting
vertices are immediately deformed according to the current deformation field,
resulting in a polygonal approximation of P. This deformed mesh is the basis
for the following correspondence association and visualization steps.
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5 Correspondence Association

To update the deformation field, two distinct and complementary types of corre-
spondences between the current deformed shape P and the new color and depth
input are searched: for depth-image alignment, we perform a fast data-parallel
projective lookup to obtain dense depth correspondences (see Sect.5.1). Since
in many situations depth features are not sufficient for robust tracking, we also
use color information, and extract a sparse set of robust color feature corre-
spondences (see Sect.5.2). These also serve as global anchor points, since their
descriptors are not modified over time.

5.1 Projective Depth Correspondences

Like most state-of-the-art online reconstruction approaches [1,2,17], we establish
depth correspondences via a fast projective association step. Unlike them, we first
extract a mesh-based representation of the isosurface P as described above, and
then rasterize this mesh. The resulting depth buffer contains sample points p. of
the current isosurface. To determine a candidate for a correspondence, we project
each p. into the current depth map D; and read the sample p? at the target
position. We generate a correspondence between p. and p?, if the two points
are considered sufficiently similar and appropriate for optimization. To measure
similarity, we compute their world space distance ||p. — p?||2, and measure their
normals’ similarity using their dot product n. o n?. To make optimization more
stable, we prune points close to silhouettes by looking at n. o v, where v is the
camera’s view direction.

More precisely, we use three thresholds €4 (distance), €, (normal devia-
tion), and €, (view direction), and define a family of kernels @,.(z) = 1 — £.
If ®4(||pe — p%l2) < 0, @,(1 —ne.on?) < 0 or $,(1 —n,ov) < 0, the cor-
respondence is pruned by setting the confidence weight associated with the

correspondence to zero w. = 0. For valid correspondences, the confidence is

_ (%(Hpc—piH2)+¢n(1—nc0n2)+¢u(1—ncOV))2
We = 3 .

5.2 Robust Sparse Color Correspondences

We use a combination of dense and sparse correspondences to improve stability
and reduce drift. To this end, we compute SIFT [50,51] matches to all previous
input frames on the GPU. Feature points are lifted to 3D and stored in the
canonical pose by applying S~! after detection. When a new frame is captured,
we use the deformation field to map all feature points to the previous frame. We
assume a rigid transform for the matching between the previous and the current
frame. The rest of the pipeline is split into four main components: keypoint
detection, feature extraction, correspondence association, and correspondence
pruning.

Keypoint Detection: We detect keypoint locations as scale space maxima in
a DoG pyramid of the grayscale image using a data-parallel feature detection
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approach. We use 4 octaves, each with 3 levels. Only extrema with a valid asso-
ciated depth are used, since we later lift the keypoints to 3D. All keypoints on
the same scale are stored in an array. Memory is managed via atomic counters.
We use at most 150 keypoints per image. For rotational invariance, we associate
each keypoint with up to 2 dominant gradient orientations.

Feature Extraction: We compute a 128-dimensional SIFT descriptor for each
valid keypoint. Each keypoint is thus composed of its 3D position, scale, orien-
tation, and SIFT descriptor. Our GPU implementation extracts keypoints and
descriptors in about 6 ms at an image resolution of 640 x 480.

Correspondence Association: Extracted features are matched with features
from all previous frames using a data-parallel approach (all extracted features are
stored for matching in subsequent frames). We exhaustively compute all pairwise
feature distances from the current to all previous frames and vice versa. The best
matching features in both directions are determined by minimum reductions in
shared memory. We use at most 128 correspondences between two frames.

Correspondence Pruning: Correspondences are sorted based on feature dis-
tance using shared memory bubble sort. We keep the 64 best correspondences per
image pair. Correspondences with keypoints not close enough in feature space,
screen space, or 3D space are pruned.

