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Abstract. Convolutional neural networks (CNNs) have been widely
used in computer vision community, significantly improving the state-of-
the-art. In most of the available CNNs, the softmax loss function is used
as the supervision signal to train the deep model. In order to enhance
the discriminative power of the deeply learned features, this paper pro-
poses a new supervision signal, called center loss, for face recognition
task. Specifically, the center loss simultaneously learns a center for deep
features of each class and penalizes the distances between the deep fea-
tures and their corresponding class centers. More importantly, we prove
that the proposed center loss function is trainable and easy to optimize
in the CNNs. With the joint supervision of softmax loss and center loss,
we can train a robust CNNs to obtain the deep features with the two
key learning objectives, inter-class dispension and intra-class compact-
ness as much as possible, which are very essential to face recognition.
It is encouraging to see that our CNNs (with such joint supervision)
achieve the state-of-the-art accuracy on several important face recog-
nition benchmarks, Labeled Faces in the Wild (LFW), YouTube Faces
(YTF), and MegaFace Challenge. Especially, our new approach achieves
the best results on MegaFace (the largest public domain face benchmark)
under the protocol of small training set (contains under 500000 images
and under 20000 persons), significantly improving the previous results
and setting new state-of-the-art for both face recognition and face veri-
fication tasks.

Keywords: Convolutional neural networks + Face recognition - Discrim-
inative feature learning - Center loss

1 Introduction

Convolutional neural networks (CNNs) have achieved great success on vision
community, significantly improving the state of the art in classification problems,
such as object [11,12,18,28,33], scene [41,42], action [3,16,36] and so on. It
mainly benefits from the large scale training data [8,26] and the end-to-end
learning framework. The most commonly used CNNs perform feature learning
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Fig. 1. The typical framework of convolutional neural networks.

and label prediction, mapping the input data to deep features (the output of the
last hidden layer), then to the predicted labels, as shown in Fig. 1.

In generic object, scene or action recognition, the classes of the possible
testing samples are within the training set, which is also referred to close-set
identification. Therefore, the predicted labels dominate the performance and
softmax loss is able to directly address the classification problems. In this way,
the label prediction (the last fully connected layer) acts like a linear classifier
and the deeply learned features are prone to be separable.

For face recognition task, the deeply learned features need to be not only sep-
arable but also discriminative. Since it is impractical to pre-collect all the possible
testing identities for training, the label prediction in CNNs is not always applica-
ble. The deeply learned features are required to be discriminative and generalized
enough for identifying new unseen classes without label prediction. Discrimina-
tive power characterizes features in both the compact intra-class variations and
separable inter-class differences, as shown in Fig. 1. Discriminative features can
be well-classified by nearest neighbor (NN) [7] or k-nearest neighbor (k-NN)
[9] algorithms, which do not necessarily depend on the label prediction. How-
ever, the softmax loss only encourage the separability of features. The resulting
features are not sufficiently effective for face recognition.

Constructing highly efficient loss function for discriminative feature learn-
ing in CNNs is non-trivial. Because the stochastic gradient descent (SGD) [19]
optimizes the CNNs based on mini-batch, which can not reflect the global dis-
tribution of deep features very well. Due to the huge scale of training set, it is
impractical to input all the training samples in every iteration. As alternative
approaches, contrastive loss [10,29] and triplet loss [27] respectively construct
loss functions for image pairs and triplet. However, compared to the image sam-
ples, the number of training pairs or triplets dramatically grows. It inevitably
results in slow convergence and instability. By carefully selecting the image pairs
or triplets, the problem may be partially alleviated. But it significantly increases
the computational complexity and the training procedure becomes inconvenient.
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In this paper, we propose a new loss function, namely center loss, to efficiently
enhance the discriminative power of the deeply learned features in neural net-
works. Specifically, we learn a center (a vector with the same dimension as a fea-
ture) for deep features of each class. In the course of training, we simultaneously
update the center and minimize the distances between the deep features and
their corresponding class centers. The CNNs are trained under the joint super-
vision of the softmax loss and center loss, with a hyper parameter to balance the
two supervision signals. Intuitively, the softmax loss forces the deep features of
different classes staying apart. The center loss efficiently pulls the deep features
of the same class to their centers. With the joint supervision, not only the inter-
class features differences are enlarged, but also the intra-class features variations
are reduced. Hence the discriminative power of the deeply learned features can
be highly enhanced. Our main contributions are summarized as follows.

