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Abstract. We address the unsupervised domain adaptation problem for
visual recognition when an auxiliary data view is available during train-
ing. This is important because it allows improving the training of visual
classifiers on a new target visual domain when paired additional source
data is cheaply available. This is the case when we learn from a source of
RGB plus depth data, for then test on a new RGB domain. The problem
is challenging because of the intrinsic asymmetry caused by the missing
auxiliary view during testing and from which discriminative information
should be carried over to the new domain. We jointly account for the
auxiliary view during training and for the domain shift by extending
the information bottleneck method, and by combining it with risk min-
imization. In this way, we establish an information theoretic principle
for learning any type of visual classifier under this particular settings.
We use this principle to design a multi-class large-margin classifier with
an efficient optimization in the primal space. We extensively compare
our method with the state-of-the-art on several datasets, by effectively
learning from RGB plus depth data to recognize objects and gender from
a new RGB domain.

1 Introduction

We address the visual recognition problem that involves the classification of a
target data view, representing the target domain, when the training data is com-
posed by unlabeled target domain data and also by source domain data, given by
a labeled main data view paired with an auxiliary data view. An important sce-
nario where this problem arises is when dealing with multi-sensory or multimodal
data. For example, acquiring RGB plus depth (RGB-D) data is inexpensive (as
confirmed by the availability of public labeled datasets [27,28]); however, using
them as source for training a visual classifier that is going to be used only on
RGB data triggers at least two important observations. First, if the target RGB
data has a marginal distribution that is different from the distribution of the
source RGB data, then we expect performance to deteriorate. This is due to
the well known visual domain adaptation problem, also framed as visual dataset
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bias [43], or covariate shift [40], for which several approaches have been devel-
oped [1,15,20-22,35].

The second observation is that domain adaptation methods do not leverage
the depth labeled data that RGB-D datasets inherit, and that could be seen
as the auxiliary view to the main RGB view. On the other hand, in absence
of covariate shift it has been shown that auxiliary data during training could
be used to improve recognition performance [45]. Therefore, it is natural to ask
whether that improvement could be carried over to a new target RGB domain
for visual recognition.

The problem outlined above has received very limited attention. It is differ-
ent from domain adaptation and transfer learning [3] (where source and target
domains are closely related), because of the presence of the auxiliary view as part
of the source. It is also different from the Learning Using Privileged Information
(LUPI) paradigm [45] (where the auxiliary view would represent privileged infor-
mation), because the main view and the target view are related but affected by
domain bias. Compared to multi-view and multi-task learning [14,18,34,46,49],
instead, rather than having all views or task labels available or predicted during
testing, here one view is missing, and a single task label is predicted based on
a biased view. Therefore, the asymmetry of the missing auxiliary view already
poses a challenge (because it cannot be combined like the others in multi-view
learning), which becomes even greater when there is a mismatch between the
distributions of the source main view and the target view.

We address the auxiliary view problem and the unsupervised domain adap-
tation (UDA) problem jointly by taking an information theoretic approach. See
Fig. 1. We develop a framework in two steps. First, we assume that the target
domain view is available as a third labeled view during training. In this way, we
derive a model for extracting information from the main and the target views in
a way that is optimal for visual recognition, and that speaks also on behalf of the
auxiliary view. Subsequently, we show how the model changes in the unsuper-
vised case, with unlabeled target data, effectively posing a UDA problem with
auxiliary view. This leads to the independence between the information extracted
from the main view and the information extracted from the target view, which
ultimately should be used for classification. The framework naturally suggests
that the link between the two can be reestablished by imposing the distributions
of the two information to be described by the same set of parameters. This is
in contrast with current approaches that mostly rely on minimizing the maxi-
mum mean discrepancy (MMD) [23], or the Kullback-Leibler (KL) divergence [8]
between source and target distributions.

In particular, we rely on the information bottleneck (IB) method [42] as a
tool for extracting latent information that compresses the available views as
much as possible while preserving all the information that is relevant for the
task at hand, which is predicting the labels of a visual recognition task. How-
ever, the original IB method assumes no domain bias and much less knows about
carrying auxiliary information over to a new domain. Therefore, our first con-
tribution is to extend the IB method accordingly, which we call information
bottleneck domain adaptation with privileged information (IBDAPI). IBDAPI is
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an information theoretic principle for extracting relevant information from the
target view, but gives an implicit, hence computationally hard, way for learning
a visual classifier based on such information. Hence, our second contribution is
a modified version of IBDAPI that allows learning explicitly any type of visual
classifier based on risk minimization. As a third contribution we use the modi-
fied IBDAPI for learning a large-margin multi-class classifier, called large-margin
IBDAPI (LMIBDAPI), for which we provide an optimization procedure guar-
anteed to converge in the primal space for improved computational efficiency.
Finally, we provide an extensive validation of LMIBDAPI against the state-of-
the-art on several datasets with very promising results, where we show that we
improve object and gender recognition from a new RGB data domain by learning
from a RGB-D source.