6 Deformation Energy

To reconstruct non-rigid surfaces in real time, we have to update the space defor-
mation S at sensor rate. We estimate the corresponding global pose parameters
using dense projective ICP [29].
For simplicity of notation, we stack all unknowns of local deformations in a
single vector:
X=(--,t5- |-, R --)L.

» Vg

3|G| coordinates  3|G| angles

To achieve real-time performance, even for high-resolution grids, we cast finding
the best parameters as a non-linear variational optimization problem. Based on
these definitions, we define the following highly non-linear registration objective:

Etotal (X) - wsEspa’rse (X) + wdEdense (X) + wT'E’r'eg (X) . (1)

data term prior term

The objective is composed of two data terms that enforce proximity to the cur-
rent input, and a prior for regularization. The prior F,..4 regularizes the problem
by favoring smooth and locally rigid deformations. The data terms are a sparse
feature-based alignment objective Egparse and a dense depth-based correspon-
dence measure Fgepse. The weights ws, wg, and w, control the relative influence
of the different objectives and remain constant for all shown experiments. In the
following, we explain the different terms of our energy in more detail.
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Point-to-Plane Alignment: We enforce dense alignment of the current sur-
face P with the captured depth data based on a point-to-plane distance metric.
The point-to-plane metric can be considered a first order approximation of the
real surface geometry. This allows for sliding, which is especially useful given
translational object or camera motion. To this end, we first extract a triangu-
lation using marching cubes and rasterize the resulting mesh to obtain sample
point S(P.) on the isosurface. Target positions p? are computed based on our
projective correspondence association strategy presented in the previous section.
The objective is based on the extracted C' correspondences:

C
Edense(X) = ch : [(S(IA)C) - pg)T : n{cl]Q' (2)

Here, n? is the normal vector at p? and w,. denotes the confidence of the corre-
spondence, see previous section.

Sparse Feature Alignment: In addition to the dense depth correspondence
association, we use the set of S sparse color-based SIFT matches (see Sect.5) as
constraints in the optimization. Let f, be the position of the st SIFT feature
match in the canonical frame and f; its current world space position. Sparse
feature alignment is enforced by:

S
Esparse(X) =Y IS(E) — 13- (3)

This term adds robustness against temporal drift and allows to track fast
motions.

Prior Term: Since we operate on a fine volumetric grid, rather than a coarse
deformation graph, we need an efficient regularization strategy to make the
highly underconstrained non-rigid tracking problems well posed. To this end,
we impose the as-rigid-as-possible (ARAP) [18] prior on the grid:

Ereg(X) = 3 3 [[(ti = t) = Ralki &) - (4)

iEM FEN;

Here, N is the one-ring neighborhood of the i*" grid point and M is the set of all
grid points used during optimization. In our approach, M is the isosurface plus
its one-ring. This prior is highly non-linear due to the rotations R;. It measures
the residual non-rigid component of the deformation, which we seek to minimize.

7 Parallel Energy Optimization

Finding the optimum X* of the tracking energy Fi,iq; is a high-dimensional
non-linear least squares problem in the unknown parameters. In fact, we only
optimize the values in a one-ring neighborhood M around the isosurface. The
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objective thus has a total of 6 N unknowns (3 for position and 3 for rotation), with
N = |M|. For the minimization of this high-dimensional non-linear objective
at real-time rates, we propose a novel hierarchical data-parallel optimization
strategy. First, we describe our approach for a single hierarchy level.

7.1 Per-Level Optimization Strategy

Fortunately, the non-linear optimization objective Fy,q; can be split into two
independent subproblems [18] by employing an iterative flip-flop optimization
strategy: first, the rotations R; are fixed and we optimize for the best posi-
tions t;. Second, the positions t; are considered constant and the rotations R;
are updated. These two step are iterated until convergence. The two resulting
subproblems can both be solved in a highly efficient data-parallel manner, as
discussed in the following.

