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Abstract. This paper is on human pose estimation using Convolutional
Neural Networks. Our main contribution is a CNN cascaded architecture
specifically designed for learning part relationships and spatial context,
and robustly inferring pose even for the case of severe part occlusions.
To this end, we propose a detection-followed-by-regression CNN cascade.
The first part of our cascade outputs part detection heatmaps and the
second part performs regression on these heatmaps. The benefits of the
proposed architecture are multi-fold: It guides the network where to focus
in the image and effectively encodes part constraints and context. More
importantly, it can effectively cope with occlusions because part detec-
tion heatmaps for occluded parts provide low confidence scores which
subsequently guide the regression part of our network to rely on contex-
tual information in order to predict the location of these parts. Addi-
tionally, we show that the proposed cascade is flexible enough to readily
allow the integration of various CNN architectures for both detection
and regression, including recent ones based on residual learning. Finally,
we illustrate that our cascade achieves top performance on the MPII and
LSP data sets. Code can be downloaded from http://www.cs.nott.ac.uk/
∼psxab5/.

Keywords: Human pose estimation · Part heatmap regression · Con-
volutional Neural Networks

1 Introduction

Articulated human pose estimation from images is a Computer Vision problem
of extraordinary difficulty. Algorithms have to deal with the very large number
of feasible human poses, large changes in human appearance (e.g. foreshortening,
clothing), part occlusions (including self-occlusions) and the presence of multiple
people within close proximity to each other. A key question for addressing these
problems is how to extract strong low and mid-level appearance features captur-
ing discriminative as well as relevant contextual information and how to model
complex part relationships allowing for effective yet efficient pose inference. Being
capable of performing these tasks in an end-to-end fashion, Convolutional Neural
Networks (CNNs) have been recently shown to feature remarkably robust per-
formance and high part localization accuracy. Yet, the accurate estimation of
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Fig. 1. Proposed architecture: Our CNN cascade consists of two connected deep
subnetworks. The first one (upper part in the figure) is a part detection network trained
to detect the individual body parts using a per-pixel sigmoid loss. Its output is a set
of N part heatmaps. The second one is a regression subnetwork that jointly regresses
the part heatmaps stacked alongside the input image to confidence maps representing
the location of the body parts.

the locations of occluded body parts is still considered a difficult open problem.
The main contribution of this paper is a CNN cascaded architecture specifically
designed to alleviate this problem.

There is a very large amount of work on the problem of human pose esti-
mation. Prior to the advent of neural networks most prior work was primar-
ily based on pictorial structures [1] which model the human body as a col-
lection of rigid templates and a set of pairwise potentials taking the form of
a tree structure, thus allowing for efficient and exact inference at test time.
Recent work includes sophisticated extensions like mixture, hierarchical, mul-
timodal and strong appearance models [2–6], non-tree models [7,8] as well as
cascaded/sequential prediction models like pose machines [9].

More recently methods based on Convolutional Neural Networks have been
shown to produce remarkable performance for a variety of difficult Computer
Vision tasks including recognition [10,11], detection [12] and semantic segmen-
tation [13] outperforming prior work by a large margin. A key feature of these
approaches is that they integrate non-linear hierarchical feature extraction with
the classification or regression task in hand being also able to capitalize on very
large data sets that are now readily available. In the context of human pose
estimation, it is natural to formulate the problem as a regression one in which
CNN features are regressed in order to provide joint prediction of the body parts
[14–17]. For the case of non-visible parts though, learning the complex mapping
from occluded part appearances to part locations is hard and the network has
to rely on contextual information (provided from the other visible parts) to infer
the occluded parts’ location. In this paper, we show how to circumvent this prob-
lem by proposing a detection-followed-by-regression CNN cascade for articulated
human pose estimation.
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Fig. 2. Paper’s main idea: The first row shows the produced part detection heatmaps
for both visible (neck, head, left knee) and occluded (ankle, wrist, right knee) parts
(drawn with a dashed line). Observe that the confidence for the occluded parts is much
lower than that of the non-occluded parts but still higher than that of the background
providing useful context about their rough location. The second row shows the output
of our regression subnetwork. Observe that the confidence for the visible parts is higher
and more localized and clearly the network is able to provide high confidence for the
correct location of the occluded parts. Note: image taken from LSP test set.

