
Kernel-Based Supervised Discrete Hashing
for Image Retrieval

Xiaoshuang Shi, Fuyong Xing, Jinzheng Cai, Zizhao Zhang,
Yuanpu Xie, and Lin Yang(B)

University of Florida, Gainesville, FL 32611, USA
xsshi2015@ufl.edu, lin.yang@bme.ufl.edu

Abstract. Recently hashing has become an important tool to tackle
the problem of large-scale nearest neighbor searching in computer vision.
However, learning discrete hashing codes is a very challenging task due
to the NP hard optimization problem. In this paper, we propose a
novel yet simple kernel-based supervised discrete hashing method via
an asymmetric relaxation strategy. Specifically, we present an optimiza-
tion model with preserving the hashing function and the relaxed linear
function simultaneously to reduce the accumulated quantization error
between hashing and linear functions. Furthermore, we improve the
hashing model by relaxing the hashing function into a general binary
code matrix and introducing an additional regularization term. Then we
solve these two optimization models via an alternative strategy, which
can effectively and stably preserve the similarity of neighbors in a low-
dimensional Hamming space. The proposed hashing method can produce
informative short binary codes that require less storage volume and lower
optimization time cost. Extensive experiments on multiple benchmark
databases demonstrate the effectiveness of the proposed hashing method
with short binary codes and its superior performance over the state of
the arts.

Keywords: Supervised kernel hashing · Discrete constraint · Accumu-
lated quantization error reduction

1 Introduction

Over the past decade, hashing has attracted considerable attentions in computer
vision [1–4] and machine learning [5,6] communities. With the increasing of
visual data including images and videos, it is favorable to apply compact hashing
codes to data storing and content searching. Basically hashing encodes each
high-dimensional data into a set of binary codes and meanwhile preserves the
similarity between neighbors. Recent literature reports that when each image
is encoded into several tens of binary bits, the storage of one hundred million
images requires only less than 1.5 GB [7] and searching in a collection of millions
of images costs a constant time [8,9].
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Nowadays many hashing methods have been proposed. Based on whether
semantic information is considered, they can be grouped into two major cat-
egories: unsupervised and supervised. Unsupervised hashing methods aim to
explore the intrinsic structure of data to preserve the similarity of neighbors
without any supervision. Local sensitive hashing (LSH) [10] is one of the most
popular unsupervised hashing approaches and has been applied to tackling many
large-scale data problems. However, LSH is a data-independent method that
uses random projection to generate binary codes, thereby requiring long binary
codes to achieve satisfactory retrieval accuracy. On the other hand, many data-
dependent methods, such as spectral hashing (SH) [6], anchor graph hashing
(AGH) [11] and iterative quantization (ITQ) [12], have been proposed to learn
compact codes and achieve promising retrieval performance.

Due to the semantic gap [13], however, unsupervised hashing methods are
not able to guarantee good retrieval accuracy via semantic distances. There-
fore, supervised hashing methods, which utilize semantic information to map
high-dimensional data into a low-dimensional Hamming space [14], are devel-
oped to improve the performance. Supervised hashing methods can be divided
into linear and nonlinear categories. Several popular supervised linear hashing
methods are: linear discriminant analysis hashing (LDAHash) [15] that projects
descriptor vectors into the Hamming space; the minimal loss hashing (MLH) [16]
utilizes structured prediction with latent variables; the semi-supervised hashing
(SSH) [9] leverages the Hamming distance between pairs, etc. Compared to lin-
ear hashing methods, nonlinear methods like binary reconstruction embedding
(BRE) [14] and kernel-based supervised hashing (KSH) [17] often generate more
effective binary codes because of the usage of the nonlinear structure hidden in
the data.

KSH is a very popular supervised nonlinear method, which can achieve sta-
ble and encouraging retrieval accuracy in various applications. However, it has
two major issues: (i) Its objective function is NP-hard so that it is difficult
to be directly solved; (ii) The relaxation used might result in a large accumu-
lated quantization error between the hashing and linear projection functions
such that the retrieval accuracy can deteriorate rapidly with increasing number
of training data [18]. Recently, discrete graph hashing (DGH) [7], asymmetric
inner-product binary coding (AIBC) [19] and supervised discrete hashing (SDH)
[18] have demonstrate that with discrete constraints preserved, hashing methods
can directly work in the discrete code space so that their retrieval accuracy can
be boosted. Furthermore, although the greedy algorithm can reduce the accu-
mulated quantization error, it is computationally expensive and usually requires
relatively long binary codes to obtain the desired retrieval accuracy.

