
An Uncertain Future: Forecasting from Static
Images Using Variational Autoencoders

Jacob Walker(B), Carl Doersch, Abhinav Gupta, and Martial Hebert

Carnegie Mellon University, Pittsburgh, USA
{jcwalker,cdoersch,abhinavg,hebert}@cs.cmu.edu

Abstract. In a given scene, humans can easily predict a set of immedi-
ate future events that might happen. However, pixel-level anticipation in
computer vision is difficult because machine learning struggles with the
ambiguity in predicting the future. In this paper, we focus on predicting
the dense trajectory of pixels in a scene—what will move in the scene,
where it will travel, and how it will deform over the course of one second.
We propose a conditional variational autoencoder as a solution to this
problem. In this framework, direct inference from the image shapes the
distribution of possible trajectories while latent variables encode infor-
mation that is not available in the image. We show that our method
predicts events in a variety of scenes and can produce multiple different
predictions for an ambiguous future. We also find that our method learns
a representation that is applicable to semantic vision tasks.

Keywords: Generative models · Variational autoencoders · Scene
understanding · Action forecasting

1 Introduction

Visual prediction is one of the most fundamental and difficult tasks in computer
vision. For example, consider the woman in the gym in Fig. 1. We as humans,
given the context of the scene and her sitting pose, know that she is probably
performing squat exercises. However, going beyond the action label and predict-
ing the future leads to multiple, richer possibilities. The woman might be on her
way up and will continue to go up, or she might be on the way down and continue
to descend further. Those motion trajectories might not be exactly vertical, as
the woman might lean or move her arms back as she ascends. While there are
multiple possibilities, the space of possible futures is significantly smaller than
the space of all possible visual motions. For example, we know she is not going
to walk forward, she is not going to perform an incoherent action such as a head-
bob, and her torso will likely remain in one piece. In this paper, we propose to
develop a generative framework which, given a static input image, outputs the
space of possible future actions. The key here is that our model characterizes the
whole distribution of future states and can be used to sample multiple possible
future events.
c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part VII, LNCS 9911, pp. 835–851, 2016.
DOI: 10.1007/978-3-319-46478-7 51

836 J. Walker et al.

P
re

d
ic
ti
o
n

1
P
re

d
ic
ti
o
n

2

(a) Trajectories on Image (b) Trajectories in Space-Time

Fig. 1. Consider this picture of a woman in the gym—she could move up or down. Our
framework is able to predict multiple correct one-second motion trajectories given the
scene. The directions of the trajectories at each point in time are color-coded according
to the square on the right [2]. On the left is the projection of the trajectories on the
image plane. The right diagram shows the complexity of the predicted motions in space
time. Best seen in our videos. (Color figure online)

Even if we acknowledge that our algorithm must produce a distribution over
many possible predictions, it remains unclear what is the output space of futures
the algorithm should be capable of predicting. An ideal algorithm would pre-
dict everything that might be relevant to a human or robot interacting with the
scene, but this is far too complicated to be feasible with current methods. A
more tractable approach is to predict dense trajectories [33], which are simpler
than pixels but still capture most of a video’s content. While this representation
is intuitive, the output space is high dimensional and hard to parametrize, an
issue which forced [33] to use a Nearest Neighbor algorithm and transfer raw tra-
jectories. Unsurprisingly, the algorithm is computationally expensive and fails
on testing images which do not have globally similar training images. Many
approaches try to simplify the problem, either by using some semantic form of
prediction [20], predicting agent-based trajectories in a restricted domain [30],
or just predicting the optical flow to the next frame [23,31]. However, each of
these representations compromise the richness of output in either the spatial
domain (agent-based), the temporal domain (optical flow), or both (semantic).
Therefore, the vision community has recently pushed back and directly attacked
the problem of full blown visual prediction: recent works have proposed predict-
ing pixels [24,28] or the high dimensional fc7 features [29] themselves. However,
these approach suffer from a number of drawbacks. Notably, the output space

http://www.cs.cmu.edu/~jcwalker/DTP/DTP.html

Forecasting from Static Images Using Variational Autoencoders 837

is high dimensional and it is difficult to encode constraints on the output space,
e.g., pixels can change colors every frame. There is also an averaging effect of
multiple possible predictions which leads to blurry predictions.

In this paper, we propose to address these challenges. We propose to revisit
the idea of predicting dense trajectories at each and every pixel using a feed-
forward Convolutional Network. Using dense trajectories restricts the output
space dramatically which allows our algorithm to learn robust models for visual
prediction with the available data. However, the dense trajectories are still high-
dimensional, and the output still has multiple modes. In order to tackle these
challenges, we propose to use variational autoencoders to learn a low-dimensional
latent representation of the output space conditioned on an input image. Specif-
ically, given a single frame as input, our conditional variational auto-encoder
outputs a mapping from noise variables—sampled from a normal distribution
N (0, 1)—to output trajectories at every pixel. Thus, we can naively sample val-
ues of the latent variables and pass them through the mapping in order to sam-
ple different predicted trajectories from the inferred conditional distribution.
Unlike other applications of variational autoencoders that generate outputs a
priori [10,13,14], we focus on generating them given the image. Conditioning
on the image is a form of inference, restricting the possible motions based on
object location and scene context. Sampling latent variables during test time
then allows us to explore the space of possible actions in the given scene.

