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Abstract. Discriminative methods often generate hand poses kinemati-
cally implausible, then generative methods are used to correct (or verify)
these results in a hybrid method. Estimating 3D hand pose in a hierar-
chy, where the high-dimensional output space is decomposed into smaller
ones, has been shown effective. Existing hierarchical methods mainly
focus on the decomposition of the output space while the input space
remains almost the same along the hierarchy. In this paper, a hybrid
hand pose estimation method is proposed by applying the kinematic
hierarchy strategy to the input space (as well as the output space) of
the discriminative method by a spatial attention mechanism and to the
optimization of the generative method by hierarchical Particle Swarm
Optimization (PSO). The spatial attention mechanism integrates cas-
caded and hierarchical regression into a CNN framework by transforming
both the input (and feature space) and the output space, which greatly
reduces the viewpoint and articulation variations. Between the levels in
the hierarchy, the hierarchical PSO forces the kinematic constraints to
the results of the CNNs. The experimental results show that our method
significantly outperforms four state-of-the-art methods and three base-
lines on three public benchmarks.

Keywords: Hierarchical hand pose estimation · Particle Swarm Opti-
mization · Convolutional neural network · Iterative refinement · Spatial
attention · Hybrid method · Kinematic constraints

1 Introduction

The problem of 3D hand pose estimation can be formulated as the configuration
of the variables representing a hand model given depth images. The problem is
challenging with complicated variations caused by high Degree of Freedom (DoF)
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articulations, multiple viewpoints, self-similar parts, severe self-occlusions, differ-
ent shapes and sizes. With these variations, configurations of the hand variables
given a depth image lie in a high-dimensional space.

Fig. 1. Structure of the proposed method. The Spatial Attention Mechanism integrates
the cascaded and hierarchical hand pose estimation into one framework. The hand pose
is estimated layer by layer in the order of the articulation complexity, with the spatial
attention module to transform the input/feature and output space. Within each layer,
the partial pose is iteratively refined both in viewpoint and location with the spatial
attention module, which leads both the feature and output space to a canonical one.
After the refinement, the partial PSO is applied to select estimations within the hand
kinematic constraints (short as KC in the figure) among the results of the cascaded
estimation. Λ denotes the CNN feature maps.

Many prior works have achieved good performance by different methods
[1–16]. Among the discriminative methods that learn the mapping from the
depth images to the hand pose configurations, Sun et al. [17] refine the hand
pose by two levels of a hierarchy (palm, and fingers) in a cascaded manner
by viewpoint-invariant pixel difference features in random forest. Oberweger et
al. [18] apply the cascaded method to CNN for iteratively refining partial poses,
initialized by the full hand pose estimation.

The discriminative and generative methods are combined in a hierarchy in the
Hierarchical Sampling Optimization (HSO) [19]. In each layer, random forests
are first used to regress partial poses and a partial joint energy function is intro-
duced to evaluate the results and select the best one to the next layer. The
hierarchical optimization with refinement that estimates the hand pose in the
order of articulation complexity of the hand is a promising framework as the
searching space is decomposed into smaller parts and the refinement leads to
more accurate results.

However, the method in [17] and the discriminative part of HSO [19] only
focus on breaking down the complexity in the output space hierarchically, i.e.,
decomposing the hand variables; in other words, the hierarchical strategy is
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carried out in the output space while the input space or the feature space stays
the same along the hierarchy. For the cascaded refinement [17,18], the input or
feature space is only partially updated with results from previous stages, either
by cropping or rotating, and the features [17] are computed on the original whole
images in each iteration. In addition, the optimization of the energy function is
performed in a brute force way in [19].

In this paper, we propose a hybrid method with iterative (cascade) refine-
ment for hand pose estimation, illustrated in Fig. 1, which not only applies the
hierarchical strategy to the output space but also the feature space of the dis-
criminative part and the optimization of the energy function of the generative
part.