Our model
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Fig. 1. Domain adaptation with auxiliary information. (a) Since target data
distribution p(X*), and source data distribution p(X) differ by a covariate shift, the
classifier boundary is suboptimal. Even more so because the paired source auxiliary
data X is not used for training. (b) Labeled paired source auxiliary data (e.g., depth
data) is used, along with unlabeled target data, to improve visual recognition on the
target domain via the information bottleneck domain adaptation with privileged infor-
mation (IBDAPI) principle. IBDAPI learns a compressed representation where the
mapped source data (S and S*), as well as the mapped target data (T") become more
separable.

2 Related Work

This work is related to domain adaptation (DA), where the distributions of the
source and target domain data are different. DA is defined in supervised [12,37],
semi-super-vised [44,50], and unsupervised (UDA) [21,35] settings. Since we do
not use labeled target data during training this work is more closely related
to UDA. There are a number of strategies for UDA. One is to reweigh labeled
instances from the source domain in a way that compensates for the difference in
the source and target distributions before training a classifier [26,40]. The most
popular strategy is to look for a common space where the projected features
become domain invariant and then a classifier is learned. Transfer Component
Analysis (TCA) [35] searches a latent space where the variance of the data is pre-
served as much as possible. A number of methods exploit multiple intermediate
subspaces for linking source and target distributions. Sampling Geodesic Flow
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(SGF) [22] samples subspaces along a geodesic curve on a Grassmann manifold.
The Geodesic Flow Kernel method (GFK) [21] extends SGF where the inter-
mediate subspaces are integrated to define a cross-domain similarity measure.
Landmark (LMK) [20] further extends GFK by selecting path landmarks from
the source domain. Domain Invariant Projection (DIP) [1] focusses on learning
a domain invariant subspace representation, and Subspace Alignment (SA) [15]
demonstrated that it is possible to map directly the source to the target sub-
space without necessarily passing through intermediate steps. More recently, [2]
applied manifold learning to achieve the above goal by minimizing the Hellinger
distance between cross-domain data distributions. Our approach is more closely
related to those that jointly look for a feature subspace that minimizes the distri-
bution mismatch, as well as the classifier loss. Among those we mention [16,39]
because they do so based on information theoretic measures, like we do. Unlike
all the approaches discussed so far, our framework is concerned with exploit-
ing auxiliary data for UDA. In addition, it is different than multi-view domain
adaptation methods [51] because we only have single view features in the target
domain, rather than multiple types. Moreover, it is also different than multi-
domain adaptation methods [11] because we consider a source domain with an
auxiliary view.

The only work addressing the same problem as ours is [7], and extended
in [30] for web data. They jointly learn a multiclass large-margin classifier, as
well as two projections for the main and the auxiliary views, respectively. This
is done while maximizing the correlation among views, as well as minimizing the
distribution mismatch according to the MMD. On the other hand, we extend
the IB method into a general principle that handles the auxiliary view as well
as the distribution mismatch from a single information theoretic point of view.
Computationally, this entails the estimation of only one projection, rather than
two. It allows handling source data points with missing auxiliary view, and we
also provide an implementation of a large-margin multiclass classifier in the
primal space for improved computational efficiency.

Our approach is also related to the approaches that consider the auxiliary
information to be supplied by a teacher during training. This is the LUPI para-
digm introduced in [45]. One LUPI implementation is the SVM+ [29,45], later
extended to a learning to rank approach in [38], where it is shown that different
types of auxiliary information, such as bounding boxes, attributes, and text can
be used for learning a better classifier for object recognition. Compared to those
approaches, our information theoretic framework learns how to compress the
target view for doing prediction in a way that is as informative of the auxiliary
view as possible, regardless of the type of classifier used. This is done by extend-
ing the original IB method [42]. Other implementations of the LUPI paradigm
include [6] for boosting, [17] for object localization in a structured prediction
framework, and [47]. However, none of them address the data distribution mis-
match between source and target domain.
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3 Problem Statement

We are given a training dataset made of triplets (x1,2},91), -, (TN, TN, UN)-
The feature z; € X is a realization from a random variable X, the feature
x; € X* is a realization from a random variable X*, and the label y; € Y is
a realization from a random variable Y. The triplets are i.i.d. samples from a
joint probability distribution p(X, X*,Y). In addition, we are given the data
al, -+, 2l where ! € X is a realization from a random variable X*, and the
data points are i.i.d. samples from a distribution p(X?). We assume that there is
a covariate shift [40] between X and X?, i.e., there is a difference between p(X)
and p(X'). We say that X represents the main data view, that X* represents
the auziliary data view, and that X? represents the target data view. The main
and auxiliary views represent the source domain, and the target view the target
domain. Under this settings the goal is to learn a prediction function f: X — Y
that during testing is going to perform well on data from the target view.