Data-Parallel Rotation Update: Solving for the best rotations is still a non-
linear optimization problem. Fortunately, this subproblem is equivalent to the
shape matching problem [52] and has a closed-form solution. We obtain the best
fitting rotation based on Procrustes analysis [53,54] with respect to the canonical
pose. Since the per grid point rotations are independent, we solve for all optimal
rotations in parallel. To this end, we run one thread per gridpoint, compute the
corresponding cross-covariance matrix and compute the best rotation based on
SVD. With our data-parallel implementation, we can compute the best rotations
for 400 K voxels in 1.9 ms.

Data-Parallel Position Update: The tracking objective Ei.q; is a quadratic
optimization problem in the optimal positions t;. We find the optimal positions

by setting the corresponding partial derivatives %&’(X) = 0 to zero, which

yields (L +B7B) -t = b. Here, L is the Laplacian matrix, B encodes the point-
point and point-plane constraints (including the tri-linear interpolation of posi-
tions). The right-hand side b encodes the fixed rotations and the target points
of the constraints. We solve the linear system of equations using a data-parallel
preconditioned conjugate gradient (PCG) solver, similar to [10,55-58], which we
run on the GPU. Since the matrix L is sparse, we compute it on-the-fly in each
iteration step. In contrast, B” B has many non-zero entries, due to the involved
tri-linear interpolation. In addition, each entry is computationally expensive to
compute, since we have to sum per-voxel over all contained constraints. This
is a problem, especially on the coarser levels of the hierarchy, since each voxel
may contain several thousand correspondences. To alleviate this problem, we
pre-compute and cache B”B, before the PCG iteration commences. In every
PCG step, we read the cached values which remain constant across iterations.

7.2 Hierarchical Optimization Strategy

This efficient flip-flop solver has nice convergence properties on coarse resolution
grids, since updates are propagated globally within only a few steps. On finer
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resolutions, which are important for accurate tracking, spatial propagation of
updates would require too many iterations. This is a well known drawback of
iterative approaches, which are known to deal well with high-frequency errors,
while low-frequency components are only slowly resolved. To alleviate this prob-
lem, we opt for a nested coarse-to-fine optimization strategy. This provides a
good trade-off between global convergence and runtime efficiency. We solve in
a coarse-to-fine fashion and prolongate the solutions to the next finer level to
jump-start the optimization. When downsampling constraints, we gather all con-
straints of a parent voxel from its 8 children on the next finer level. We keep all
constraints on coarser levels and express them as a tri-linear combination of the
coarse grid points.

8 Fusion

The depth data D, of each recorded RGB-D frame is incrementally fused into the
canonical TSDF following the non-rigid fusion technique introduced in Dynam-
icFusion [17]. Non-rigid fusion is a generalization of the projective truncated
signed distance function integration approach introduced by [23]. [17] define the
warp field through the entire canonical frame. In contrast, we only integrate into
voxels of M (one-ring of the current isosurface) that have been included in the
optimization for at least K,,;, = 3 optimization steps. This ensures that data
is only fused into regions with well-defined space deformations; otherwise, sur-
face geometry may be duplicated. During runtime, the isosurface is expanding
to account for previously unseen geometry. This expansion also adds new points
to the grid to account for voxels that become for the first time part of M. The
position and rotation attributes of these grid points do not match the current
space deformation, since they have not yet been included in the optimization.
Therefore, we initialize the position t; and rotation R; of each new grid point by
extrapolating the current deformation field. This jump-starts the optimization
for the added variables.

9 Results

We demonstrate a variety of non-rigid reconstruction results in Figs. 1 and 3. For
a list of parameter values and additional results, we refer to the supplemental
material and the accompanying video. Runtime performance and convergence
analysis of our solver is also provided in the supplemental document.

In all examples, we capture an RGB-D stream using an Asus Xtion PRO, a
KinectV1-style range sensor. We would like to point out that all reconstructions
are obtained in real-time using a commodity desktop PC (timings are provided
in the supplemental material). In addition, our method does not require any
pre-computation, and we do not rely on a pre-scanned template model — all
reconstructions are built from scratch.