Contributions: Our paper makes three contributions. First, we demonstrate
that prediction of dense pixel trajectories is a plausible approach to general,
non-semantic, self-supervised visual prediction. Second, we propose a conditional
variational auto-encoder as a solution to this problem, a model that performs
inference on an image by conditioning the distribution of possible movements on
a scene. Third, we show that our model is capable of learning representations
for various recognition tasks with less data than conventional approaches.

2 Background

There have been two main thrusts in recent years concerning visual activity fore-
casting. The first is an unsupervised, largely non-semantic approach driven by
large amounts of data. These methods often focus on predicting low level features
such as pixels or the motion of pixels. One early approach used nearest-neighbors,
making predictions for an image by matching it to frames in a large collec-
tion of videos and transferring the associated motion tracks [33]. An improve-
ment to this approach used dense-SIFT correspondence to align the matched
objects in two images [21]. This form of nearest-neighbors, however, relied on
finding global matches to an image’s entire contents. One way this limitation has
been addressed is by breaking the images into smaller pieces based on mid-level
discriminative patches [30]. Another way is to treat prediction as a regression
problem and use standard machine learning, but existing algorithms struggle to
capture the complexity of real videos. Some works simplify the problem to pre-
dicting optical flow between pairs of frames [23]. Recently, more powerful deep

838 J. Walker et al.

learning approaches have improved on these results on future [31] and current [5]
optical flow. Some works even suggest that it may be possible to use deep net-
works to predict raw pixels [24,28]. However, even deep networks still struggle
with underfitting in this scenario. Hence, [29] considered predicting the top-level
CNN features of future frames rather than pixels. Since predicting low level fea-
tures such as pixels is often so difficult, other works have focused on predicting
more semantic information. For example, some works break video sequences into
discrete actions and attempt to detect the earliest frames in an action in order
to predict the rest [11]. Others predict labeled human walking trajectories [15]
or object trajectories [22] in restricted domains. Finally, supervised learning has
also been used to model and forecast labeled human-human [12,20], and human-
object [7,16] interactions.

A key contribution of our approach is that we explicitly model a distribution
over possible futures in the high-dimensional, continuous output space of tra-
jectories. That is, we build a generative model over trajectories given an image.
While previous approaches to forecasting have attempted to address multimodal-
ity [15,29–31], we specifically rely on the recent generative model framework of
variational autoencoders (VAEs) to solve the problem. VAEs have already shown
promise in a number of domains involving generating pixels, including handwrit-
ten digits [14,26], faces [14,25], house numbers [13], CIFAR images [10], and even
face pose [19]. Our work shows that VAEs extend to the novel domain of motion
prediction in the form of trajectories.

Our approach has multiple advantages over previous works. First, our app-
roach requires no human labeling. While [22] also predicted long-term motion of
objects, it required manual labels. Second, our approach is able to predict for a
relatively long period of time: one second. While [23,31] needed no human label-
ing, they only focused on predicting motion for the next instant frame. While [31]
did consider long-term optical flow as a proof of concept, they did not tackle the
possibility of multiple potential futures. Finally, our algorithm predicts from a
single image—which may enable graphics applications that involve animating
still photographs—while many earlier works require video inputs [24,28].

3 Algorithm

We aim to predict the motion trajectory for each and every pixel in a static, RGB
image over the course of one second. Let X be the image, and Y be the full set
of trajectories. The raw output space for Y is very large—320× 240 × 30× 2
for a 320× 240 image at 30 frames per second—and it is continuous. We can
simplify the output space somewhat by encoding the trajectories in the frequency
spectrum in order to reduce dimensionality. However, a more important difficulty
than raw data size is that the output space is not unimodal; an image may have
multiple reasonable futures.

Forecasting from Static Images Using Variational Autoencoders 839

3.1 Model

A simple regressor—even a deep network with millions of parameters—will strug-
gle with predicting one-second motion in a single image as there may be many
plausible outputs. Our architecture augments the simple regression model by
adding another input z to the regressor (shown in Fig. 2(a)), which can account
for the ambiguity. At test time, z is random Gaussian noise: passing an image as
input and sampling from the noise variable allows us to sample from the model’s
posterior given the image. That is, if there are multiple possible futures given an
image, then for each possible future, there will be a different set of z values which
map to that future. Furthermore, the likelihood of sampling each possible future
will be proportional to the likelihood of sampling a z value that maps to it. Note
that we assume that the regressor—in our case, a deep neural network—is capa-
ble of encoding dependencies between the output trajectories. In practice, this
means that if two pixels need to move together even if the direction of motion
is uncertain, then they can simply be influenced by the same dimension of the z
vector.