The problem just described is different from the traditional unsupervised
domain adaptation (UDA), because we also aim at exploiting the auxiliary data
view during training for learning a better prediction function. On the other hand,
the presence of the auxiliary view is reminiscent of the Learning Using Privileged
Information (LUPI) paradigm as defined in [45], but there is a fundamental
difference. In the LUPI framework the prediction function is used only on the
main view, and the domain adaptation task is absent. While it has been shown
that auxiliary data improves the performance of a traditional classifier [36], how
to best carry this improvement over to a new target domain is still an open
problem.

4 The Multivariate Information Bottleneck Method

To make the paper more self-contained, we summarize the multivariate extension
to the information bottleneck (IB) method [42]. Please refer to [41] for an in-
depth treatment. Let us consider a set of random variables X = {X1, -, X, },
and a set of latent variables T = {Ty,---,T,}. X is distributed according to a
known p(X). A Bayesian network with graph G;, over X U T, defines a distri-
bution ¢(X, T) = ¢(T|X)p(X), and in particular it defines which subset of X is
compressed by which subset of T, through ¢(T|X). In addition, another Bayesian
network, Goy¢, is also defined over X U T, and represents which conditional
dependencies and independencies we would like T to be able to approximate.
The compression requirements defined by G;,, and the desired independen-
cies defined by G,y:, are incompatible in general. Therefore, the multivariate
IB method computes the optimal T by searching for the distribution q(T|X),
where T compresses X as much as possible, while the distance from q(X,T)
to the closest distribution among those consistent with the structure of Goys 18
minimal. The multivariate IB method [41] implements this idea by using the
multi-information of X, which is the information shared by Xi,---,X,, ie.,
Z(X) = D r[p(X)|lp(X71) - - - p(X,)], where D, indicates the Kullback-Leibler
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Fig. 2. Information bottleneck. Structural representation of G;, and Gyt used by
the original two-variable information bottleneck method [42].

divergence [8] between p(X) and p(X1)p(X2) - - - p(X,,). The resulting multivari-
ate IB method looks for ¢(T|X) that minimizes the functional

Llg(TX)] = I (X, T) + (2" (X, T) = I (X, T)), (1)

where « strikes a balance between the compression requirements set by G, and
the independency goals set by G-

Let us refer to Fig.2 for an example, where X = {X,Y}, and T = S. We
interpret X as the main data we want to compress, and from which we would
like to predict the relevant information Y. This is achieved by first compressing
X into S, and then predicting Y from S. In G;, the edge X — Y indicates
the relation defined by p(X,Y). The edge X — S instead, shows that S is
completely determined given X, which is the variable it compresses. On the
other hand, the structure of G,,; is such that S should capture from X all the
necessary information to best predict Y. Equivalently, this means that knowing
S should make X and Y independent, i.e., the mutual information [8] between
X and Y, conditioned on S, should be I(X;Y]S) = 0.

In general, to compute the functional in (1), if G is a Bayesian network
structure over X ~ p(X), then Z¢, the multi-information with respect to G [41],
is computed as

79(X) = Z I(X;;Pag)), (2)

where [ (Xi;Pagéi) represents the mutual information between X; and Pag';i,
the set of variables that are parents of X; in G. If we apply the multivariate
IB method (1) to the two-variable case in Fig.2, we obtain ZCin = I(S; X) +
I(Y; X),and ZGeut = [(X;S)+1(Y;S). Since I(Y; X) is constant, the functional
in (1) collapses to the original two-variable IB method [42].

5 1IB for UDA with Auxiliary Data

We use the multivariate IB framework of Sect.4 to develop a new informa-
tion bottleneck principle, which simultaneously accounts for the use of auxil-
iary data, as well as the adaptation to a new target domain. Specifically, let us
assume that X, X* X! and Y are four random variables with known distrib-
ution p(X, X*, X!, Y). We develop the principle in two steps. First, we assume
that the target view is an additional view of the source domain, and we extend
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the IB method to handle the auxiliary the main and the target views in the
source, and the main and target views in the target domain. Then, we assume
that the target view does not carry information about Y, and we address the
covariate shift.

5.1 Incorporating Auxiliary Data

We assume that both X, X*, and X! carry information about Y. In addition,
only the information carried by X and X* can be used to predict Y. We want
to design a principle for learning a model for prediction that also exploits the
information carried by X*.

The straightforward application of the multivariate IB method suggests to
compress X into a latent variable S, and X' into a latent variable 7', as much
as possible, while making sure that information about Y is retained. These two
competing goals are depicted by the graphs G, and Gy, in Figs. 3(a) and (b).
Therefore, the IB method would seek for the optimal representation given by
(X4 X, X*)Y,8,T) = q(S,T|X, X)p(Xt, X, X*Y), where ¢(S,T|X,X?) is
such that I(X;Y|S) and I(X%Y|T) are as close to zero as possible. On the
other hand, since X* has knowledge about Y (as highlighted by the connection
X* — Y in Gyy), we observe that I(X*;Y|S) and I(X*;Y|T) could be arbi-
trarily high. This means that knowing S and T still leaves with X* substantial
information about Y.