— We propose a new loss function (called center loss) to minimize the intra-
class distances of the deep features. To be best of our knowledge, this is the
first attempt to use such a loss function to help supervise the learning of
CNNs. With the joint supervision of the center loss and the softmax loss, the
highly discriminative features can be obtained for robust face recognition, as
supported by our experimental results.

— We show that the proposed loss function is very easy to implement in the
CNNs. Our CNN models are trainable and can be directly optimized by the
standard SGD.

— We present extensive experiments on the datasets of MegaFace Challenge [23]
(the largest public domain face database with 1 million faces for recognition)
and set new state-of-the-art under the evaluation protocol of small training
set. We also verify the excellent performance of our new approach on Labeled
Faces in the Wild (LFW) [15] and YouTube Faces (YTF) datasets [38].

2 Related Work

Face recognition via deep learning has achieved a series of breakthrough in these
years [25,27,29,30,34,37]. The idea of mapping a pair of face images to a distance
starts from [6]. They train siamese networks for driving the similarity metric to
be small for positive pairs, and large for the negative pairs. Hu et al. [13] learn
a nonlinear transformations and yield discriminative deep metric with a margin
between positive and negative face image pairs. There approaches are required
image pairs as input.

Very recently, [31,34] supervise the learning process in CNNs by challeng-
ing identification signal (softmax loss function), which brings richer identity-
related information to deeply learned features. After that, joint identification-
verification supervision signal is adopted in [29,37], leading to more discrimi-
native features. [32] enhances the supervision by adding a fully connected layer
and loss functions to each convolutional layer. The effectiveness of triplet loss
has been demonstrated in [21,25,27]. With the deep embedding, the distance
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between an anchor and a positive are minimized, while the distance between
an anchor and a negative are maximized until the margin is met. They achieve
state-of-the-art performance in LFW and YTF datasets.

3 The Proposed Approach

In this Section, we elaborate our approach. We first use a toy example to intu-
itively show the distributions of the deeply learned features. Inspired by the
distribution, we propose the center loss to improve the discriminative power of
the deeply learned features, followed by some discussions.

3.1 A Toy Example

In this section, a toy example on MNIST [20] dataset is presented. We modify the
LeNets [19] to a deeper and wider network, but reduce the output number of the
last hidden layer to 2 (It means that the dimension of the deep features is 2). So
we can directly plot the features on 2-D surface for visualization. More details
of the network architecture are given in Table 1. The softmax loss function is

presented as follows.
wT mi""byi

Yi
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In Eq. 1, ; € R? denotes the ith deep feature, belonging to the y;th class.
d is the feature dimension. W; € R? denotes the jth column of the weights
W € R*™ in the last fully connected layer and b € R” is the bias term. The
size of mini-batch and the number of class is m and n, respectively. We omit
the biases for simplifying analysis. (In fact, the performance is nearly of no
difference).

The resulting 2-D deep features are plotted in Fig.2 to illustrate the dis-
tribution. Since the last fully connected layer acts like a linear classifier, the
deep features of different classes are distinguished by decision boundaries. From
Fig. 2 we can observe that: (i) under the supervision of softmax loss, the deeply

Table 1. The CNNs architecture we use in toy example, called LeNets++. Some of
the convolution layers are followed by max pooling. (5,32),1,2 X 2 denotes 2 cascaded
convolution layers with 32 filters of size 5 x 5, where the stride and padding are 1 and
2 respectively. 2,5 o denotes the max-pooling layers with grid of 2 x 2, where the stride
and padding are 2 and 0 respectively. In LeNets+4, we use the Parametric Rectified
Linear Unit (PReLU) [12] as the nonlinear unit.

Stage 1 Stage 2 Stage 3 Stage 4
Layer Conv Pool | Conv Pool | Conv ‘Pool FC
LeNets | (5,20)/10 2720 | (5,50) /1.0 2/2.0 500
LeNets++ | (5,32)/12 X 2| 2720 | (5,64) 12 X 2|2/20 | (5,128) 1.5 X 2\2/2,0 2
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Fig. 2. The distribution of deeply learned features in (a) training set (b) testing set,
both under the supervision of softmax loss, where we use 50K /10K train/test splits.
The points with different colors denote features from different classes. Best viewed
in color. (Color figure online)

learned features are separable, and (ii) the deep features are not discriminative
enough, since they still show significant intra-class variations. Consequently, it
is not suitable to directly use these features for recognition.