Importance of Sparse Color Correspondences: A core aspect of our
method is the use of sparse RGB features as global anchor points for robust
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Fig. 3. A variety of non-rigid scenes reconstructed with our approach at real-time rates:
UPPER BODY, SUNFLOWER, and HOODIE (top to bottom)

Non-rigid Reconstruction Canonical Pose

Depth only Co(r(\)'\f:i:)ed Depth only

Sl YQWVE MY e X \.‘

Combined
(Ours)

Fig. 4. Comparison of reconstructions with and without our sparse color alignment
objective. Whereas depth-only reconstruction fails for tangential motion and objects
with few geometric features, we achieve robust reconstructions using color features
(Color figure online)
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tracking. Figure4 illustrates the improvement achieved by including the SIFT
feature alignment objective. If the input lacks geometric features, dense depth-
based alignment is ill-posed and results in drift, especially for tangential motion.
By including color features, we are able to successfully track and reconstruct
these cases.

Comparison to Template-Based Approaches: In Fig. 5, we compare against
the template-tracking method of Li et al. [39], which runs offline. Since their
method uses a high-quality pre-scanned template model obtained from a static
reconstruction, we can quantitatively evaluate the reconstruction generated from
the dynamic sequence. To this end, we compute the geometric distance of our
final reconstruction (canonical pose) to the template mesh of the first frame; see
Fig. 5, right. The average error in non-occluded regions is 1mm; occluded regions
cannot be reconstructed.

We further compare our approach to the real-time template-tracking method
by Zollhofer et al. [10]; see Fig. 6. Even though our 3D model is obtained on-the-
fly, the reconstruction quality is similar, or even higher.

Comparison to Template-Free Approaches: Currently, DynamicFusion
[17] is the only non-rigid reconstruction method that runs online and does not
require a pre-scanned template. In Fig.7, we compare our approach against
DynamicFusion on two scenes used in their publication. Overall, we obtain
at least comparable or even higher quality reconstructions. In particular,

Ours
(no template)
Ground Truth
Ours

NS TN 1N N a a

Error

[Li 09]

Fig. 5. Comparison to the template-based approach of Li et al. [39]: we obtain similar
quality reconstructions without requiring an initial template model. On the right, we
quantitatively evaluate the reconstruction quality: we compute the geometric distance
of our final reconstruction (canonical pose) to the template mesh of the first frame,
which is obtained from a high-quality, static pre-scanned reconstruction

Teeac e 88888
AEEKEKNHNEIEEK

Fig. 6. Comparison to the template-based approach of Zollhofer et al. [10]: although
our reconstruction is from scratch and does not require an initial template model, we
obtain reconstructions of similar quality

template)

Ours

(

[Zollhfer 14]
[2olihsfer 14]
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Non-rigid Reconstruction (Ours) Canonical Pose (Ours)

Fig. 7. Comparison to DynamicFusion [17]: we obtain at least comparable or even
higher quality reconstructions. In particular, our canonical pose is of higher quality,
since our warp field has a higher resolution than a coarse deformation proxy. In addition,
our sparse feature alignment objective mitigates drift and enables more robust tracking

our canonical pose is of higher quality — we attribute this to the key differ-
ences in our method: first, our sparse RGB feature term mitigates drift and
makes tracking much more robust (for the comparison /w and w/o SIFT feature
matching, see Fig. 4). Second, our deformation field is at a higher resolution level
than the coarse deformation proxy employed in DynamicFusion. This enables the
alignment of fine-scale deformations and preserves detail in the reconstruction
(otherwise newly-integrated frames would smooth out detail). Unfortunately, a
quantitative evaluation against DynamicFusion is challenging, since their method
is hard to reproduce (their code is not publicly available and not all implemen-
tation details are given in the paper).

Stability of Our Tracking: In Fig. 8, we demonstrate the tracking stability of
our method with a simple visualization: we color every surface point according
to its position in the canonical grid. In the case of successful non-rigid tracking,
surface color remains constant; in case of tracking failure or drift, the surface
would change its color over time. As we can see, our method is able to track
surface points faithfully throughout the entire sequence, and all points remain
stable at their undeformed positions; i.e., no drift occurs.