We address the problem just outlined by modifying G, as in Fig. 3(c), where
the edges S — X* and T'— X™* have been added. In this way, knowing S and
T makes not only X and Y independent, as well as X* and Y, but also makes
X* and Y independent. This also means that the optimal ¢(S,7T|X, X*) will
minimize [(X;Y|S) and I(X%Y|T), as well as I(X*;Y|S) and I[(X*;Y|T). In
particular, the multi-informations of G, and Gy in Figs. 3(a) and (c) are given
by

I = I(S; X) + I(T; X') + I(Y; X', X, X*), (3)
ZCout = [(S; X) + I(T; X*) + I(S,T; X*) + I(S,T;Y). (4)

By plugging (3) and (4) into (1), since I(Y; X*, X, X*) is constant, the functional
for learning the optimal representation for S and T is given by

Llg(S,T|X,X")] = I1(S: X) + I(T; X*) = 7I(S,T; X*) = 7I(S,T;Y),  (5)
where ~y strikes a balance between compressing X and X° and imposing the
independency requirements.

5.2 Adapting to a New Target Domain

Model (5) incorporates the target view X! under the assumption that it can
predict the relevant information Y. This implies a fully supervised scenario,
where training data should be given in quadruplets, i.e., (zf,z;,2},v;). On the
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Fig. 3. Information bottleneck with auxiliary data. Structural representation of
Gin (a), and Gout (b,c) used by the information bottleneck method. (b) Gou: does not
leverage the auxiliary data. (¢) Gout leverages the auxiliary data.

other hand, we are interested in the unsupervised setting, where the training
target view is not labeled and not paired with the source data. From a statistical
point of view, this assumption corresponds to saying that p(X?!, X, X*)Y) =
p(XHp(X, X*,Y), which leads to a number of consequences. First, the graph
G of Fig.3(a) now becomes as in Fig.4(a), where we do not consider the
dotted edges for the moment. In addition, it is easy to show that I(S,T; X*) =
I(S; X*), and that I(S,T;Y) = I(S;Y). Therefore, the graph structure G,
in Fig.3(c) now becomes as in Fig.4(b). Finally, it is also easy to show that
q(S,T|X, X") = q(S|X)q(T|X"). Therefore, the unsupervised scenario reduces
model (5) to the following

L[q(S1X), q(T| X)) = I(S; X) + I(T; X*) = vI(S;X*) =7I(S;Y).  (6)

We note that estimating the optimal compressed representation S and T of
X and X*, by minimizing (6) leads to an ill-posed problem. This is because at
convergence ¢(T'|X") would simply minimize I(7; X*). On the other hand, we are
interested in addressing the distribution mismatch between the main view and
the target view. Therefore, rather than treating q(5|X) and ¢(T|X?") as separate
free functions, we make the assumption that the compression maps from the main
and the target views should cause ¢(S|X) and g(T|X?) to be the same, in order to
minimize the covariate shift in the compressed domain. If we restrict the search
for the optimal representation within a family of distributions parameterized by
A, this means that ¢(S|X) = ¢a(S|X) and ¢(T|X?) = qa(T|X?), i.e., they should
have the same parameter. This assumption would impose ¢(S|X) and ¢(T|X?) to
no longer be independent, and therefore all the consequences originated by the
statistical independence of X* would be reversed, to a certain extent. In other
words, it would be as if the links X! — Y in G4, and T — X* and T — Y
in G,y, were partially restored, which is why they appear with dotted lines in
Fig.4. Finally, this assumption reduces (6) to the proposed principle

[ Llga ()] = T(8; X) + I(T; X') — 7I(8; X*) = 41(S:Y)] (7)

Since the auxiliary view plays the role of privileged information, we call learning
representations by minimizing the functional (7) as the information bottleneck
domain adaptation with privileged information (IBDAPI).
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Fig. 4. Information bottleneck domain adaptation with privileged informa-
tion. Structural representation of G;n, and Gou: used by the IBDAPI principle (7).

6 IBDAPI for Visual Recognition

Our goal is to design a framework for visual recognition, where a classification
task is based on the target view X* of the visual data, for which some unlabeled
samples are given for training. Moreover, at training time labeled samples from
a main view X are also given, as well as some samples from an auziliary view
X*. We pose no restrictions on the type of auxiliary data available.

The IBDAPI method (7) learns how to compress X and X' into S and T in
a way that is optimal for predicting Y (representing class labels), but also that
best exploits the information carried by X* about Y. Therefore, T appears to be
the representation of choice for predicting Y. However, while IBDAPI provides
for a compression map defined explicitly by ga(+|-), the prediction map for doing
classification, identified by ¢(Y|S) is much harder to compute in general. This is
why we modify the IBDAPI method into one that is tailored to visual recognition.