3.2 The Center Loss

So, how to develop an effective loss function to improve the discriminative power
of the deeply learned features? Intuitively, minimizing the intra-class variations
while keeping the features of different classes separable is the key. To this end,
we propose the center loss function, as formulated in Eq. 2.

1 m
Lo=33 lloi— eyl (2)
=1

The ¢,, € R? denotes the y;th class center of deep features. The formula-
tion effectively characterizes the intra-class variations. Ideally, the c,, should
be updated as the deep features changed. In other words, we need to take the
entire training set into account and average the features of every class in each
iteration, which is inefficient even impractical. Therefore, the center loss can not
be used directly. This is possibly the reason that such a center loss has never
been used in CNNs until now.

To address this problem, we make two necessary modifications. First, instead
of updating the centers with respect to the entire training set, we perform the
update based on mini-batch. In each iteration, the centers are computed by
averaging the features of the corresponding classes (In this case, some of the
centers may not update). Second, to avoid large perturbations caused by few
mislabelled samples, we use a scalar « to control the learning rate of the centers.
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The gradients of L& with respect to «; and update equation of ¢,, are computed
as: or
c
8£U»L' =i — cyi (3)
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1+ 32070, 0(yi =)
where d(condition) = 1 if the condition is satisfied, and d(condition) = 0 if not.
« is restricted in [0, 1]. We adopt the joint supervision of softmax loss and center
loss to train the CNNs for discriminative feature learning. The formulation is
given in Eq. 5.

L=Ls+ ¢
x;+by, A m (5)
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Clearly, the CNNs supervised by center loss are trainable and can be opti-
mized by standard SGD. A scalar X is used for balancing the two loss functions.
The conventional softmax loss can be considered as a special case of this joint
supervision, if A is set to 0. In Algorithm 1, we summarize the learning details
in the CNNs with joint supervision.

Algorithm 1. The discriminative feature learning algorithm

Input: Training data {x;}. Initialized parameters ¢ in convolution layers. Parame-
ters W and {¢;|j = 1,2,...,n} in loss layers, respectively. Hyperparameter A, o and
learning rate u'. The number of iteration ¢ «— 0.

Output: The parameters 0¢c.

1: while not converge do
2. t—t+1.

3:  Compute the joint loss by £' = £ + £L.
4 LLI _ 8£S . acc.
5:  Update the parameters W by Wit = Wt — it . awt = Wt t . %.
6 Update the parameters ¢; for each j by ctJrl c —a- ch.
t
7:  Update the parameters 0c by 05 = 0L — u T oL oct g;f .
C
8: end while

We also conduct experiments to illustrate how the A influences the distribu-
tion. Figure 3 shows that different A lead to different deep feature distributions.
With proper A, the discriminative power of deep features can be significantly
enhanced. Moreover, features are discriminative within a wide range of A. There-
fore, the joint supervision benefits the discriminative power of deeply learned
features, which is crucial for face recognition.
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Fig. 3. The distribution of deeply learned features under the joint supervision of soft-
max loss and center loss. The points with different colors denote features from different
classes. Different A lead to different deep feature distributions (o = 0.5). The white
dots (co, €1,...,c9) denote 10 class centers of deep features. Best viewed in color.
(Color figure online)

3.3 Discussion

— The necessity of joint supervision. If we only use the softmax loss as
supervision signal, the resulting deeply learned features would contain large
intra-class variations. On the other hand, if we only supervise CNNs by the
center loss, the deeply learned features and centers will degraded to zeros (At
this point, the center loss is very small). Simply using either of them could not
achieve discriminative feature learning. So it is necessary to combine them to
jointly supervise the CNNs, as confirmed by our experiments.

— Compared to contrastive loss and triplet loss. Recently, contrastive loss
[29,37] and triplet loss [27] are also proposed to enhance the discriminative
power of the deeply learned face features. However, both contrastive loss and
triplet loss suffer from dramatic data expansion when constituting the sam-
ple pairs or sample triplets from the training set. Our center loss enjoys the
same requirement as the softmax loss and needs no complex recombination
of the training samples. Consequently, the supervised learning of our CNNs
is more efficient and easy-to-implement. Moreover, our loss function targets
more directly on the learning objective of the intra-class compactness, which
is very beneficial to the discriminative feature learning.



506 Y. Wen et al.

4 Experiments

The necessary implementation details are given in Sect.4.1. Then we investi-
gate the sensitiveness of the parameter A and « in Sect.4.2. In Sects. 4.3 and
4.4, extensive experiments are conducted on several public domain face datasets
(LFW [15], YTF [38] and MegaFace Challenge [23]) to verify the effectiveness
of the proposed approach.