For the discriminative part, a spatial attention mechanism is introduced to
integrate cascaded (with multiple stages) and hierarchical (with multiple layers)
regression into a CNN framework by transforming both the input (and feature
space) and the output space. In the transformed space, the viewpoint and artic-
ulation variations of the feature space and the output space is largely reduced,
which greatly simplifies the estimation. Along the hierarchy, with the spatial
attention mechanism, the features for the initial stage of each layer are spatially
transformed from input images based on the estimation results of the last stage
of the previous layer. Within each layer, the features are iteratively updated by
the spatial attention mechanism. By this dynamic spatial attention mechanism,
not only the most relevant features for the hand variable estimation are selected
but also the features are transformed to a canonical, expected viewpoint gradu-
ally, which simplifies the estimations in the following stages and layers. As such,
discriminative features are extracted for each partial pose estimation in each
iteration. In this way, we learn a deep net with spatial transformation tailored
towards our hand pose estimation problem.

In the generative part, the optimization organized in the hierarchy prevents
error accumulation from previous layers. Between the levels of the hierarchy,
partial PSO with a new energy function is incorporated to enforce hand kine-
matic constraints. It generates samples under the Gaussian distribution centered
on the results of the discriminative method, and selects estimations within the
hand kinematic constraints. The search space of the generative method is largely
reduced by estimating partial poses.

To evaluate our method, extensive experiments have been conducted on three
public benchmarks. The experimental results show that our method significantly
outperforms state-of-the-art methods on these datasets.

2 Related Work

Feature Selection with Attention. Learning or selecting transformation-
invariant representations or features by neural networks has been studied in
many prior works and among them, attention mechanism has gained much atten-
tion in object recognition and localization recently. Girshick et al. [20] produce
region proposals as representations for CNN to focus its localization capacity on
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these regions instead of a whole image. DRAW [21] integrates a spatial attention
mechanism mimicking that of human eye into a generative model to generate
image samples in different transformations. Sermanetet al. [22] use an atten-
tion model to direct a high resolution input to the most discriminative regions
to do fine-grained categorization. An end-to-end spatial transformation neural
network is proposed in [23].

The attention mechanism is tailored to our highly articulated problem by
breaking down to the viewpoint and articulation complexity in a hierarchy and
refining estimation results in a cascade. The hierarchical structure with cascade
refinement enables us to use a spatial transformation to not only select most
relevant features as in prior works aforementioned and also transform the feature
and the output space into a new one which leads to our expected, canonical space.

Cascaded and Hierarchical Estimation. The cascaded regression strategy
has shown good performances in the face analyses [24,25], human body estima-
tion [26,27] and hand pose estimation [17,18] and in most of these works, the
features are hand-crafted, such as pixel difference features [17,26], landmark dis-
tance features [24], SIFT [28]. Oberweger et al. [18] use CNN to learn features
automatically but with only partial spatial transformations by cropping input
images and in another work [4], they use the images generated by CNN as the
feedback to refine the estimation. Sun et al. [17] refine the hand pose using pixel
difference features updated for viewpoints of whole images in each iteration. The
features in both works are partially transformed either by cropping patches from
the input images or rotating features calculated from the whole image. On the
other hand, a hierarchical strategy that estimates hand poses in the order of
hand articulation complexity achieves good performance [17,19]. HSO [19] esti-
mates partial poses separately in the kinematic hierarchy while the input space
remains unchanged. Sun et al. [17] estimate partial poses holistically in two lay-
ers of a hierarchy by calculating rotation invariant pixel difference features from
the whole image.

Our proposed method fully transforms the feature space and the output
space together in both cascaded and hierarchical manner. For each iteration of
the cascade, no new features are learned as features are obtained by a spatial
transformation applied to the feature maps of an initial stage. For the hierarchy,
only a small region which has been transformed to a canonical view is fed into
CNN. In this way, the hierarchical and cascaded strategy is not only applied to
the output space as in prior work but also the transformed input and feature
space.