1.1 Main Contribution

The proposed architecture is a CNN cascade consisting of two components (see
Fig. 1): the first component (part detection network) is a deep network for part
detection that produces detection heatmaps, one for each part of the human
body. We train part detectors jointly using pixelwise sigmoid cross entropy loss
function [18]. The second component is a deep regression subnetwork that jointly
regresses the location of all parts (both visible and occluded), trained via con-
fidence map regression [16]. Besides the two subnetworks, the key feature of
the proposed architecture is the input to the regression subnetwork: we propose
to use a stacked representation comprising the part heatmaps produced by the
detection network. The proposed representation guides the network where to
focus and encodes structural part relationships. Additionally, our cascade does
not suffer from the problem of regressing occluded part appearances: because
the part heatmaps for the occluded parts provide low confidence scores, they
subsequently guide the regression part of our network to rely on contextual
information (provided by the remaining parts) in order to predict the location
of these parts. See Fig. 2 for a graphical representation of our paper’s main idea.
The proposed cascade is very simple, can be trained end-to-end, and is flex-
ible enough to readily allow the integration of various CNN architectures for
both our detection and regression subnetworks. To this end, we illustrate two



720 A. Bulat and G. Tzimiropoulos

instances of our cascade, one based on the more traditional VGG converted to
fully convolutional (FCN) [11,13] and one based on residual learning [10,19].
Both architectures achieve top performance on both MPII [20] and LSP [21]
data sets.

2 Closely Related Work

Overview of prior work. Recently proposed methods for articulated human
pose estimation using CNNs can be classified as detection-based [22–26] or
regression-based [14–17,27,28]. Detection-based methods are relying on power-
ful CNN-based part detectors which are then combined using a graphical model
[22,23] or refined using regression [24,25]. Regression-based methods try to learn
a mapping from image and CNN features to part locations. A notable develop-
ment has been the replacement of the standard L2 loss between the predicted
and ground truth part locations with the so-called confidence map regression
which defines an L2 loss between predicted and ground truth confidence maps
encoded as 2D Gaussians centered at the part locations [16,23] (these regression
confidence maps are not to be confused with the part detection heatmaps pro-
posed in our work). As a mapping from CNN features to part locations might
be difficult to learn in one shot, regression-based methods can be also applied
sequentially (i.e. in a cascaded manner) [14,27,28]. Our CNN cascade is based on
a two-step detection-followed-by-regression approach (see Fig. 1) and as such is
related to both detection-based [24,25] and regression-based methods [16,27,28].

Relation to regression-based methods. Our detection-followed-by-
regression cascade is related to [16] which can be seen as a two-step regression-
followed-by-regression approach. As a first step [16] performs confidence map
regression (based on an L2 loss) as opposed to our part detection step which
is learnt via pixelwise sigmoid cross entropy loss. Then, in [16] pre-confidence
maps are used as input to a subsequent regression network. We empirically found
that such maps are too localised providing small spatial support. In contrast,
our part heatmaps can provide large spatial context for regression. For com-
parison purposes, we implemented the idea of [16] using two different architec-
tures, one based on VGG-FCN and one on residual learning, and show that the
proposed detection-followed-by-regression cascade outperforms it for both cases
(see Sect. 4.2). In order to improve performance, regression methods applied in
a sequential, cascaded fashion have been recently proposed in [27,28]. In partic-
ular, [28] has recently reported outstanding results on both LSP [21] and MPII
[20] data sets using a six-stage CNN cascade.