We note that the last term in (7) is equivalent to the constraint I(S;Y) >
constant if -y is interpreted as a Lagrange multiplier. This means that S should
carry at least a certain amount of information about Y. On the other hand,
we are interested in learning a decision function f : & — ) that uses such
information for classification purposes. Therefore, we replace the constraint on
I(S;Y) with the risk associated to f(.S) according to a loss function ¢. Thus, for
visual recognition, (7) is modified into

| LlgaCl), £ = 1(8;X) + I(T; X') =7 1(S; X°) + BE(F(9), V)| (8)

where E[-] denotes statistical expectation, and § balances the risk versus the
compression requirements. Note that the modified IBDAPI criterion (8) is gen-
eral, and could be used with any classifier.

6.1 Large-Margin IBDAPI

We use (8) for learning a multi-class large-margin classifier. We parameterize the
search space for g4 (+|) by assuming S = ¢(X; A), as well as T = ¢(X¢; A), where
A is a suitable set of parameters. Moreover, f(5) is a k-class decision function
given by Y = arg max,,—1,... x{Wm,S), where (-,-) identifies a dot product, and
W = [wy,- - ,wy] defines a set of margins. Therefore, based on [9], (8) leads to
the following classifier learning formulation, which we refer to as the large-margin
IBDAPI (LMIBDAPI)
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st (wy, — wm, d(x;,A)) > e =&, &>0, m=1,---k, i=1,--- N.

where €* = 0 if y; = m and e]® = 1 otherwise. §; indicates the usual slack
variables, and C' is the usual parameter to control the slackness.

Kernels. We set S = ¢(X,4) = Ap(X), and T = ¢(X*, A) = Ap(X?"), where
we require ¢(X) and ¢(X") to have positive components and be normalized to
1, and A to be a stochastic matrix, made of conditional probabilities between
components of ¢(X) (¢(X?*)) and S (T'). This assumption greatly simplifies com-
puting mutual informations. As described in [32], this mapping also allows the
use of kernels. X* is mapped to a feature space with the same requirements by

using the same strategy. Thus, without loss of generality, in the sequel we set
S=AX,and T = AX".

Mutual informations. I(S; X) and I(T; X*) are given by

1(8:X) = B[S, AGDX(Nlog 452|113 XY) = B [$,; A1) X' () log 4

m‘)}
(@) (@)

(10)
where A(4, 7) is the entry of A in position 4, j, whereas S(i) and X (j) (7'(¢) and
X*'(4)) are the components in position i and j of S and X (T and X*) respec-
tively. Obviously, during training the expectation is replaced by the empirical

average. To compute I(S; X*), it is easy to show that
* . . el A(i, ) F(-,j
I(8; X%) = B [ £, Ali, )F (-, /) X" (j) log 20504 (1)

where F' is also a stochastic matrix such that X = FX*. F' can be learned from
the source training data with a projected gradient method [31], as described
in [32].

Missing auxiliary views. Training samples with missing auxiliary view affect
only I(S; X*). The issue is seamlessly handled by estimating F' and the average
in (11) by using only the samples that have the auxiliary view.

Optimization. When A is known, (9) is a soft-margin SVM problem. Instead,
when the SVM parameters are known, (9) becomes

N

C
min 1(;X) + I(T: X*) = 7I(X":8) + ; & (12)
s.t. fz = max <wm — Wy,, Qb(xzv A)> + e;’n} .

m=1,-- .k

Since the soft-margin problem is convex, if also (12) is convex, then an alternating
direction method is guaranteed to converge. In general, the mutual informations
in (12) are convex functions of ¢(S|X) and ¢(T|X") [8], while within a range of
~’s the third mutual information leaves the sum of the three to be convex. The
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last term is also convex, however, the constraints define a non-convex set due
to the discontinuity of the hinge loss function. Smoothing the hinge loss turns
(12) into a convex problem, and allows to use an alternating direction method
with variable splitting combined with the augmented Lagrangian method. This
is done by setting f(A) = I(S; X) + I(T; X*) —vI(X*;S), g(B) = & SN &
and then solving mina{f(4) + ¢g(B) : A — B = 0}.

For smoothing the hinge loss we use the Nesterov smoothing technique [33].
Since the objective is to smooth g(B), we proceed by relaxing its minimization
into the sum of the minima of the slack variables. Doing so gives g(B), the
smoothed version of g(B), expressed as

§(B) = $ S, uin(E S0, cosh(L ((wm — wy,, ¢(xi, B)) — ™)) (13)

and g is a smoothing parameter. In this way, the minimization can be carried
out with the Fast Alternating Linearization Method (FALM) [19]. This allows
simpler computations, and has performance guarantees when Vf and Vg are
Lipschitz continuous, which is the case, given the smoothing technique that we
have used. In particular, given the limited space, we are not able to report all
the details of the FALM algorithm that we have used. However, the interested
reader is referred to [32], where an almost identical FALM algorithm has been
used, which has the same requirement of A and B to be stochastic matrices with
normalized columns.

In summary, we provide an optimization procedure guaranteed to converge,
which starts by learning F'. Then, until convergence alternates between learning
a SVM, and solving (12). Note that this iterative optimization is fully conducted
in the primal space for best computational efficiency.