Hybrid Methods. A standard way of combining the discriminative methods
and the generative methods is first providing candidate results by the discrimi-
native methods, then using them as the initial state of the generative methods
to optimize full hand poses [3,16,29,30], and it has demonstrated good perfor-
mances. As discussed in the above, searching the full hand pose space has a high
complexity. We adopt a partial pose optimization to reduce the complexity of
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each estimation, which is integrated into our hierarchical structure. HSO [19]
also has partial pose evaluations between the levels of a hierarchy but the eval-
uations are carried out in a brute-force way, while we propose a new kinematic
energy function which is optimized by the partial PSO.

3 Method Overview

2ϕ

Fig. 2. Hand model. 21 joints are
divided into four layers, each joint
overlaid with index number. ϕ2 is
the bone rotations for five joints in
Layer 2.

Hand pose estimation is to estimate the
3-D locations of the hand’s 21 key joints
S given depth image I, which is normal-
ized by the size of the depth image. The
ground truth of S is denoted as S∗. In
our approach we divide the 21 joints into
four layers {Sl}3l=0 where the value of l
is also the order of our hierarchical esti-
mation, see Fig. 2. For each layer l, j is
used to denote a single joint on one fin-
ger, in the order from thumb to pinky
with the number starting from 1 to 5 (for
the wrist joint in the first layer, j is 0).
With all the definitions, the hand vari-
ables to be estimated are expressed as
{{Slj}5j=0}l=0

∪ {{Slj}5j=1}
3

l=1
.

Our method estimates (and trains) 4 layers sequentially with the spatial
attention mechanism(see Sect. 4.1) linking the layers by transforming the input
(and feature) and output space interactively and partial PSO enforcing kinematic
constraints to the CNN prediction, which is shown in Fig. 1. In each layer l, the
estimation is refined iteratively by learning the residual of the ground truth S∗

lj

to the results Sk−1
lj of the previous stage, where k denotes the kthcascaded stage

(for details, see Sect. 4.2). The spatial transformation modules are applied to the
feature maps from the initial stage of the cascade and the outputs of stage k − 1
to get aligned attention features and output space for the learning of residual of
stage k.

The result SKl

lj of the final stage Kl is fed into the post-optimization process
using PSO for initialization. The partial PSO (see Sect. 5) is introduced to
enforce kinematic constraints to the results from the cascaded estimation and
refine the partial pose. Along with PSO, we adopt the hand bone model (Fig. 2),
which has 51 DoFs: layer 0 has 6 DoFs, denoting the global orientation (repre-
sented by a 4-D unit quaternion) and global location (3 DoFs); each of layer 1,
2, 3, has 15 DoFs, denoting the five bone rotations. Our hand model fixes the
six joints on the palm and keeps the bone lengths of the fingers.

The optimal of the PSO is passed to layer l + 1. Before the estimation of
the next layer, the spatial attention mechanism is applied on input images and
estimation results of current layer (and the ground truth for next layer during
training).
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Fig. 3. Spatial attention mechanism. Left: the spatial attention module is split into
the calculation of rotation T and the spatial transformation Φ. Right: the mapping
between input feature maps and output features maps. For clarity, we use hand images
to represent the feature maps. Both the feature maps, estimation results (and ground
truth in training) are transformed to a new space by Φθ,Sj . The locations can be
transformed back by the inverse function Φ̄θ,Sj .

4 Partial Pose Estimation by Spatial Attention Deep Net

4.1 Spatial Attention Mechanism for Hand Space

Before the elaboration of the hand pose estimation, the mechanism of spatial
attention is explained. For notational simplicity, we skip the layer index l and
the stage index k as the mechanism is applied to all layers and all stages similarly.
The inputs of the spatial attention module are the estimation result of Sj , where
j denotes jth joint in the layer, and the features maps of CNN (and input images),
denoted by Λ ∈ IRW×H .