3.2 Training by “Autoencoding”

It is straightforward to sample from the posterior at test time, but it is much
less straightforward to train a model like this. The problem is that given some
ground-truth trajectory Y , we cannot directly measure the probability of the
trajectory given an image X under a given model; this prevents us from per-
forming gradient descent on this likelihood. It is in theory possible to estimate
this conditional likelihood by sampling a large number of z values and construct-
ing a Parzen window estimate using the resulting trajectories, but this approach
by itself is too costly to be useful.

Variational Autoencoders [3,10,13,14] make this approach tractable. The key
insight is that the vast majority of samples z contribute almost nothing to the
overall likelihood of Y . Hence, we should instead focus only on those values of
z that are likely to produce values close to Y . We do this by adding another
pathway Q, as shown in Fig. 2(b), which is trained to map the output Y to the
values of z which are likely to produce them. That is, Q is trained to “encode” Y
into the latent z space such that the values can be “decoded” back to the trajec-
tories. The entire pipeline can be trained end-to-end using reconstruction error.
An immediate objection one might raise is that this is essentially “cheating” at
training time: the model sees the values that it is trying to predict, and may just
copy them to the output. To prevent the model from simply copying, we force the
encoding to be lossy. The Q pathway does not produce a single z, but instead,
produces a distribution over z values, which we sample from before decoding the
trajectories. We then directly penalize the information content in this distribu-
tion, by penalizing the KL-divergence between the distribution produced by Q
and the trajectory-agnostic N (0, 1) distribution. The model is thereby encour-
aged to extract as much information as possible from the input image before
relying on encoding the trajectories themselves. Surprisingly, this formulation is

840 J. Walker et al.

Image Tower
14 Layers

Decoder Tower
5 Layers

Random Samples~ (,)

Image Tower
14 Layers

Encoder
Tower

6 Layers

Decoder Tower
5 Layers

KL-Divergence Loss((| ,)|| (,))(| ,)

Euclidean Loss| − |

(a) Testing Architecture (b) Training Architecture

Fig. 2. Overview of the architecture. During training, the inputs to the network include
both the image and the ground truth trajectories. A variational autoencoder encodes
the joint image and trajectory space, while the decoder produces trajectories depending
both on the image information as well as output from the encoder. During test time, the
only inputs to the decoder are the image and latent variables sampled from a normal
distribution.

a very close approximation to maximizing the posterior likelihood P (Y |X) that
we are interested in. In fact, if our encoder pathway Q can estimate the exact
distribution of z’s that are likely to generate Y , then the approximation is exact.

3.3 The Conditional Variational Autoencoder

We now show mathematically how to perform gradient descent on our conditional
VAE. We first formalize the model in Fig. 2(a) with the following formula:

Y = μ(X, z) + ε (1)

where z ∼ N (0, 1), ε ∼ N (0, 1) are both white Gaussian noise. We assume μ is
implemented as a neural network.

Given a training example (Xi, Yi), it is difficult to directly infer P (Yi|Xi)
without sampling a large number of z values. Hence, the variational “autoen-
coder” framework first samples z from some distribution different from N (0, 1)
(specifically, a distribution of z values which are likely to give rise to Yi given
Xi), and uses that sample to approximate P (Y |X) in the following way. Say that
z is sampled from an arbitrary distribution z ∼ Q with p.d.f. Q(z). By Bayes
rule, we have:

Ez∼Q [log P (Yi|z,Xi)] =
Ez∼Q [log P (z|Yi,Xi) − log P (z|Xi) + log P (Yi|Xi)]

(2)

Rearranging the terms and subtracting Ez∼Q log Q(z) from both sides:

log P (Yi|Xi) − Ez∼Q [log Q(z) − log P (z|Xi, Yi)] =
Ez∼Q [log P (Yi|z,Xi) + log P (z|Xi) − log Q(z)] (3)

Forecasting from Static Images Using Variational Autoencoders 841

Note that Xi and Yi are fixed, and Q is an arbitrary distribution. Hence, dur-
ing training, it makes sense to choose a Q which will make Ez∼Q[log Q(z)−
log P (z|Xi, Yi)] (a KL-divergence) small, such that the right hand side is a close
approximation to log P (Yi|Xi). Specifically, we set Q = N (μ′(Xi, Yi), σ′(Xi, Yi))
for functions μ′ and σ′, which are also implemented as neural networks, and
which are trained alongside μ. We denote this p.d.f. as Q(z|Xi, Yi).We can rewrite
some of the above expectations as KL-divergences to obtain the standard vari-
ational equality:

log P (Yi|Xi) − KL [Q(z|Xi, Yi)‖P (z|Xi, Yi)]
= Ez∼Q [log P (Yi|z,Xi)] − KL [Q(z|Xi, Yi)‖P (z|Xi)]