Table 1. RGB-D-Caltech256 dataset. Classification accuracies for one-vs-all binary
classifications with linear kernels. Main and auxiliary views are KDES features of the
RGB and depth of the RGB-D Object dataset [28]. KDES features from the Caltech256
dataset [24] represent the target domain.

MV and LUPT UDA UDA+LUPI

SVM SVM2k KCCA SVM+ RankTr SGF LMK SA LMIBDA DA-M2S LMIBDAPT
Calculator [49.83 £ 1.65/50.08 + 1.87|48.10 + 2.58/54.61 4 3.37|53.27 £ 1.26|54.23 £ 1.26|53.71 £ 2.78|54.22 4 3.32|56.33 £ 2.78|55.63 + 2.89|59.52 + 2.18
Cereal box [69.10 £ 3.41/67.10 + 3.60|67.40 + 3.20{62.78 4 3.53]63.26 + 4.98|65.23 + 3.25/66.81 £+ 2.59|67.17 4 3.89(67.92 + 2.11|68.50 + 4.27|72.60 + 2.63
Coffee mug|57.95 + 3.03|57.61 £ 3.97|57.13 + 5.99|58.32 4 3.45|58.36 + 3.69|66.23 + 4.21|67.36 + 3.89|68.12 4 5.11{68.36 & 3.11|70.11 £ 5.19|75.65 + 3.39
Keyboard [60.79 + 6.04]59.77 £ 6.41|59.40 £ 6.08|58.21 =+ 3.88|57.98 + 3.48|61.59 & 3.27|59.26 + 3.89|62.65 4 3.14/63.36 £ 3.25|63.52 + 4.68|68.50 £ 3.71
Flashlight |72.06 £ 2.60|70.86 + 3.95|70.56 + 3.20|71.36 & 2.21|70.68 + 4.24/72.36 + 2.78|70.26 & 2.15|73.25 £ 2.68|72.15 £ 2.14|71.37 + 2.78|74.79 + 2.51
Lightbulb 67.09 £ 2.32|165.23 + 2.71{66.69 + 3.06(68.36 4 3.77|67.58 £ 2.15|167.99 + 1.89/66.36 + 2.11|68.11 4 1.67(67.23 £ 2.85|68.48 + 3.81|71.81 + 1.49
Mushroom [49.02 + 4.45|51.41 £ 3.97|49.04 + 3.54|54.71 4 5.86|56.84 £ 4.15/66.36 + 3.87|64.26 + 4.15|68.22 4 3.89(69.26 + 3.14|70.00 £ 5.10|70.39 + 2.96
Ball 45.19 £ 2.11|48.96 + 0.78|45.05 4 4.44(53.27 + 1.84|54.48 + 3.25/60.25 #+ 2.11|61.36 + 2.87(63.86 + 1.89|64.95 + 2.67|67.27 + 5.32|65.45 & 3.71
Soda can  [52.04 + 3.46|50.00 + 3.30{50.09 + 3.33|52.48 4 3.76|50.26 + 1.36|56.58 + 2.18|55.71 + 2.65|58.36 4 2.14(60.33 =+ 2.35|59.65 + 2.63|62.93 + 2.84
Tomato 56.05 & 3.73]50.76 £ 0.99|53.69 + 3.03|51.55 + 3.71]50.23 4 2.59|63.25 £ 2.17|64.25 £ 1.36/64.33 + 2.74/64.26 4 2.36|64.61 & 3.19|73.40 £ 2.22
Average 57.91 57.18 56.71 58.56 58.29 63.41 62.93 64.83 65.42 6591 69.50

7 Experiments

We have performed experiments on several datasets for object and gender recog-
nition, and have compared our approach with several others summarized as
follows.
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Single-view classifiers: Using only the main view, we use libSVM [5] and
LIBLINEAR [13] (indicated as SVM) for training binary and multi-class SVM
classifiers.

LUPI and multi-view (MV) classifiers: By using the main and auxiliary
views, we train the SVM+ [45] (indicated as SVM+, the Rank Transfer [38] (indi-
cated as RankTr). We also train the SVM2k [14] and test only the SVM that uses
the main view (indicated as SVM2k), and we perform kernel CCA (KCCA) [25]
between main and auxiliary views, map the main view in feature space and train
an SVM (indicated as KCCA). SVM+, RankTr, SVM2k, and KCCA, can be used only
for binary classification.

UDA classifiers: We use the main view and the target training data for learn-
ing the Sampling Geodesic Flow (SGF) [22], the Landmark (LMK) [20], the Sub-
space Alignment (SA) [15], the Transfer Component Analysis (TCA) [35], and
the Domain Invariant Projection (DIP) [1] classifiers. In addition, we use LMIB-
DAPI where we eliminate the auxiliary information by setting v = 0 (indicated
as LMIBDA).

UDA+LUPI classifiers: Besides our approach, indicated as LMIBDAPI, we
consider the only other approach designed to work in the same settings, which
is [7] (indicated as DA-M2S).