In Fig. 9, we evaluate the tracking stability regarding fast motions and homo-
geneous textures. We reconstruct the SUNFLOWER scene by only using every nt"
input frame (n = 2,...,6). This simulates motion of 2x-6x speed. As can be
seen, tracking remains stable up to ~3x speed. For higher speedups, tracking
failures occur, thus leading to reconstruction errors.

Importance of Grid Resolution and Combined Dense and Sparse
Tracking: We evaluate the importance of the fine warp-field resolution as well
as the relevance of our sparse color feature term in terms of obtained deforma-
tion quality; see Fig.10. For a low-resolution deformation grid, the warp field
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Fig. 8. Evaluation of tracking stability: surface points are colored according to the
position in the canonical pose. Our non-rigid tracking maps each surface point close to
its undeformed position. In case of tracking failures or drift, the surface would change
its color over time (Color figure online)

Input depth 1x Speed 2x Speed 3x Speed 4x Speed 5x Speed 6x Speed

Non-rigid Reconstruction

Fig. 9. Temporal Coherence: we skip every n'" frame of the SUNFLOWER sequence.
Tracking remains stable up to a 3x speedup. Beyond this, tracking quality degrades

is not flexible enough and fine-scale deformations cannot be handled. If we use
only depth data, tracking is considerably less accurate leading to local drift and
may even fail completely if no geometric features are present. Only for high-
resolution deformation grids and our combined tracker, drift is reduced and the
texture can be reconstructed at a good quality. Note that our grids have a signif-
icantly higher number of degrees of freedom than the coarse deformation graph
employed by DynamicFusion [17]; in their examples, they use only about 400
deformation nodes. We can only speculate, but based on their low-resolution
warp field, DynamicFusion cannot reconstruct RGB textures.

B ol
L& 4

60 Grid Points 200 Grid Points 700 Grid Points 3000 Grid Points

pauiquo)

Ajuo yadag

Fig. 10. Impact of grid resolution and color features: low-resolution warp fields (left)
cannot capture fine-scale deformations leading to drift and blur. Depth-only tracking
(bottom) also results in drift and blur. In contrast, our combined approach together
with a high-resolution grid (top right) mitigates drift and leads to sharp textures
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10 Limitations

While we are able to demonstrate compelling results and our method works well
on a variety of examples, there are still limitations. First of all, robust tracking is
fundamentally hard in the case of non-rigid deforming surfaces. Although global
SIFT matching helps to improve robustness and minimizes alignment errors,
drift is not completely eliminated. Ideally, we would like to solve a non-rigid,
global bundle adjustment problem, which unfortunately exceeds the real-time
computational budget.

High levels of deformation, such as fully bending a human arm, may cause
problems, as our regularizer distributes deformations smoothly over the grid. We
believe that adaptive strategies will be a key in addressing this issue; e.g., locally
adjusting the rigidity.

Another limitation is the relatively small spatial extent that can be modeled
with a uniform grid. We believe a next step on this end would be the combi-
nation of our method with a sparse surface reconstruction approach; e.g., [5,6].
Nonetheless, we believe that our method helps to further improve the field of
non-rigid 3D surface reconstruction, which is both a fundamentally hard and
important problem.

11 Conclusion

We present a novel approach to jointly reconstruct the geometric shape as well as
motion of an arbitrary non-rigidly deforming scene at real-time rates. The foun-
dation is a novel unified volumetric representation that encodes both, geometry
and motion. Motion tracking uses sparse color as well as dense depth constraints
and is based on a fast GPU-based variational optimization strategy. Our results
demonstrate non-rigid reconstruction results, even for scenes that lack geometric
features. We hope that our method is another stepping stone for future work,
and we believe that it paves the way for new applications in VR and AR, where
the interaction with arbitrary non-rigidly deforming objects is of paramount
importance.
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