(4)
We compute the expected gradient with respect to only the right hand side of
this equation—the parameters of our network that constitute P and Q, so that
we can perform gradient ascent and maximize both sides. Note that this means
our algorithm is accomplishing two things simultaneously: it is maximizing the
likelihood of Y while also training Q to approximate P (z|Xi, Yi) as well as pos-
sible. Assuming a high capacity Q which can accurately model P (z|Xi, Yi), this
second KL-divergence term will tend to 0, meaning that we will be directly
optimizing the likelihood of Y . To perform the optimization, first note that our
model in Eq. 1 assumes P (z|Xi) = N (0, 1), i.e., z is independent of X if Y
is unknown. Hence, the KL-divergence may be computed using a closed form
expression, which is differentiable with respect to the parameters of μ′ and σ′. We
can approximate the expected gradient of log P (Yi|z,Xi) by sampling values of z
from Q. The main difficulty, however, is that the distribution of z depends on the
parameters of μ′ and σ′, which means we must backprop through the apparently
non-differentiable sampling step. We use the “reparameterization trick” [14,25]
to make sampling differentiable. Specfically, we set zi = μ′(Xi, Yi)+η◦σ′(Xi, Yi),
where η ∼ N (0, 1) and ◦ denotes an elementwise product. This makes zi ∼ Q
while allowing the expression for zi to be differentiable with respect to μ′ and σ′.

3.4 Architecture

Our conditional variational autoencoder requires neural networks to compute
three separate functions: μ(X, z) which comprises the “decoder” distribution
of trajectories given images (P (Y |X, z)), and μ′ and σ′ which comprise the
“encoder” distribution (Q(z|X,Y)). However, much of the computation can be
shared between these functions: all three depend on the image information, and
both μ′ and σ′ rely on exactly the same information (image and trajectories).
Hence, we can share computation between them. The resulting network can
be summerized as three “towers” of neural network layers, as shown in Fig. 2.
First, the “image” tower processes each image, and is used to compute all three
quantities. Second is the “encoder” tower, which takes input from the “image”
tower as well as the raw trajectories, and has two tops, one for μ′ and one for
σ′, which implements the Q distribution. This tower is discarded at test time.
Third is the “decoder” tower, which takes input from the “image” tower as well

842 J. Walker et al.

as the samples for z, either produced by the “encoder” tower (training time) or
random noise (test time). All towers are fully-convolutional. The remainder of
this section details the design of these three towers.

Image Tower: The first, the image data tower, receives only the 320 × 240
image as input. The first five layers of the image tower are almost identical to
the traditional AlexNet [18] architecture with the exception of extra padding in
the first layer (to ensure that the feature maps remain aligned to the pixels).
We remove the fully connected layers, since we want the network to generalize
across translations of the moving object. We found, however, that 5 convolutional
layers is too little capacity, and furthermore limits each unit’s receptive field
to too small a region of the input. Hence, we add nine additional 256-channel
convolutional layers with local receptive fields of 3. To simplify notation, denote
C(k, s) as a convolutional layer with number of filters k and receptive field size
s. Denote LRN as a Local Response Normalization, and P as a max-pooling
layer. Let → C(k, s)i → C(k, s)i+1 denote a series of stacked convolutional
layers with the same kernel size and receptive field size. This results in a network
described as: C(96, 11) → LRN → P → C(256, 5) → LRN → P → C(384, 3) →
C(384, 3) → C(256, 3)1 → C(256, 3)2... → C(256, 3)10.

Encoder Tower: We begin with the frequency-domain trajectories as input
and downsample them spatially such that they can be concatenated with the
output of the image tower. The encoder tower takes this tensor as input and
processes them with five convolutional layers similar to AlexNet, although the
input consists of output from the image tower and trajectory data concatenated
into one input data layer. After the fifth layer, two additional convolutional
layers compute μ′ and σ′. Empirically, we found that predictions are improved
if the latent variables are independent of spatial location: that is, we average-
pool the outputs of these convolutional layers across all spatial locations. We
use eight latent variables to encode the normalized trajectories across the entire
image. Empirically, a larger number of latent variables seemed to overfit. At
training time, we can sample the z input to the decoder tower as z = μ′ + η ◦ σ′

where η ∼ N (0, 1). μ′ and σ′ also feed into a loss layer which computes the KL
divergence to the N (0, 1) distribution. This results in a network described as:
C(96, 11) → LRN → P → C(256, 5) → LRN → P → C(384, 3) → C(384, 3) →
C(256, 3) → C(8, 1) × 2.

Decoder Tower: We replicate the sampled z values across spatial dimensions
and multiply them with the output of the image tower with an offset. This serves
as input to four additional 256-channel convolutional layers which constitute the
decoder. The fifth convolutional layer is the predicted trajectory space over the
image. This can be summarized by: C(256, 3)1 → C(256, 3)2... → C(256, 3)4 →
C(10, 3). This output is over a coarse resolution—a dimensionality of 16× 20
pixels and a 10 vector at each pixel describing its compressed trajectory in
the frequency domain. The simplest loss layer for this is the pure Euclidean
loss, which corresponds to log probability according to our model (Eq. 1). How-
ever, we empirically find much faster convergence if we split this loss into two

Forecasting from Static Images Using Variational Autoencoders 843

components: one is the normalized version of the trajectory, and the other is
the magnitude (with a separate magnitude for horizontal and vertical motions).
Because the amount of absolute motion varies considerably between images—
and in particular, some action categories have much less motion overall—the0
normalization is required so that the learning algorithm gives equal weight to
each image. The total loss function is therefore:

L(X,Y) = ||Ynorm − Ŷnorm||2 + ||Mx − M̂x||2 + ||My − M̂y||2
+KL [Q(z|X,Y)‖N (0, 1)]

(5)

where Y represents trajectories, X is the image, Mi are the global magnitudes,
and Ŷ , M̂i are the corresponding estimates by our network. The last term is
the KL-divergence loss of the autoencoder. We find empirically that it also helps
convergence to separate both the latent variables and the decoder pathways that
generate Ŷnorm from the ones that generate M̂ .