Model selection: We use the same joint cross validation and model selection
procedure described in [38], based on 5-fold cross-validation to select the best
parameters and use them to retrain on the complete set. The main parameters to
select are C, 3, v, and r, which is the number of columns of A. The C’s and (’s
were searched in the range {1073,--- 103}, the 4’s in the range {0.1,0.3,0.5}.
r was set by doing PCA on the mapped main view data (through ¢(-)), and
thresholding at 90 % of the summation of the eigenvalues. In addition, for DA-M2S
we set two parameters as indicated in [7], while for C and the others we look for
those that maximize performance.

Performance: Average classification accuracy and standard deviation are
reported. Testing is always done on the target domain data.

Object recognition: We evaluate the proposed approach for object recogni-
tion where we use the RGB-D Object dataset [28] as source domain, and the
Caltech256 dataset [24] as target domain. We follow the same protocol out-
lined in [7], where we consider the 10 classes reported in Table 1, which are in
common between the two datasets. Instances in the RGB-D Object are given
as videos, and we uniformly sample frames every two seconds, obtaining 2056
training images. All the images of the 10 Caltech256 classes instead are used as
unlabeled training target data.

Following [7], kernel descriptor (KDES) features [4], which perform well on
the RGB-D Object dataset, are computed from the color and depth images to
represent the main and the auxiliary views, respectively, and KDES features
from the color images of the Caltech256 represent the target view. For each view
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Fig.5. RGB-D-Caltech256 dataset. Classification accuracy variation for three
classes of Table 1. In particular, from left to right: Accuracy variation against M, the
number of training target domain samples; Accuracy variation against r, the dimen-
sionality of T" and S; Accuracy variation against the fraction of available auxiliary
data; Convergence rate of the accuracy against the number of iterations of the learning

procedure.

we compute the Gradient KDES and the LBP KDES and we concatenate them.
We set the vocabulary size to 1000, and use three level of pyramids.

Table 2. RGB-D-Caltech256 dataset. Classification accuracies for the multi-class
classification with Gaussian kernels. Main and auxiliary views are KDES features of the
RGB and depth of the RGB-D Object dataset [28]. KDES features from the Caltech256
dataset [24] represent the target domain.

UDA UDA+LUPI
SVM |SGF |LMK |SA TCA |DIP |LMIBDA | DA-M2S|LMIBDAPI
18.23119.41 | 19.69 | 19.83 | 25.07 | 25.47 | 27.23 | 29.47 | 34.22

For each of the 10 object classes, Table 1 shows the accuracies for the one-vs-
all binary classification with linear kernels. Here we randomly selected 50 positive
and 50 negative training samples from the source domain, and the experiment
was repeated 10 times. We observe that on average the multi-view based meth-
ods perform on par with the SVM, and the LUPI methods better exploit the
information from the auxiliary view, but they all suffer from the lack of adapta-
tion. The UDA methods perform better overall, highlighting the need to address
the domain shift before taking advantage of the auxiliary view. In particular,
we notice that LMIBDA, which does not use the auxiliary view, is an effective
UDA approach. The last two columns address domain shift while leveraging
the auxiliary view information, and show that the proposed LMIBDAPI provides
state-of-the-art performance on this task.

Table 2 shows the classification accuracies for the multiclass classification
case using Gaussian kernels, where all the source samples are used for training.
Even for this case, UDA methods improve upon the baseline SVM, and LMIBDA
performs effectively, while LMIBDAPI confirms to have the best performance.

Figure5 shows how the one-vs-all binary classification accuracy for three
classes of Table 1 varies with respect to a number of parameters. The leftmost
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plot shows how the accuracy changes against the number M of training target
domain samples. After a number of samples (about 200in this case), the model
saturates and additional samples will no more compensate for data shift. The
second plot from the left shows that increasing r (i.e., the dimensionality of S
and T'), does not help beyond a certain limit (here between 60 and 70). Once it
is reached, the model has enough capacity to extract all the necessary informa-
tion for prediction. Beyond that limit the accuracy does not improve anymore
and shows a noisy behavior. Choosing r below the limit reduces the capacity
and thus prediction accuracy. The second plot from the right shows the accu-
racy variation against the fraction of available auxiliary data (or conversely, the
fraction of missing auxiliary data). Note that handling missing auxiliary data is
peculiar to our approach. The plot shows that at least 20 % of missing auxiliary
data is tolerated without performance drop. Finally, the rightmost plot shows
the rate of convergence of the optimization procedure, which occurs monotoni-
cally. We found that no more than 10 iterations were normally enough to reach
convergence, which is fairly good.

Table 3. Office dataset. Classification accuracy for domain adaptation over the 31
categories of the Office dataset [37]. A, W, and D stand for Amazon, Webcam, and
DSLR domain.