The spatial module A, illustrated in the left figure of Fig. 3, can be split into
two parts: the calculation of rotation T and the pixel mapping Φ. The global
in-plane rotation θ (see the right figure of Fig. 3) is the angle between the vector
of the wrist joint (joint 00 in Fig. 2) to the root joint of middle finger (joint 03 in
Fig. 2) in Layer 0 and the vector (0, 1) representing the upright hand pose and
can be expressed as θ = T (S3, S0). For the other layers l (l > 0), the rotation is
obtained from Layer 0.

For the pixel mapping, displayed in the right figure of Fig. 3, in which pixel
here means an element of the feature maps (and input images), we use (xi, yi)
to denote a pixel on the input feature map Λ and (xo, yo) on the output feature
maps λ ∈ IRW ′×H′

. For the deep features for joint j, the translation parameter is
the xy coordinates of Sj on the feature map (Λ) coordinate system, i.e. (tx, ty).
The mapping between (xi, yi) and (xo, yo) is

⎡
⎣

xi

yi

1

⎤
⎦ =

[
b · cos(θ) b · sin(θ) tx

−b · sin(θ) b · cos(θ) ty

]⎡
⎣

xo

yo

1

⎤
⎦ (1)

(λ, S′) = Φθ,Sj
(Λ, S) (2)
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where (xi, yi) and (xo, yo) are normalized by its corresponding width and height
of the input and output feature maps. b is the ratio of the width of λ to the width
of Λ (or the height as we keep the aspect ratio). If b is 1, the transformation
is rotation and translation. When b is less than 1, the transformation allows
cropping and the cropping size is the same as the size of the output feature
maps λ.

Once we get the transformation parameters, the mapping between λ and Λ
are established by interpolating the pixel values. We also apply the transforma-
tion to the estimation results S (and the ground truth S∗ in training) by Eq. 1,
only on their xy coordinates, the value of the z coordinate remains unchanged.
All the inputs are in a new coordinate system, or a new space. We use Φθ,Sj

in Eq. 2 to wrap the mapping function in Eq. 1 for all the pixels on the feature
maps Λ and also symbolize the transformation for S. Φ̄θ,Sj

, denoting the inverse
function of Φθ,Sj

, acquired by replacing θ by −θ, (tx, ty) by −(tx, ty) and b by
1/b in Eq. 1, transforms the output space of CNNs to the original one.

4.2 Cascaded Regression Within Each Hierarchical Layer

Within each layer of the hierarchy, the joint locations {Sj} are estimated in
a cascaded manner, shown in Fig. 4. We leave out the layer subscript l as the
cascaded regression is applied to all layers. At first, an initial CNN model ({f0

j })
regresses the joint location {Sj}. It not only provides an initial state {S0

j } for the
following iterative refinements but also deep feature maps Λ for other regressors.
In the following stages, the joint locations are refined iteratively. Between the
refinement stages, the spatial attention modules A transform the deep feature
maps Λ to a new space based on the estimation result {Sk−1

j } from the previous
stage to achieve viewpoint-invariant and discriminative features for the following
regressors.

For a certain joint j in stage k, the features λk
j is mapped from Λ by

Φθk−1,Sk−1
j

, where the Sk−1
j is the result of the previous stage and θk−1 is cal-

culated by T (Sk−1
0 , Sk−1

3 ) (the updating of θ happens only in Layer 0, and for

Fig. 4. Cascaded partial pose estimation with spatial attention modules for Layer 0.
The feature maps Λ from the initial stage is transformed by spatial attention modules A
with estimation result Sk−1 form previous stage before feeding into the current stage k.
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other layers the value of θ is fixed after Layer 0). At the same time, the estima-
tion result Sk−1

j and the ground truth S∗
j are both transformed by the module,

resulting Sk−1′
j and S∗′

j . Therefore, all the inputs for the regressor fk
j in stage k

that estimates the residual S∗′
j −Sk−1′

j of joint j are in a new space. After train-
ing or testing, the output of the regressor is then transformed back by Φ̄θ,Sj

. For
the joint j, the process is repeated until a satisfactory result is achieved (seen
Sect. 6 for the choice of cascaded stages)and we use Kl to denote the final stage
for Layer l. For other joints, the refinement is carried out in parallel with the
same process.