C: The convolution layer

P: The max-pooling layer

LC: The local convolution layer
FC: The fully connected layer

Center
Loss

Fig. 4. The CNN architecture using for face recognition experiments. Joint supervision
is adopted. The filter sizes in both convolution and local convolution layers are 3 x3 with
stride 1, followed by PReLU [12] nonlinear units. Weights in three local convolution
layers are locally shared in the regions of 4 x 4, 2 x 2 and 1 X 1 respectively. The
number of the feature maps are 128 for the convolution layers and 256 for the local
convolution layers. The max-pooling grid is 2 x 2 and the stride is 2. The output of the
4th pooling layer and the 3th local convolution layer are concatenated as the input of
the 1st fully connected layer. The output dimension of the fully connected layer is 512.
Best viewed in color. (Color figure online)

4.1 Implementation Details

Preprocessing. All the faces in images and their landmarks are detected by
the recently proposed algorithms [40]. We use 5 landmarks (two eyes, nose and
mouth corners) for similarity transformation. When the detection fails, we simply
discard the image if it is in training set, but use the provided landmarks if it
is a testing image. The faces are cropped to 112 x 96 RGB images. Following
a previous convention, each pixel (in [0,255]) in RGB images is normalized by
subtracting 127.5 then dividing by 128.

Training data. We use the web-collected training data, including CASIA-
WebFace [39], CACD2000 [4], Celebrity+ [22]. After removing the images with
identities appearing in testing datasets, it roughly goes to 0.7M images of 17,189
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unique persons. In Sect.4.4, we only use 0.49M training data, following the
protocol of small training set. The images are horizontally flipped for data aug-
mentation. Compared to [27] (200M), [34] (4M) and [25] (2M), it is a small scale
training set.

Detailed settings in CNNs. We implement the CNN model using the Caffe
[17] library with our modifications. All the CNN models in this Section are the
same architecture and the details are given in Fig.4. For fair comparison, we
respectively train three kind of models under the supervision of softmax loss
(model A), softmax loss and contrastive loss (model B), softmax loss and
center loss (model C). These models are trained with batch size of 256 on two
GPUs (TitanX). For model A and model C, the learning rate is started from 0.1,
and divided by 10 at the 16 K, 24 K iterations. A complete training is finished
at 28 K iterations and roughly costs 14 h. For model B, we find that it converges
slower. As a result, we initialize the learning rate to 0.1 and switch it at the
24 K, 36 K iterations. Total iteration is 42 K and costs 22 h.

Detailed settings in testing. The deep features are taken from the output of
the first FC layer. We extract the features for each image and its horizontally
flipped one, and concatenate them as the representation. The score is computed
by the Cosine Distance of two features after PCA. Nearest neighbor [7] and
threshold comparison are used for both identification and verification tasks. Note
that, we only use single model for all the testing.

4.2 Experiments on the Parameter A and o

The hyper parameter A dominates the intra-class variations and « controls the
learning rate of center ¢ in model C. Both of them are essential to our model.
So we conduct two experiments to investigate the sensitiveness of the two para-
meters.
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Fig. 5. Face verification accuracies on LFW dataset, respectively achieve by (a) models
with different A and fixed & = 0.5. (b) models with different v and fixed A = 0.003.
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In the first experiment, we fix « to 0.5 and vary A from 0 to 0.1 to learn
different models. The verification accuracies of these models on LFW dataset
are shown in Fig.5. It is very clear that simply using the softmax loss (in this
case A is 0) is not a good choice, leading to poor verification performance. Prop-
erly choosing the value of A can improve the verification accuracy of the deeply
learned features. We also observe that the verification performance of our model
remains largely stable across a wide range of A. In the second experiment, we
fix A = 0.003 and vary « from 0.01 to 1 to learn different models. The verifica-
tion accuracies of these models on LFW are illustrated in Fig.5. Likewise, the
verification performance of our model remains largely stable across a wide range
of a.

4.3 Experiments on the LFW and YTF Datasets

In this part, we evaluate our single model on two famous face recognition bench-
marks in unconstrained environments, LEW and YTF datasets. They are excel-
lent benchmarks for face recognition in image and video. Some examples of them
are illustrated in Fig. 6. Our model is trained on the 0.7M outside data, with no
people overlapping with LEFW and YTF. In this section, we fix the A to 0.003
and the « is 0.5 for model C.