Coarse-to-Fine: The network as described above predicts trajectories at a
stride of 16, i.e., at 1/16 the resolution of the input image. This is often too
coarse for visualization, but training directly on higher-resolution outputs is
slow and computationally wasteful. Hence, we only begin training on higher-
resolution trajectories after the network is close to convergence on lower reso-
lution outputs. We ultimately predict three spatial resolutions—1/16, 1/8, and
1/4 resolution—in a cascade manner similar to [6]. The decoder outputs directly
to a 16× 20 resolution. For additional resolution, we upsample the underlying
feature map and concatenate it with the conv4 layer of the image tower. We
pass this through 2 additional convolution layers, D = C(256, 5) → C(10, 5),
to predict at a resolution of 32× 40. Finally, we upsample this feature layer D,
concatenate it with the conv1 layer of the image tower, and send it through one
last layer of C(10, 5) for a final output of 64× 80.

4 Experiments

Because almost no prior work has focused on motion prediction beyond the
timescale of optical flow, there are no established metrics or datasets for the
task. For our quantitative evaluations, we chose to train our network on videos
from the UCF101 dataset [27]. Although there has been much recent progress
on this dataset from an action recognition standpoint, pixel-level prediction on
even the UCF101 dataset has proved to be non-trivial [24,28].

Because the scene diversity is low in this dataset, we utilized as much training
data as possible, i.e., all the videos except for a small hold out set for every action.
We sampled every 3rd frame for each video, creating a training dataset of approx-
imately 650,000 images. Testing data for quantitative evaluation came from the
testing portion of the THUMOS 2015 challenge dataset [9]. The UCF101 dataset
is the training dataset for the THUMOS challenge, and thus THUMOS is a rel-
evant choice for the testing set. We randomly sampled 2800 frames and their
corresponding trajectories for our testing data. We will make this list of frames

844 J. Walker et al.

P
re

d
ic
ti
o
n

1
P
re

d
ic
ti
o
n

2
P
re

d
ic
ti
o
n

1
P
re

d
ic
ti
o
n

2
P
re

d
ic
ti
o
n

1
P
re

d
ic
ti
o
n

2

(a) Trajectories on Image (b) Trajectories in Space-Time

Fig. 3. Predictions of our model based on clustered samples. On the right is a full
view of two predicted motions in 3D space-time; on the left is the projection of the
trajectories onto the image plane. Best seen in our videos.

http://www.cs.cmu.edu/~jcwalker/DTP/DTP.html

Forecasting from Static Images Using Variational Autoencoders 845

P
re

d
ic
ti
o
n

1
P
re

d
ic
ti
o
n

2
P
re

d
ic
ti
o
n

1
P
re

d
ic
ti
o
n

2
P
re

d
ic
ti
o
n

1
P
re

d
ic
ti
o
n

2

(a) Trajectories on Image (b) Trajectories in Space-Time

Fig. 4. Predictions of our model based on clustered samples. On the right is a full
view of two predicted motions in 3D space-time; on the left is the projection of the
trajectories onto the image plane. Best seen in our videos.

http://www.cs.cmu.edu/~jcwalker/DTP/DTP.html

846 J. Walker et al.

publicly available. We use two baselines for trajectory prediction. The first is
a direct regressor (i.e., no autoencoder) for trajectories using the same layer
architecture from the image data tower. The second baseline is the optical flow
prediction network from [31], which was trained on the same dataset. We simply
extrapolate the predicted motions of the network over one second. Choosing an
effective metric for future trajectory prediction is challenging since the problem
is inherently multi-modal. There might be multiple correct trajectories for every
testing instance.

Log Likelihood Evaluation: We thus first evaluate our method in the context
of generative models: we evaluate whether our method estimates a distribution
where the ground truth is highly probable. Namely, given a testing example, we
estimate the full conditional distribution over trajectories and calculate the log-
likelihood of the ground truth trajectory under our model. For log-likelihood esti-
mation, we construct Parzen window estimates using samples from our network,
using a Gaussian kernel. We estimate the optimal bandwidth for the Parzen win-
dow via gridsearch on the training data. As the networks were originally trained
to optimize over normalized trajectories and magnitude separately, we also sepa-
rate normalized trajectory from magnitude in the testing data, and we estimate
bandwidths separately for normalized trajectories and magnitudes. To evaluate
the log-likelihood of the ground truth under our first baseline—the regressor—we
treat the regressor’s output as a mean of a multivariate Gaussian distribution.
The optical flow network uses a soft-max layer to estimate the per-pixel dis-
tribution of motions in the image; we thus take samples of motions using this
estimated distribution. We then use the samples to estimate a density function
in the same manner as the VAE. For the baselines, we optimize the bandwidth
over the testing data in order to obtain an upper bound for the likelihood.