The above refinements for a single joint can be mathematically expressed as

(λk
j , Sk−1′

j ) = Φθk−1,Sk−1
j

(Λ, Sk−1
j ) (3)

Sk
j = Φ̄θk−1,Sk−1

j
(fk

j (λk
j ) + Sk−1′

j ) (4)

where Eq. 3 is the spatial attention mechanism which transforms all the inputs
of stage k to a new space and Eq. 4 estimates the residual δSk′

j by fk
j (λk

j ),

updates the estimation by adding the residual estimated δSk′
j to the result from

the previous stage Sk−1′
j , and transforms the added result back to the original

space.

4.3 Hierarchical Regression

For the regression in layer 0, all the joints in the initial stage are learned together
in order to keep the kinematic constraints among them as the values of these
joints are highly correlated. The input of the initializor f0

0 is multi-resolution
images I, the original image and the images downsampled from the original one
by the factor of 2 and 4, the output is the joint locations. The input and feature
space of the regressors for different joints in the cascaded stages are updated
separately by the spatial function Φθk−1,Sk−1

0j
. The output of the regressor in the

stage k refines the estimation result Sk−1
0j in the previous stage k − 1 in a new

space and are transformed back by Φ̄θk−1,Sk−1
0j

. The cascaded regression stop in
stage K0. The whole refinement stages are the same as in Sect. 4.2.

For the hierarchical estimation in layer l(l > 0), the inputs are multi-
resolution input images I, the estimation result {S

Kl−1
l−1,j} from the previous layer

l − 1 and the viewpoint estimation θK0 from layer 0. For notational simplicity,
we denote θK0 as θ and skip the joint index j. θ is fixed for all layers (l > 0) and
the same process is applied to all the joints separately.

The input space for the initializor f0
l of layer l is transformed from multi-

resolution images I by the spatial attention module. The mapping is

(I ′, S
K′

l−1
l−1 , S∗′

l ) = Φ
θ,S

Kl−1
l−1

(I, S
Kl−1
l−1 , S∗

l ) (5)
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so the input for the initializor f0
l is patches I ′ cropped from multi-resolution

input images I centred at S
Kl−1
l−1 and its corresponding coordinates in the

downsampled images, and rotated by θ. The offset labels for training f0
l is

ΔS∗′
l = S∗′

l − S
K′

l−1
l−1 , which is equivalent to the sum of the ground truth off-

set S∗′
l − S∗′

l−1 and the remaining residual of the previous layer S∗′
l−1 − S

K′
l−1

l−1 .
This implies the initializor f0

l not only predicts the joint offsets of the current
layer to the previous layer but also corrects the residual errors of the previous
layer.

The initializor f0
l provides the initial offset state ΔS0′

l and feature maps Λ
for the refinement stages. For the refinement stages, the procedure is the same as
discussed in Sect. 4.2. The only difference from Sect. 4.2 is that the viewpoint is
static, whose value is the result of the final cascaded stage in Layer 0, and feature
maps Λ has already been transformed by rotation in the initial stage; thus for
the stage k, the feature space is transformed and updated by the function ΦSk−1

l

(no rotation transformation) and the output space is transformed with Φθ,Sk−1
l

(rotation and translation transformation).
The parameter b in the spatial attention module needs to be set. For the

initial stage (except the initial stage of layer 0), it is set according to the offset
range. All the ground truth S∗

l and the estimation result S
Kl−1
l−1 of layer l − 1 is

first transformed by Φ
θ,S

Kl−1
l−1

with b = 1 to get means along the xy coordinates

of the absolute value of the offsets for all the training data in the new space. b
is set to be two times of the larger offset mean divided by original image width
W . For the refinement stages, they are set according to the residual range of the
estimation results in the initial stage. All the ground truth and the estimation
results of the initial stage are first transformed by Φθ0,S0

j
(for layer l(l > 0), θ0 is

the final estimation result θK0 of layer 0) with b = 1 to get means along the xy
coordinates of the absolute value of the residuals for all the training data in the
new space. As the feature maps are filtered by kernels, max-pooled, and have
different resolutions but the ground truth are normalized according to original
image size, S0

j and the mean of residual should also be changed with the kernel
size, the pool size and the downsampling ratio to set the value of b.