LFW dataset contains 13,233 web-collected images from 5749 different iden-
tities, with large variations in pose, expression and illuminations. Following the
standard protocol of unrestricted with labeled outside data [14]. We test on 6,000
face pairs and report the experiment results in Table 2.

YTF dataset consists of 3,425 videos of 1,595 different people, with an
average of 2.15 videos per person. The clip durations vary from 48 frames to 6,070
frames, with an average length of 181.3 frames. Again, we follow the unrestricted
with labeled outside data protocol and report the results on 5,000 video pairs in
Table 2.

Table 2. Verification performance of different methods on LFW and YTF datasets

Method Images | Networks | Acc. on LFW | Acc. on YTF
DeepFace [34] 4M 3 97.35% 91.4%
DeepID-2+ [32] - 1 98.70 % -

DeepID-2+ [32] - 25 99.47% 93.2%
FaceNet [27] 200M |1 99.63 % 95.1%

Deep FR [25] 2.6M | 1 98.95 % 97.3%

Baidu [21] 1.3M |1 99.13 % -

model A 0.7M |1 97.37 % 91.1%

model B 0.7M |1 99.10 % 93.8%
model C (Proposed) |0.7M |1 99.28 % 94.9 %
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(b) Face videos in YTF

Fig. 6. Some face images and videos in LFW and YTF datasets. The face image pairs
in green frames are the positive pairs (the same person), while the ones in red frames
are negative pairs. The white bounding box in each image indicates the face for testing.

From the results in Table 2, we have the following observations. First, model C
(jointly supervised by the softmax loss and the center loss) beats the baseline one
(model A, supervised by the softmax loss only) by a significant margin, improv-
ing the performance from (97.37 % on LFW and 91.1 % on YTF) to (99.28 % on
LFW and 94.9% on YTF). This shows that the joint supervision can notably
enhance the discriminative power of deeply learned features, demonstrating the
effectiveness of the center loss. Second, compared to model B (supervised by
the combination of the softmax loss and the contrastive loss), model C achieves
better performance (99.10% v.s. 99.28 % and 93.8% v.s. 94.9%). This shows
the advantage of the center loss over the contrastive loss in the designed CNNs.
Last, compared to the state-of-the-art results on the two databases, the results
of the proposed model C (much less training data and simpler network archi-
tecture) are consistently among the top-ranked sets of approaches based on the
two databases, outperforming most of the existing results in Table 2. This shows
the advantage of the proposed CNNs.

4.4 Experiments on the Dataset of MegaFace Challenge

MegaFace datasets are recently released as a testing benchmark. It is a very
challenging dataset and aims to evaluate the performance of face recognition
algorithms at the million scale of distractors (people who are not in the
testing set). MegaFace datasets include gallery set and probe set. The gallery
set consists of more than 1 million images from 690 K different individuals, as a
subset of Flickr photos [35] from Yahoo. The probe set using in this challenge
are two existing databases: Facescrub [24] and FGNet [1]. Facescrub dataset is
publicly available dataset, containing 100 K photos of 530 unique individuals
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(55,742 images of males and 52,076 images of females). The possible bias can
be reduced by sufficient samples in each identity. FGNet dataset is a face aging
dataset, with 1002 images from 82 identities. Each identity has multiple face
images at different ages (ranging from 0 to 69).

There are several testing scenarios (identification, verification and pose invari-
ance) under two protocols (large or small training set). The training set is defined
as small if it contains less than 0.5M images and 20 K subjects. Following the
protocol of small training set, we reduce the size of training images to 0.49M
but maintaining the number of identities unchanged (i.e. 17,189 subjects). The
images overlapping with Facescrub dataset are discarded. For fair comparison,
we also train three kinds of CNN models on small training set under different
supervision signals. The resulting models are called model A-; model B- and
model C-, respectively. Following the same settings in Sect. 4.3, the A is 0.003
and the « is 0.5 in model C-. We conduct the experiments with the provided
code [23], which only tests our algorithm on one of the three gallery (Set 1).

Probe Set Gallery (at million scale)

Fig. 7. Some example face images in MegaFace dataset, including probe set and gallery.
The gallery consists of at least one correct image and millions of distractors. Because of
the great intra-variations in each subject and varieties of distractors, the identification
and verification task become very challenging.