SVM-s | SVM-t |[LMK |HFA |GFK | SDASL | LMIBDA
A—W|51.95 80.94 81.15|78.61|83.26 | 85.40 | 86.10
A— D | 54.92 | 82.90 | 82.31|83.71|82.72|85.77 | 85.31

W — A[49.21 1 63.91 |60.24 | 65.65|65.92|67.26 | 67.41
W — D |83.26 | 81.91 | 82.26 |86.10 | 84.28 | 86.18 | 87.15
D — A |48.51 | 62.98 |62.18|64.60|65.45 | 66.76 | 66.82
D — W |80.35 | 82.65 | 83.45|81.69 | 82.69 | 84.65 | 83.36

Table 3 shows the classification accuracy of the proposed approach for UDA
without auxiliary data on the Office dataset [37], which contains 31 object classes
for 3 domains: Amazon, Webcam, and DSLR, indicated as A, W, and D, for a
total of 4,652 images. The first domain consists of images downloaded from online
merchants, the second consists of low resolution images acquired by webcams,
the third consists of high resolution images collected with digital SLRs. The table
notation A — W indicates that A was the source domain, and W the target.
All the source data was used for training, whereas the target data was evenly
split into two halves: one used for training and the other for testing. We used
the 1000-way fc8 classification layer computed by DeCAF [10] as image features,
and Gaussian kernels set up as detailed in [50]. We compared LMIBDA against
LMK, the heterogeneous domain adaptation method (HFA) [12], the geodesic flow
kernel method (GFK) [21], and against a recent semi-supervised domain adapta-
tion method (SDASL) [50], which uses some labeled target data for training. The
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SVM trained on the source and on the target domain data, indicated as SVM-s
and SVM-t, is also reported for reference. The main result is that even with this
more popular domain adaptation dataset, the proposed approach, restricted to
UDA only, has performance comparable to the state-of-the art.

Gender recognition: We evaluate the proposed approach also for gender recog-
nition where we use the RGB-D face dataset EURECOM [27] as source domain,
and the RGB dataset Labeled Faces in the Wild-a (LFW-a) [48] as target
domain. The EURECOM dataset consists of pairs of RGB and depth images from
196 females and 532 males captured with the Kinect sensor, and we removed the
profile face images, which had only one manually annotated eye position. The
LFW-a dataset contains images from 2,960 females and 10,184 males captured
in uncontrolled conditions.

We resized the main, the auxiliary, and the target view face images to 120 x
105 pixels, and divide them into 8 x 7 non-overlapping subregions of 15 x 15
pixels. From each subregion of an image we extract the Gradient-LBP features,
shown to be effective for gender recognition [27], and concatenate them into a
single feature vector.

We perform a gender recognition experiment by combining the female source
pairs with 196 randomly selected male source pairs to have a balanced gen-
der representation. In addition, we randomly sample 3000 unlabeled target face
images for training. The experiment is repeated 10 times, and the classifica-
tion accuracies of all the methods are reported in Table4. The results show a
pattern similar to the one found for object recognition in Tables1 and 2. One
difference might be that in this experiment leveraging the auxiliary depth infor-
mation seems to be as important as addressing the RGB domain shift. This
is because the performance increase of the best LUPI methods is comparable
to the performance increase of the best UDA methods. We also note that even
here, LMIBDA confirms to be an effective UDA method by surpassing all the UDA
and LUPI methods. Finally, although DA-M2S marginally improves by leverag-
ing auxiliary information and addressing domain shift, the proposed LMIBDAPI
provides a remarkable performance increase.

Table 4. EURECOM-LFW-a dataset. Classification accuracies for the male vs.
female classification with Gaussian kernels. Main and auxiliary views are Gradient-
LBP features of the RGB and depth of the EURECOM dataset [27]. Gradient-LBP
features from the LEW-a dataset [48] represent the target domain.

MV and LUPI UDA UDA+LUPI

SVM SVM2k KCCA SVM+ SGF LMK SA TCA DIP LMIBDA DA-M2S | LMIBDAPI

64.82 |67.15 63.85 67.31 67.81 64.88 +£|67.11 £|65.24 +|64.84 +|68.11 +|68.22 72.43
+ 1.35 |+ 1.25 |+ 1.34 |+ 1.96 |+ 1.45 |1.31 1.45 0.88 4.80 1.64 + 1.41 |+ 1.34

8 Conclusions

We developed an unsupervised domain adaptation approach for visual recogni-
tion when auxiliary information is available at training time. We extended the 1B
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principle to IBDAPI, a new information theoretic principle that jointly handles
the auxiliary view and the mismatch between the source and target distribu-
tions. We provided a modified version of IBDAPI based on risk minimization
for learning explicitly any type of classifier, where training samples with missing
auxiliary view can be handled seamlessly. We used this principle for deriving
LMIBDAPI, a large-margin classifier with a fast optimization procedure in the
primal space that converges in about 10 iterations. We performed experiments
on object and gender recognition on a new target RGB domain by learning from
a different RGB plus depth dataset. We observed that without using auxiliary
data LMIBDA performs UDA with performance comparable with the state-of-
the art. In addition, LMIBDAPI consistently outperformed the state-of-the-art,
confirming its ability to carry the content of the auxiliary information over to a
new domain.
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