Relation to detection-based methods. Regarding detection-based methods,
[25] has produced state-of-the-art results on both MPII and LSP data sets using
a VGG-FCN network [11,13] to detect the body parts along with an L2 loss
for regression that refines the part prediction. Hence, [25] does not include a
subsequent part heatmap regression network as our method does. The work
of [24] uses a part detection network as a first step in order to provide crude
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estimates for the part locations. Subsequently, CNN features are cropped around
these estimates and used for refinement using regression. Hence, [24] does not
include a subsequent part heatmap regression network as our method does, and
hence does not account for contextual information but allows only for local
refinement.

Residual learning. Notably, all the aforementioned methods were developed
prior to the advent of residual learning [10]. Very recently, residual learning
was applied for the problem of human pose estimation in [26] and [19]. Residual
learning was used for part detection in the system of [26]. The “stacked hourglass
network” of [19] elegantly extends FCN [13] and deconvolution nets [29] within
residual learning, also allowing for a more sophisticated and heavy processing
during top-down processing. We explore residual learning within the proposed
CNN cascade; notably for our residual regression subnetwork, we used a single
hourglass network [19].

3 Method

The proposed part heatmap regression is a CNN cascade illustrated in Fig. 1. Our
cascade consists of two connected subnetworks. The first subnetwork is a part
detection network trained to detect the individual body parts using a per-pixel
softmax loss. The output of this network is a set of N part detection heatmaps.
The second subnetwork is a regression subnetwork that jointly regresses the part
detection heatmaps stacked with the image/CNN features to confidence maps
representing the location of the body parts.

We implemented two instances of part heatmap regression: in the first one,
both subnetworks are based on VGG-FCN [11,13] and in the second one, on
residual learning [10,19]. For both cases, the subnetworks and their training are
described in detail in the following subsections. The following paragraphs outline
important details about the training of the cascade, and are actually independent
of the architecture used (VGG-FCN or residual).

Part detection subnetwork. While [13] uses a per-pixel softmax loss encoding
different classes with different numeric levels, in practice, for the human body this
is suboptimal because the parts are usually within close proximity to each other,
having high chance of overlapping. Therefore, we follow an approach similar to
[18] and encode part label information as a set of N binary maps, one for each
part, in which the values within a certain radius around the provided ground
truth location are set to 1 and the values for the remaining background are set
to 0. This way, we thus tackle the problem of having multiple parts in the very
same region. Note that the detection network is trained using visible parts only,
which is fundamentally different from the previous regression-based approaches
[16,23,24].

The radius defining “correct location” was selected so that the targeted body
part is fully included inside. Empirically, we determined that a value of 10 px to
be optimal for a body size of 200 px of an upright standing person.
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We train our body part detectors jointly using pixelwise sigmoid cross entropy
loss function:

l1 =
1
N

N∑

n=1

W∑

i=1

H∑

j=1

[pnij log p̂nij + (1 − pnij) log(1 − p̂nij)], (1)

where pnij denotes the ground truth map of the nth part at pixel location (i, j)
(constructed as described above) and p̂nij is the corresponding sigmoid output at
the same location.

Regression subnetwork. While the detectors alone provide good performance,
they lack a strong relationship model that is required to improve (a) accuracy
and (b) robustness particularly required in situations where specific parts are
occluded. To this end, we propose an additional subnetwork that jointly regresses
the location of all parts (both visible and occluded). The input of this subnetwork
is a multi-channel representation produced by stacking the N heatmaps pro-
duced by the part detection subnetwork, along with the input image (see Fig. 1).
This multichannel representation guides the network where to focus and encodes
structural part relationships. Additionally, it ensures that our network does not
suffer from the problem of regressing occluded part appearances: because the
part detection heatmaps for the occluded parts provide low confidence scores,
they subsequently guide the regression part of our network to rely on contextual
information (provided by the remaining parts) in order to predict the location
of these parts.

The goal of our regression subnetwork is to predict the points’ location via
regression. However, direct regression of the points is a difficult and highly non-
linear problem caused mainly by the fact that only one single correct value needs
to be predicted. We address this by following a simpler alternative route [16,23],
regressing a set of confidence maps located in the immediate vicinity of the
correct location (instead of regressing a single value). The ground truth consists
of a set of N layers, one for each part, in which the correct location of each part,
be it visible or not is represented by Gaussian with a standard deviation of 5px.