Face Identification. Face identification aims to match a given probe image to
the ones with the same person in gallery. In this task, we need to compute the
similarity between each given probe face image and the gallery, which includes
at least one image with the same identity as the probe one. Besides, the gallery
contains different scale of distractors, from 10 to 1 million, leading to increasing
challenge in testing. More details can be found in [23]. In face identification
experiments, we present the results by Cumulative Match Characteristics (CMC)
curves. It reveals the probability that a correct gallery image is ranked on top-K.
The results are shown in Fig. 8.
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Fig. 8. CMC curves of different methods (under the protocol of small training set) with

(a) IM and (b) 10K distractors on Set 1. The results of other methods are provided
by MegaFace team.

Face Verification. For face verification, the algorithm should decide a given pair
of images is the same person or not. 4 billion negative pairs between the probe
and gallery datasets are produced. We compute the True Accept Rate (TAR)
and False Accept Rate (FAR) and plot the Receiver Operating Characteristic
(ROC) curves of different methods in Fig. 9.
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Fig. 9. ROC curves of different methods (under the protocol of small training set) with

(a) 1M and (b) 10K distractors on Set 1. The results of other methods are provided
by MegaFace team.

We compare our method against many existing ones, including (i) LBP [2]
and JointBayes [5], (ii) our baseline deep models (model A- and model B-),
and (iii) deep models submitted by other groups. As can be seen from Fig.8
and Fig.9, the hand-craft features and shallow model perform poorly. Their
accuracies drop sharply with the increasing number of distractors. In addition,
the methods based on deep learning perform better than the traditional ones.
However, there is still much room for performance improvement. Finally, with
the joint supervision of softmax loss and center loss, model C- achieves the best
results, not only surpassing the model A- and model B- by a clear margin but
also significantly outperforming the other published methods.
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Table 3. Identification rates of different methods on MegaFace with 1M distractors.

Method Protocol | Identification Acc. (Set 1)
NTechLLAB - facenx_large Large 73.300 %
Google - FaceNet v8 Large 70.496 %
Beijing Faceall Co. - FaceAll_ Norm_1600 | Large 64.803 %
Beijing Faceall Co. - FaceAll_1600 Large 63.977 %
Barebones_FR. - cnn Small 59.363 %
NTechLAB - facenx_small Small 58.218 %
3DiVi Company - tdvm6 Small 33.705 %
Model A- Small 41.863 %
Model B- Small 57.175%
Model C- (Proposed) Small | 65.234%

Table 4. Verification TAR of different methods at 107 FAR on MegaFace with 1M
distractors.

Method Protocol | Verification Acc. (Set 1)
Google - FaceNet v8 Large 86.473 %
NTechLAB - facenx_large Large 85.081 %
Beijing Faceall Co. - FaceAll_Norm_1600 | Large 67.118 %
Beijing Faceall Co. - FaceAll_1600 Large 63.960 %
Barebones_FR - cnn Small 59.036 %
NTechLAB - facenx_small Small 66.366 %
3DiVi Company - tdvm6 Small 36.927 %
Model A- Small 41.297 %
model B- Small 69.987 %
Model C- (Proposed) Small |76.516 %

To meet the practical demand, face recognition models should achieve high
performance against millions of distractors. In this case, only Rank-1 identifica-
tion rate with at least 1M distractors and verification rate at low false accept
rate (e.g., 107%) are very meaningful [23]. We report the experimental results of
different methods in Tables 3 and 4.

From these results we have the following observations. First, not surprisingly,
model C- consistently outperforms model A- and model B- by a significant mar-
gin in both face identification and verification tasks, confirming the advantage
of the designed loss function. Second, under the evaluation protocol of small
training set, the proposed model C- achieves the best results in both face iden-
tification and verification tasks, outperforming the 2nd place by 5.97 % on face
identification and 10.15 % on face verification, respectively. Moreover, it is worth
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to note that model C- even surpasses some models trained with large training
set (e.g., Beijing Facecall Co.). Last, the models from Google and NTechLAB
achieve the best performance under the protocol of large training set. Note that,
their private training set (500M for Google and 18M for NTechLAB) are much
larger than ours (0.49M).

5 Conclusions

In this paper, we have proposed a new loss function, referred to as center loss. By
combining the center loss with the softmax loss to jointly supervise the learning
of CNNs, the discriminative power of the deeply learned features can be highly
enhanced for robust face recognition. Extensive experiments on several large-
scale face benchmarks have convincingly demonstrated the effectiveness of the
proposed approach.
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