5 Partial PSO with Kinematic Constraints for Final
Refinement

For each layer, based on our discriminative part’s prediction, we do final refine-
ment by explicitly introducing partial kinematic constraints with Particle Swarm
Optimization. Particle Swarm Optimization (PSO) is a stochastic optimization
algorithm introduce by Kennedy and Eberhart [31] in 1995, originated in the
social behaviors’ studies of synchronous bird flocking and fish schooling. The
original PSO algorithm has been modified by several researchers to improve its
convergence properties and search capabilities. We adopt the variant of PSO
with an inertia weight parameter [32].
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Fig. 5. Pose refinement with partial PSO enforcing kinematic constraint. Given palm
spatial structure and layer 0’s location estimation by CNN, we first inference the ϕ0

using Kabsch algorithm [33], and then find ϕ∗
0 maximizing the energy function by

partial PSO. The rotation ϕ∗
0 is converted to locations using the palm structure to

update the CNN estimation result. For other partial pose ϕl(l > 0), the optimization
is the same with layer 0 while the inference for the initialization of the optimization
is calculating the bone rotation and the conversion back to locations uses the bone
length.

Our whole hand pose for PSO is defined as {ϕ0, ϕ1, ϕ2, ϕ3}, where ϕ0 ∈ IR7

and ϕl(l = 1, 2, 3) ∈ IR15 are our partial poses. ϕ0 = {q, x, y, z}, where q is a
4-D unit quaternion [1,3] representing the global rotation, [x, y, z] is the global
location of the whole hand. ϕl denotes five 3D Euler angles in layer l, each angle
representing a bone rotation which is the angle between the bone connecting the
joint in layer l and the corresponding joint in layer l − 1, and the other bone
connecting the joint in layer l−1 and the corresponding joint in layer l−2 (when
l − 2 < 0, the corresponding joint in layer l − 2 is wrist). Figure 2 demonstrates
ϕ2, five angles in layer l = 2.

Energy Function. For each layer, PSO is used to estimate the final partial pose
base on the inferred partial pose. We designed a new energy function that applied
to partial pose and explicitly taking into account the kinematic constraints. Our
energy function Ep for each layer is as follows:

Ep(ϕs
l ) = P (ϕs

l )Q(ϕs
l ), (6)

where the first item, P (ϕs
l ) ∝ N(ϕs

l ;ϕl,Σ), is the prior probability of the sth

Gaussian sample from mean ϕl, Σ is a diagonal covariance matrix that is man-
ually set to ensure that each parameter varies in valid ranges. s = 1, 2, ..., N is
the index of samples for each layer, we set N = 100 in our experiments. P (ϕs

0)
encodes the spatial structure of the six joints on the palm and P (ϕs

l )(l = 1, 2, 3)
keeps the bone length information.

To acquire the prior probability P (ϕs
0), we first choose Kabsch algorithm [33]

to find the optimal affine transformation matrix (global translation and rotation,
i.e. ϕ0) from our hand model for the six joints on the palm to the CNN results,
as shown in the top pipeline of Fig. 5. The hand model for the palm joints
can be seen as the palm joint locations of an upfront reference hand pose with
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wrist located on the original coordinate. By generating samples from Gaussian
distribution centred on ϕ0 instead of S0 from CNN which usually violates the
kinematic constraint, we get the P (ϕs

0) that keeps the spatial structure of palm
joints.