We train our subnetwork to regress the location of all parts jointly using the
following L2 loss:

l2 =
1
N

N∑

n=1

∑

ij

∥∥∥M̃n(i, j) −Mn(i, j)
∥∥∥
2

, (2)

where M̃n(i, j) and Mn(i, j) represent the predicted and the ground truth con-
fidence maps at pixel location (i, j) for the nth part, respectively.

3.1 VGG-FCN Part Heatmap Regression

Part detection subnetwork. We based our part detection network architec-
ture on the VGG-16 network [11] converted to fully convolutional by replac-
ing the fully connected layers with convolutional layers of kernel size of 1 [13].
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Because the localization accuracy offered by the 32 px stride is insufficient, we
make use of the entire algorithm as in [13] by combining the earlier level CNN
features, thus reducing the stride to 8 px. For convenience, the network is shown
in Fig. 3 and Table 1.

A1 A2 A3 A4 A5 A6 A7

A8

A8

+A8 A9 +A9 A9

Fig. 3. The VGG-FCN subnetwork used for body part detection. The blocks A1–A9
are defined in Table 1.

Table 1. Block specification for the VGG-FCN part detection subnetwork. Torch nota-
tions (channels, kernel, stride) and (kernel, stride) are used to define the conv and
pooling layers.

A1 A2 A3 A4 A5 A6 A7 A8 A9

2x conv

layer (64,

3 × 3,

1 × 1),

pooling

2x conv

layer (128,

3 × 3,

1 × 1),

pooling

3x conv

layer (256,

3 × 3,

1 × 1),

pooling

3x conv

layer (512,

3 × 3,

1 × 1),

pooling

3X conv

layer

(512,

1 × 1,

1 × 1),

pooling

conv layer

(4096,

7 × 7,

1 × 1)

conv layer

(4096,

1 × 1,

1 × 1)

conv

layer(16,

1 × 1, 1 × 1)

bilinear

upsample

Regression subnetwork. We have chosen a very simple architecture for our
regression sub-network, consisting of 7 convolutional layers. The network is
shown in Fig. 4 and Table 2. The first 4 of these layers use a large kernel size that
varies from 7 to 15, in order to capture a sufficient local context and to increase
the receptive field size which is crucial for learning long-term relationships. The
last 3 layers have a kernel size equal to 1.

Training. For training on MPII, all images were cropped after centering on
the person and then scaled such that a standing-up human has height 300 px.
All images were resized to a resolution of 380× 380 px. To avoid overfitting, we
performed image flipping, scaling (between 0.7 and 1.3) and rotation (between
−40 and 40◦). Both rotation and scaling were applied using a set of predefined
step sizes. Training the network is a straightforward process. We started by first
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training the body part detection network, fine-tuning from VGG-16 [11,13] pre-
trained on ImageNet [30]. The detectors were then trained for about 20 epochs
using a learning rate progressively decreasing from 1e − 8 to 1e − 9. For the
regression subnetwork, all layers were initialized with a Gaussian distribution
(std = 0.01). To accelerate the training and avoid early divergence we froze the
training of the detector layers, training only the subnetwork. We let this train for
20 epochs with a learning rate of 0.00001 and then 0.000001. We then trained
jointly both networks for 10 epochs. We found that one can train both the
part detection network and the regression subnetwork jointly, right from the
beginning, however, the aforementioned approach results in faster training.

For LSP, we fine-tuned the network for 10 epochs on the 1000 images of the
training set. Because LSP provides the ground truth for only 14 key points, dur-
ing fine-tuning we experimented with two different strategies: (i) generating the
points artificially and (ii) stopping the backpropagation for the missing points.
The later approach produced better results overall. The training was done using
the caffe [31] bindings for Torch7 [32].