Closest Samples Evaluation: As log-likelihood may be difficult to interpret,
we use an additional metric for evaluation. While average Euclidean distance
over all the samples in a particular image may not be particularly informative,
it may be useful to know what was the best sample created by the algorithm.
Specifically, given a set number n of samples per image, we measure the Euclid-
ean distance of the closest sample to the ground truth and average over all the
testing images. For a reasonable comparison, it is necessary to make sure that
every algorithm has an equal number of chances, so we take precisely n samples
from each algorithm per image. For the optical flow baseline [31], we can take
samples from the underlying softmax probability distribution. For the regressor,
we sample from a multivariate Gaussian centered at the regressor output and
use the bandwidth parameters estimated from grid-search.

4.1 Quantitative Results

In Fig. 5(a), we show our log-likelihood evaluations on the baselines for trajectory
prediction. Based on the mean log-likelihood of the ground-truth trajectories, our
method outperforms a regressor trained on this task with the same architecture
as well as extrapolation from an optical flow predictor. This is reasonable since

Forecasting from Static Images Using Variational Autoencoders 847

the regressor is inherently unimodal: it is unable to predict distributions where
there may be many reasonable futures, which Figs. 3 and 4 suggest is rather
common. Interestingly, extrapolating the predicted optical flow from [31] does
not seem to be effective, as motion may change direction considerably even over
the course of one second.

(a) Negative Log Likelihood
on THUMOS 2015 dataset.

Method NLL
Regressor 11463

Optical Flow [31] 11734
Ours 11082

(b) Average Minimum Euclidean
distance for each method per sam-
ple size

Fig. 5. Prediction evaluations

We plot the average minimum Euclid-
ean distance per sample for each method in
Fig. 5(b). We find that even with a small
number of samples, our algorithm outper-
forms the baselines. The additional dashed
line is the result from simply using the regres-
sor’s direct output as a mean, which is equiv-
alent to sampling with a variance of 0. Note
that given a single sample, the regressor out-
performs our method since it directly opti-
mized the Euclidean distance at training
time. Given more than a few samples, how-
ever, ours performs better due to the multi-
modality of the problem (Table 1).

4.2 Qualitative Results

We show some qualitative results in Figs. 3
and 4. For these results, we cluster 800 sam-
ples into 10 clusters via Kmeans and show
top two clusters with significant motion. In
our quantitative experiments, we found that
the ground-truth trajectory matched into the
top three clusters 75 % of the time. The net-

work predicts motion based on the context of the scene. For instance, the network
tends to predict up and down motions for the people on the swing in Fig. 4, while
the boy in Fig. 3 playing the violin moves his arm left and right. Figure 6 shows
the role latent variables play in predicting motion in some selected scenes with a
distinct action: interpolating between latent variable values interpolates between
the motion prediction. Based on this figure, at least some latent variables encode
the direction of motion. However, the network still depends on image informa-
tion to restrict the types of motions that can occur in a scene. For instance, the
man skiing moves only left or right while the woman squats only up or down.

4.3 Representation Learning

Prediction implicitly depends on a number of fundamental vision tasks such as
recognizing the scene action and detecting the moving objects. Hence, we expect
the representation learned for the task of motion prediction may generalize for
other vision tasks. We thus evaluate the representation learned by our network

848 J. Walker et al.

T
a
b
le

1
.
m

ea
n

A
v
er

a
g
e

P
re

ci
si

o
n

(m
A

P
)

o
n

V
O

C
2
0
1
2
.
T

h
e

“
E

x
te

rn
a
l
d
a
ta

”
co

lu
m

n
re

p
re

se
n
ts

th
e

a
m

o
u
n
t

o
f
d
a
ta

ex
p
o
se

d
o
u
ts

id
e

o
f

th
e

V
O

C
2
0
1
2

tr
a
in

in
g

se
t.

“
ca

l”
d
en

o
te

s
th

e
b
et

w
ee

n
-l
ay

er
sc

a
le

a
d
ju

st
m

en
t

[1
7
]
ca

li
b
ra

ti
o
n
.