For P (ϕs
l ) of other layers l > 0, we first get five bone rotations ϕl by calcu-

lating the angles which are demonstrated in the bottom pipeline of Fig. 5 with
joint estimation locations of CNN in current layer l and the joint estimation
locations from layer l − 1 and l − 2, and then sample from the Gaussian distri-
bution centred on ϕl. When converting rotations to locations for evaluations of
the second term, we enforce the constraint of the bone length.

The second item, Q(ϕs
l ) ∝ ∑

Ss
lj∈L(ϕl)

[B(Ss
lj)+D(Ss

lj)], denotes the likelihood
of all joint {Ss

lj} belongs to the hand, where L(ϕs
l ) converts rotations ϕs

l into
locations {Ss

lj}. Similar to Tang et al. [19] silver function, the term B(Ss
lj) forces

each joint joint Ss
lj to lie inside the hand silhouette. The term D(Ss

lj) makes sure
joint Ss

lj lies inside the depth range of a major point cloud.

6 Experiment

The evaluation of our proposed method is conducted on three publicly datasets.
ICVL [19] dataset is a real sequence captured by Intel RealSense with the range
of view about 120 degrees consisting 1596 test frames and 16008 training frames.
16 bone centre locations are provided for each hand pose. NYU [30] dataset
is a real sequence acquired by PrimeSense containing 8252 test-set and 72757
training-set frames with a full range of views. 36 joint locations are provided
for each hand pose. MSRC [3] dataset is a challenging dataset that covers a
full range of views and complex articulations with 100000 synthetic images in
the training-set and 2000 synthetic images in the test set. 22 joint locations are
provided for each hand pose. As the annotations of these datasets do not conform
to each other, we use the annotation version in [19] that labels locations of the
joints as demonstrated in Fig. 2.

Fig. 6. First: Errors for a joint on the palm S00 and a joint on the middle finger S13

for 4 stages. Second, third and forth: In-plane viewpoint distribution of testing set
for different stages on ICVL, NYU, MSRC respectively. The blue, green and red line
corresponds to the in-plane rotation distribution of original ground truth, ground truth
rotated after initial stage and the first stage. The rotation estimation error after the
initial stage and the first stage is 5.9 and 4.4 for ICVL, 8.0 and 6.1 for NYU, 10.9 and
9.2 for MSRC in the unit of degree. (Color figure online)



Spatial Attention Deep Net with Partial PSO for Hierarchical Hybrid Hand 357

We compare the results of different methods by the proportion of joints within
a certain maximum error of the distance of the predicted results to the ground
truth [3]. We set the number of iterations K on the observation of the error
saturates after a certain stage in the cascaded stages, shown in the first figure of
Fig. 6. We set K0 for Layer 0 to 1 and Kl, l > 0 to 0, which gives us a good balance
between the accuracy and the memory consumption. All the experiments are run
with Intel i7, 24 GB RAM and NVIDIA GeForce GTX 750 Ti. The structures for
our CNN models are implemented by Theano [34] and the details are provided
in the supplementary material. For our partial PSO, we generates 100 samples
for each layer, and iterate 5 generations.

6.1 Self-comparison

To evaluate our proposed method (Hybr Hier SA) and the discriminative part
Hier SA, we implement three baselines. The first baseline (Holi) estimates the
whole hand pose with a single CNN. The second baseline (Holi Derot) consists
of two steps: one step predicting the in-plane rotation of the hand pose by a
CNN and rotating the hand pose to upright view; the other step estimating the
whole hand pose by another CNN. The third one (Holi SA) is a holistic cascaded
regression network without hierarchy, which initializes the whole hand pose with
a CNN and refines the hand pose joint by joint via spatial attention mechanism
by a set of CNNs. For fair comparison, we set the size of the parameters of the
methods to be roughly the same: the parameters are stored in 32 bit float and
the size of parameters is 130 MB.

Fig. 7. Comparison of different methods on three datasets. Left:ICVL; Middle: NYU;
Right: MSRC.