C1 C2 C3 C4 C5 C6 C7 C8

Fig. 4. The VGG-based subnetwork used for regression. The blocks C1–C8 are defined
in Table 2.

Table 2. Block specification for the VGG-based regression subnetwork. Torch notations
(channels, kernel, stride) and (kernel, stride) are used to define the conv and pooling
layers.

C1 C2 C3 C4 C5 C6 C7 C8

conv layer

(64, 9 × 9,

1 × 1)

conv

layer (64,

13 × 13,

1 × 1)

conv layer

(128,

13 × 13,

1 × 1)

conv layer

(256,

15 × 15,

1 × 1)

conv layer

(512, 1 × 1,

1 × 1)

conv layer

(512, 1 × 1,

1 × 1)

conv layer

(16, 1 × 1,

1 × 1)

deconv

layer (16,

8 × 8,

4 × 4)

3.2 Residual Part Heatmap Regression

Part detection subnetwork. Motivated by recent developments in image
recognition [10], we used ResNet-152 as a base network for part detection. Doing
so requires making the network able to make predictions at pixel level which
is a relative straightforward process (similar ways to do this are described in
[26,33,34]). The network is shown in Fig. 5 and Table 3. Blocks B1-B4 are the
same as the ones in the original ResNet, and B5 was slightly modified. We firstly
removed both the fully connected layer after B5 and then the preceding average
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pooling layer. Then, we added a scoring convolutional layer B6 with N outputs,
one for each part. Next, to address the extremely low output resolution, we
firstly modified B5 by changing the stride of its convolutional layers from 2 px
to 1 px and then added (after B6) a deconvolution [29] layer B7 with a kernel
size and stride of 4, that upsamples the output layers to match the resolution of
the input. We argue that for our detection subnetwork, knowing the exact part
location is not needed. All added layers were initialized with 0 and trained using
rmsprop [35].

Fig. 5. The architecture of the residual part detection subnetwork. The network is
based on ResNet-152 and its composing blocks. The blocks B1–B7 are defined in
Table 3. See also text.

Table 3. Block specification for the residual part detection network. Torch notations
(channels, kernel, stride) and (kernel, stride) are used to define the conv and pooling
layers. The bottleneck modules are defined as in [10].

B1 B2 B3 B4 B5 B6 B7

1x conv layer

(64,7 × 7,2 × 2)

1x pooling

(3 × 3, 2 × 2)

3x bottle-

neck modules

[(64,1 × 1),

(64,3 × 3),

(256,1 × 1)]

8x bottle-

neck modules

[(128,1 × 1),

(128,3 × 3),

(512,1 × 1)]

38x bottle-

neck modules

[(256,1 × 1),

(256,3 × 3),

(1024,1 × 1)]

3x bottle-

neck modules

[(512,1 × 1),

(512,3 × 3),

(2048,1 × 1)]

1x conv layer

(16,1 × 1,

1 × 1)

1x deconv

layer

(16,4 × 4,

4 × 4)

Regression subnetwork. For the residual regression subnetwork, we used a
(slightly) modified “hourglass network” [19], which is a recently proposed state-
of-the-art architecture for bottom-up, top-down inference. The network is shown
in Fig. 6 and Table 4. Briefly, the network builds on top of the concepts described
in [13], improving a few fundamental aspects. The first one is that extends [13]
within residual learning. The second one is that instead of passing the lower level
futures through a convolution layer with the same number of channels as the final
scoring layer, the network passes the features through a set of 3 convolutional
blocks that allow the network to re-analyze and learn how to combine features
extracted at different resolutions. See [19] for more details. Our modification
was in the introduction of deconvolution layers D5 for recovering the lost spatial
resolution (as opposed to nearest neighbour upsampling used in [19]). Also, as
in the detection network, the output is brought back to the input’s resolution
using another trained deconvolutional layer D5.
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Fig. 6. The “hourglass network” [19] used as the residual regression network. The
Blocks D1-D7 are defined in Table 4. See also text.