V
O

C
2
0
1
2

te
st

E
x
te

rn
a
l
d
a
ta

a
e
ro

b
ik

e
b
ir
d

b
o
a
t

b
o
tt

le
b
u
s

c
a
r

c
a
t

ch
a
ir

c
o
w

ta
b
le

d
o
g

h
o
rs

e
m

b
ik

e
p
e
rs

o
n

p
la

n
t

sh
e
e
p

so
fa

tr
a
in

tv
m

A
P

sc
ra

tc
h
+

c
a
l

N
/
A

6
7
.5

4
9
.8

2
7
.9

2
3
.9

1
3
.6

5
7
.8

4
8
.1

5
1
.7

1
6
.1

3
3
.2

2
9
.2

4
5
.3

5
1
.9

5
8
.8

5
1
.7

1
6
.8

3
9
.7

2
9
.4

5
5
.7

4
3
.5

4
0
.6

k
m

e
a
n
s

[1
7
]+

c
a
l

N
/
A

7
1
.1

5
6
.8

3
1
.8

2
8
.1

1
7
.7

6
2
.5

5
6
.6

5
9
.9

1
9
.9

3
7
.3

3
6
.2

5
2
.9

5
6
.4

6
4
.3

5
7
.1

2
1
.2

4
5
.8

3
9
.1

6
0
.9

4
6
.0

4
6
.1

re
l.

p
o
s.

[4
]+

c
a
l

1
.2

M
Im

a
g
e
N
e
t

7
4
.3

6
4
.7

4
2
.6

3
2
.6

2
5
.9

6
6
.5

6
0
.2

6
7
.9

2
7
.0

4
7
.9

4
1
.3

6
4
.5

6
3
.4

6
9
.1

5
7
.5

2
5
.3

5
1
.9

4
6
.7

6
4
.6

5
1
.4

5
2
.3

e
g
o
m

o
ti
o
n

[1
]+

c
a
l

2
0
.5

K
K

IT
T
I
im

g
.

7
0
.7

5
6
.3

3
1
.9

2
5
.6

1
8
.7

6
0
.4

5
4
.1

5
7
.6

1
9
.8

4
0
.9

3
1
.8

5
1
.9

5
4
.9

6
1
.7

5
3
.5

1
9
.8

4
5
.2

3
6
.3

5
6
.9

4
9
.1

4
4
.9

v
id

.
e
m

b
e
d

[3
2
]

1
.5

M
v
id

.
fr
a
m

e
s

(1
0
0
k

v
id

)
6
8
.8

6
2
.1

3
4
.7

2
5
.3

2
6
.6

5
7
.7

5
9
.6

5
6
.3

2
2
.0

4
2
.6

3
3
.8

5
2
.3

5
0
.3

6
5
.6

5
3
.9

2
5
.8

5
1
.5

3
2
.3

5
1
.7

5
1
.8

4
6
.2

v
id

.
e
m

b
e
d

[3
2
]

5
M

v
id

.
fr
a
m

e
s

(1
0
0
k

v
id

)
6
9
.0

6
4
.0

3
7
.1

2
3
.6

2
4
.6

5
8
.7

5
8
.9

5
9
.6

2
2
.3

4
6
.0

3
5
.1

5
3
.3

5
3
.7

6
6
.9

5
4
.1

2
5
.4

5
2
.9

3
1
.2

5
1
.9

5
1
.8

4
7
.0

v
id

.
e
m

b
e
d

[3
2
]

8
M

v
id

.
fr
a
m

e
s

(1
0
0
k

v
id

)
6
7
.6

6
3
.4

3
7
.3

2
7
.6

2
4
.0

5
8
.7

5
9
.9

5
9
.5

2
3
.7

4
6
.3

3
7
.6

5
4
.8

5
4
.7

6
6
.4

5
4
.8

2
5
.8

5
2
.5

3
1
.2

5
2
.6

5
2
.6

4
7
.5

v
id

.
e
m

b
e
d

[3
2
]+

c
a
l

8
M

v
id

.
fr
a
m

e
s

(1
0
0
k

v
id

)
6
8
.1

5
3
.1

3
1
.9

2
4
.3

1
6
.9

5
7
.2

5
0
.8

5
8
.4

1
4
.1

3
6
.9

2
7
.6

5
2
.5

4
9
.6

6
0
.0

4
8
.4

1
5
.8

4
1
.9

3
4
.4

5
5
.6

4
5
.6

4
2
.2

o
u
rs

+
c
a
l

1
3
k

U
C
F
1
0
1

v
id

.
7
1
.7

6
0
.4

3
4
.0

2
7
.8

1
8
.6

6
3
.5

5
6
.6

6
1
.1

2
1
.2

3
9
.3

3
5
.1

5
7
.1

5
8
.6

6
6
.0

5
8
.4

2
0
.5

4
5
.6

3
8
.3

6
2
.1

4
9
.9

4
7
.3

Forecasting from Static Images Using Variational Autoencoders 849

Input Image Interpolation

Fig. 6. Interpolation in latent variable space between two points from left to right.
Each column represents a set of images with the same latent variables. Left to right
represents a linear interpolation between two points in z-space. The latent variables
influence direction to some extent, but the context of the image either amplifies or
greatly reduces this direction.

on the task of object detection. We take layers from the image tower and fine-
tune them on the PASCAL 2012 training dataset. For all methods, we apply the
between-layer scale adjustment [17] to calibrate the pre-trained networks, as it
improves the finetuning behavior of all methods except one. We then compare
detection scores against other unsupervised methods of representation learning
using Fast-RCNN [8]. We find that from a relatively small amount of data, our
method outperforms other methods that were trained on datasets with far larger
diversity in scenes and types of objects. While the improvement is small over all
objects, we do have the highest performance on humans over all unsupervised
methods, even [4]. This is expected as most of the moving objects in our training
data comes from humans.