On all the datasets, Hier SA outperforms the baselines significantly, see
Fig. 7. The improvement margin is related to the range of viewpoints and the
complexity of articulations. The in-plane rotation distributions of original data,
the ones after the initial stage and the first stage are shown in Fig. 6. As MSRC
dataset covers a full range of viewpoints and articulations, the improvement on
this dataset from the baseline Holi is the largest. For example, the percentages
of frames under 20 mm on ICVL, NYU and MSRC are improved by Hier SA
with margins of 5 %, 18 % and 30 % respectively, compared to that of Holi.
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The curves of Hier SA and Holi SA on three datasets illustrate the efficacy of
hierarchical strategy in conquering the articulations, while the curves of Holi SA,
Holi and Holi Derot show that spatial attention mechanism is effect in reducing
the viewpoint and articulation complexity. By refining viewpoints with stages
and spatially transforming the feature space to focus on the most relevant area
for a certain joint estimation, Holi SA achieves better results than Holi and
Holi Derot. Note that the curve of Holi Derot is under that of Holi on ICVL
dataset, which implies that the error of estimating the rotation by a separate
network may deteriorate the later estimation when the variations of the view-
point in training set is small.

Hybr Hier SA further improves the result of Hier SA by a large margin con-
sistently on all the datasets, which verifies that the kinematic constraints by the
partial PSO is effective.

6.2 Comparison with Prior Works

We compare our work with 4 state-of-the-arts methods: Hierarchical Sampling
Optimization (HSO) [19], Sharp et al. [3], HandsDeep [18], FeedLoop [4] on three
datasets, see Fig. 8. The former two are hybrid methods and the latter two are
refinement method based on CNN. The results are obtained either from the
authors for HSO [19] or from the reported accuracies [3,4,18]. The examples
of the estimation results of HandsDeep, FeedLoop, HSO and our method are
shown in Fig. 9.

On ICVL dataset, we compare HSO with parameters set as N = 100,M =
150. Our method is better by 26 % of joints within D = 10 mm. On NYU dataset,
we compare our method with HandsDeep and FeedLoop which are all based on
CNN. As the hand model of these methods are different, we evaluate the result by
comparing the error of the subset of 11 joint locations (removing the palm joints
except the root joint of thumb). Our estimation result is better than HandsDeep
by a large margin, for example, an improvement of 10 % within D = 30 mm, and
achieves roughly the same accuracy with FeedLoop.

We finally test our method with HSO and Sharp et al. on MSRC dataset.
The dataset is more challenging than the above two as it covers a wider range
of viewpoints and articulations. The curves demonstrate the superiority of our

Fig. 8. Comparison of prior work on three datasets. Left:ICVL; Middle: NYU; Right:
MSRC.
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Fig. 9. Examples comparing to prior work on three datasets. The first two rows, the
middle three rows, and the last two rows are examples from ICVL dataset, NYU dataset
and MSRC dataset, respectively. Compared to other methods, our method has a good
performance in discriminating the fingers and a better precision. For many challenging
viewpoints, our method still has a good estimation.

method under large variations. For example, the proportion of joints (when D =
30 mm) of our method is 35 % and 50 % more than those of HSO and Sharp
et al. respectively. Note that our estimation is even better than the results of
HSO and Sharp et al. using ground truth rotation [19].

7 Conclusion

To apply the hierarchy strategy to the input and feature space and enforce the
hand kinematic constraints to the hand pose estimation, we present a hybrid
method by applying the kinematic hierarchy to both the input and feature space
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of the discriminative method and the optimization of the generative method. For
the integration of hierarchical input and feature space of the discriminative, a
spatial attention mechanism is introduced to spatially transform the input (and
feature) and output space interactively, leading to new spaces with lesser view-
point and articulation complexity and gradually refining th estimation results.
In addition, the partial PSO is incorporated between the layers of the hierarchy
to enforce the kinematic constraints to the estimation results of the discrimina-
tive part. This helps reduce the error from previous layer to accumulate. Our
method demonstrates good performance on three datasets, especially on the
dataset under large variations.
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