Table 4. Block specification for the “hourglass network”. Torch notations (channels,
kernel, stride) and (kernel, stride) are used to define the conv and pooling layers. The
bottleneck modules are defined as in [36].

D1 D2 D3 D4 D5 D6 D7

1x conv
layer (64,
7× 7,
2× 2),
1x pooling
(2× 2,2× 2)

3x bottleneck
modules

1x maxpooling
(2× 2, 2× 2),
3x bottleneck
modules

3x bottleneck
modules

1x deconv.
layer (256,
2× 2,
2× 2)

1x conv
layer
(512,
1× 1,
1× 1)

1x conv
scoring
layer (16,
1× 1,
1× 1)

Training. For training on MPII, we applied similar augmentations as before,
with the difference being that augmentations were applied randomly. Also, due to
memory issues, the input image was rescaled to 256× 256 px. Again, we started
by first training the body part detection network, fine-tuning from ResNet-152
[10] pre-trained on ImageNet [30]. The detectors were then trained for about 50
epochs using a learning rate progressively decreasing from 1e − 3 to 2.5e − 5.
For the regression “hourglass” subnetwork, we froze the learning for the detector
layers, training only the regression subnetwork. We let this train for 40 epochs
using a learning rate of 1e − 4 and then 2.5e − 5. In the end, the networks
were trained jointly for 50 more epochs. While we experimented with different
initialization strategies, all of them seemed to produce similar results. For the
final model, all layers from the regression subnetwork were zero-initialized, except
for the deconvolution layers, which were initialized using bilinear upsampling
filters, as in [13]. The network made use of batch normalization, and was trained
with a batch size of 8. For LSP, we follow the same procedure as the one for VGG-
FCN, changing only the number of epochs to 30. The network was implemented
and trained using Torch7 [32]. The code, along with the pretrained models will
be published on our webpage.
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4 Results

4.1 Overview

We report results for two sets of experiments on the two most challenging
datasets for human pose estimation, namely LSP [21] and MPII [20]. A summary
of our results is as follows:

– We show the benefit of the proposed detection-followed-by-regression cascade
over a two-step regression approach, similar to the idea described in [16], when
implemented with both VGG-FCN and residual architectures.

– We provide an analysis of the different components of our network illustrating
their importance on overall performance. We show that stacking the part
heatmaps as proposed in our work is necessary for achieving high performance,
and that this performance is significantly better than that of the part detection
network alone.

– We show the benefit of using a residual architecture over VGG-FCN.
– We compare the performance of our method with that of recently published

methods illustrating that both versions of our cascade achieve top performance
on both the MPII and LSP data sets.

4.2 Analysis

We carried out a series of experiments in order to investigate the impact of the
various components of our architecture on performance. In all cases, training and
testing was done on MPII training and validation set, respectively. The results
are summarized in Table 5. In particular, we report the performance of

i. the overall part heatmap regression (which is equivalent to “Detec-
tion+regression”) for both residual and VGG-FCN architectures.

ii. the residual part detection network alone (Detection only).
iii. the residual detection network but trained to perform direct regression

(Regression only).
iv. a two-step regression approach as in [16] (Regression+regression), but imple-

mented with both residual and VGG-FCN architectures.

We first observe that there is a large performance gap between residual part
heatmap regression and the same cascade but implemented with a VGG-FCN.
Residual detection alone works well, but the regression subnetwork provides a
large boost in performance showing that using the stacked part heatmaps as
input to residual regression is necessary for achieving high performance.

Furthermore, we observe that direct regression alone (case iii above) performs
better than detection alone, but overall our detection-followed-by-regression cas-
cade significantly outperforms the two-step regression approach. Notably, we
found that the proposed part heatmap regression is also considerably easier to
train. Not surprisingly, the gap between detection-followed-by-regression and
two-step regression when both are implemented with VGG-FCN is much bigger.
Overall, these results clearly verify the importance of using (a) part detection
heatmaps to guide the regression subnetwork and (b) a residual architecture.
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Table 5. Comparison between different variants of the proposed architecture on MPII
validation set, using PCKh metric. The overall part heatmap regression architecture is
equivalent to “Detection+regression”.