Acknowledgements. We thank the NVIDIA Corporation for the donation of Tesla
K40 GPUs for this research. In addition, this work was supported by NSF grant
IIS1227495.

850 J. Walker et al.

References

1. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: ICCV (2015)
2. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database

and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)
3. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint (2016).

arXiv:1606.05908
4. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning

by context prediction. In: ICCV (2015)
5. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der

Smagt, P., Cremers, D., Brox, T.: Flownet: learning optical flow with convolutional
networks. In: ICCV (2015)

6. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture. In: ICCV (2015)

7. Fouhey, D., Zitnick, C.L.: Predicting object dynamics in scenes. In: CVPR (2014)
8. Girshick, R.: Fast R-CNN. In: ICCV (2015)
9. Gorban, A., Idrees, H., Jiang, Y.G., Roshan Zamir, A., Laptev, I., Shah, M., Suk-

thankar, R.: THUMOS challenge: action recognition with a large number of classes
(2015). http://www.thumos.info/

10. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: DRAW: a recur-
rent neural network for image generation. In: ICML (2015)

11. Hoai, M., De la Torre, F.: Max-margin early event detectors. IJCV 107(2), 191–202
(2014)

12. Huang, D.-A., Kitani, K.M.: Action-reaction: forecasting the dynamics of human
interaction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8695, pp. 489–504. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10584-0 32

13. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning
with deep generative models. In: NIPS (2014)

14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)
15. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In:

Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33765-9 15

16. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances
for reactive robotic response. In: RSS (2013)

17. Krähenbühl, P., Doersch, C., Donahue, J., Darrell, T.: Data-dependent initializa-
tions of convolutional neural networks. ICLR (2016)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

19. Kulkarni, T., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional inverse
graphics network. In: NIPS (2015)

20. Lan, T., Chen, T.-C., Savarese, S.: A hierarchical representation for future action
prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8691, pp. 689–704. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10578-9 45

21. Liu, C., Yuen, J., Torralba, A.: Sift flow: dense correspondence across scenes and
its applications. PAMI 33(5), 978–994 (2011)

22. Mottaghi, R., Bagherinezhad, H., Rastegari, M., Farhadi, A.: Newtonian image
understanding: unfolding the dynamics of objects in static images. In: CVPR
(2016)

http://arxiv.org/abs/1606.05908
http://www.thumos.info/
http://dx.doi.org/10.1007/978-3-319-10584-0_32
http://dx.doi.org/10.1007/978-3-319-10584-0_32
http://dx.doi.org/10.1007/978-3-642-33765-9_15
http://dx.doi.org/10.1007/978-3-642-33765-9_15
http://dx.doi.org/10.1007/978-3-319-10578-9_45
http://dx.doi.org/10.1007/978-3-319-10578-9_45

Forecasting from Static Images Using Variational Autoencoders 851

23. Pintea, S.L., Gemert, J.C., Smeulders, A.W.M.: Déjà Vu: motion prediction in
static images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8691, pp. 172–187. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10578-9 12

24. Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video
(language) modeling: a baseline for generative models of natural videos. arXiv
preprint (2014). arXiv:1412.6604

25. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and
approximate inference in deep generative models. In: ICML (2014)

26. Salimans, T., Kingma, D., Welling, M.: Markov chain monte carlo and variational
inference: bridging the gap. In: ICML (2015)

27. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint (2012). arXiv:1212.0402

28. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video
representations using LSTMs. In: ICML (2015)

29. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating the future by watching
unlabeled video. In: CVPR (2016)

30. Walker, J., Gupta, A., Hebert, M.: Patch to the future: unsupervised visual pre-
diction. In: CVPR (2014)

31. Walker, J., Gupta, A., Hebert, M.: Dense optical flow prediction from a static
image. In: ICCV (2015)

32. Wang, X., Gupta, A.: Unsupervised learning of visual representations using videos.
In: ICCV (2015)

33. Yuen, J., Torralba, A.: A data-driven approach for event prediction. In: Daniilidis,
K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 707–720.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15552-9 51

http://dx.doi.org/10.1007/978-3-319-10578-9_12
http://dx.doi.org/10.1007/978-3-319-10578-9_12
http://arxiv.org/abs/1412.6604
http://arxiv.org/abs/1212.0402
http://dx.doi.org/10.1007/978-3-642-15552-9_51

	An Uncertain Future: Forecasting from Static Images Using Variational Autoencoders
	1 Introduction
	2 Background
	3 Algorithm
	3.1 Model
	3.2 Training by ``Autoencoding''
	3.3 The Conditional Variational Autoencoder
	3.4 Architecture

	4 Experiments
	4.1 Quantitative Results
	4.2 Qualitative Results
	4.3 Representation Learning

	References