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Part heatmap regression (Res) 97.3 95.2 89.9 85.3 89.4 85.7 81.9 88.2

Part heatmap regression (VGG) 95.6 92.2 83.5 78.3 84.5 77.3 70.0 83.2

Detection only (Res) 96.2 91.3 83.4 74.5 83.1 76.6 71.3 82.6

Regression only (Res) 96.4 92.8 84.5 77.3 84.5 79.9 74.0 84.2

Regression+regression (Res) 96.7 93.6 86.1 80.1 88.1 80.5 76.7 85.7

Regression+regression (VGG) 92.8 85.6 77.5 70.4 73.5 69.3 66.5 76.7

Table 6. PCKh-based comparison with state-of-the-art on MPII

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Part heatmap regression (Res) 97.9 95.1 89.9 85.3 89.4 85.7 81.9 89.7

Part heatmap regression (VGG) 96.8 91.3 82.9 77.5 83.2 74.4 67.5 82.7

Newell et al., arXiv’16 [19] 97.6 95.4 90.0 85.2 88.7 85.0 80.6 89.4

Wei et al., CVPR’16 [28] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5

Insafutdinov et al., arXiv’16 [26] 96.6 94.6 88.5 84.4 87.6 83.9 79.4 88.3

Gkioxary et al., arXiv’16 [37] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1

Lifshitz et al., arXiv’16 [38] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Pishchulin et al., CVPR’16 [25] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4

Hu & Ramanan., CVPR’16 [39] 95.0 91.6 83.0 76.6 81.9 74.25 69.5 82.4

Carreira et al., CVPR’16 [40] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3

Tompson et al., NIPS’14 [23] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6

Tompson et al., CVPR’15 [24] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0

Table 7. PCK-based comparison with the state-of-the-art on LSP

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Part heatmap regression (Res) 96.3 92.2 88.2 85.2 92.2 91.5 88.6 90.7

Part heatmap regression (VGG) 94.8 86.6 79.5 73.5 88.1 83.2 78.5 83.5

Wei et al., CVPR’16 [28] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5

Insafutdinov et al., arXiv’16 [26] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1

Pishchulin et al.CVPR’16 [25] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1

Lifshitz et al., arXiv’16 [38] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7

Yang et al., CVPR’16 [41] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6

Carreira et al., CVPR’16 [40] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1

Tompson et al., NIPS’14 [23] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3

Fan et al., CVPR’15 [42] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0

Chen & Yuille, NIPS’14 [22] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4
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Fig. 7. Examples of poses obtained using our method on MPII (first 3 rows), and
LSP (4th and 5th row). Observe that our method copes well with both occlusions and
difficult poses. The last row shows some fail cases caused by combinations of extreme
occlusion and rare poses.
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4.3 Comparison with State-of-the-Art

In this section, we compare the performance of our method with that of pub-
lished methods currently representing the state-of-the-art. Tables 6 and 7 sum-
marize our results on MPII and LSP, respectively. Our results show that both
VGG-based and residual part heatmap regression are very competitive with the
latter, along with the other two residual-based architectures [19,26], being top
performers on both datasets. Notably, very close in performance is the method
of [28] which is not based on residual learning but performs a sequence of 6 CNN
regressions, being also much more challenging to train [28]. Examples of fitting
results from MPII and LSP for the case of residual part heatmap regression can
be seen in Fig. 7.

5 Conclusions

We proposed a CNN cascaded architecture for human pose estimation particu-
larly suitable for learning part relationships and spatial context, and robustly
inferring pose even for the case of severe part occlusions. Key feature of our
network is the joint regression of part detection heatmaps. The proposed archi-
tecture is very simple and can be trained end-to-end, achieving top performance
on the MPII and LSP data sets.

Acknowledgement. We would like to thank Leonid Pishchulin for graciously pro-
ducing our results on MPII with unprecedented quickness.
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