In this paper, we propose a novel hashing framework, kernel-based super-
vised discrete hashing (KSDH), that can provide competitive retrieval accuracy
with short binary codes and low training time costs (The core idea and the
difference to KSH are shown in Fig. 1). Specifically, in order to reduce the accu-
mulated quantization error between hashing and linear projection functions,
we replace the element-wise product of hashing functions with the element-
wise product between hashing and linear projection functions. Furthermore,
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Fig. 1. The core idea of the proposed hashing method and its difference to KSH. (a)
The standard hashing uses the element-wise product of the ideal code matrix to fit
the pairwise label matrix. (b) The KSH uses the symmetric relaxation, the element-
wise product of the relaxation matrix, to approximate the pairwise label matrix. (c)
Our algorithm utilizes an asymmetric relaxation, the element-wise product between
the code and relaxation matrices, to approximate the pairwise label matrix.

we improve the model by relaxing the hashing function into a general binary
code matrix and introducing an additional regularization term, to attain stable
and better retrieval accuracy. We apply an alternative and efficient strategy to
the model optimization with a very low time cost. Our contributions are sum-
marized as follows:

• We propose a novel yet simple kernel-based supervised discrete hashing frame-
work via the asymmetric relaxation strategy that can preserve the discrete
constraint and reduce the accumulated quantization error between binary
code matrix and linear projection functions. In addition, to the best of our
knowledge, there exist no method using the asymmetric relaxation strategy to
improve the retrieval accuracy of KSH.

• We solve the optimization models in an alternative and efficient manner, and
analyze the convergence and time complexity of the optimization procedure.

• We evaluate the proposed framework on four popular large-scale image and
video databases, and achieve superior performance over the state of the arts,
especially with short binary codes.

2 Kernel-Based Supervised Hashing

In this section, we briefly review the related work KSH [17] by which we are
inspired. Given a set of N data points and randomly selected n points X ∈ R

n×d,
n << N , the similar pairs (neighbors in terms of a metric distance or sharing the
same label) are collected in the set M and the dissimilar pairs (non-neighbors
or with different labels) are collected in the set C. Let φ : R

d �→ T be a kernel
mapping from the original space to the kernel space, where T is a Reproducing
Kernel Hilbert Space (RKHS) with a kernel function κ(x,y) = φ(x)Tφ(y). In
order to obtain the compact representation of each data point and preserve the
similarity of pairs, KSH aims to look for r hashing functions to project the data
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X into a Hamming space. With m points selected from X and a projection
matrix A ∈ R

r×m, the k-th (1 ≤ k ≤ r) hashing function of KSH is defined as:

hk(x) = sgn(
m∑

j=1

κ(xj ,x)ajk − bk) = sgn(akκ̄(x)), (1)

where x ∈ X and bk = 1
n

∑n
i=1

∑m
j=1 κ(xj ,xi)ajk. Equation (1) implies a bal-

anced hashing function constraint that is
∑n

i=1 hk(xi) = 0.
Based on Eq. (1), hk(x) ∈ {−1, 1}, KSH attempts to learn the projection

matrix A ∈ R
r×m such that hk(xi) = hk(xj) if (xi,xj) ∈ M, and hk(xi) �=

hk(xj) if (xi,xj) ∈ C. Let the r-bit hash code of each point x be coder(x) =
[h1, h2, · · · , hr]. Then, if (xi,xj) ∈ M, coder(xi) ◦ coder(xj) = r; otherwise,
coder(xi) ◦ coder(xj) = −r, where ◦ represents the code inner product. In order
to obtain the hashing function, the weight (pairwise label) matrix S ∈ R

n×n is
defined as:

sij =

⎧
⎨

⎩

1 (xi,xj) ∈ M
−1 (xi,xj) ∈ C
0 otherwise

(2)

Since coder(xi)◦ coder(xj) ∈ [−r, r] and sij ∈ [−1, 1], KSH learns the projection
matrix by solving the following optimization model:

min
H∈{−1,1}

∥∥HTH − rS
∥∥2

F
= min

A

∥∥sgn(AK̄)T sgn(AK̄) − rS
∥∥2

F
, (3)

where H = sgn(AK̄) = [coder(x1), · · · , coder(xn)] ∈ Rr×n denotes the code
matrix produced by hashing functions, and K̄ ∈ R

m×n is a kernel matrix with
zero-mean. There is one implied condition: H1n = 0 in Eq. (3), where 1n ∈ R

n

is a column vector with all elements equal to one. This condition maximizes the
information from each bit.

3 Kernel-Based Supervised Discrete Hashing (KSDH)

3.1 KSDH with Hashing Function Preserved

Since the optimization problem in Eq. (3) is non-differential and NP-hard, KSH
[17] adopts the symmetric relaxation and greedy strategy to approximate the
weight matrix rS, but it might produce a large accumulated quantization error
between hashing sgn(AK̄) and linear projection AK̄ functions, which can sig-
nificantly affect the effectiveness of hashing functions, especially for the large
number of training data [17]. To learn a discrete matrix and reduce the accu-
mulated quantization error, based on the asymmetric relaxation strategy, we
propose a novel optimization model as follows:

min
A

∥∥HTAK̄ − rS
∥∥2

F
,

s.t. AK̄K̄TAT = nIr, H = sgn(AK̄).
(4)
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Note that the hashing function H is preserved in the objective function. Usu-
ally, the smaller quantization error between AK̄ and sgn(AK̄), the smaller
reconstruction error of the objective function. We add one more constraint,
AK̄K̄TAT = nIr that is derived from the constraint HHT = nIr, which enforces
r bit hashing codes to be mutually uncorrelated such that the redundancy among
these bits is minimized [6,7]. In addition, the constraint AK̄K̄TAT = nIr can
also reduce the redundancy among data points [20].

Since Tr
{
K̄TATHHTAK̄

}
and Tr

{
STS

}
are constant, the optimization

problem in Eq. (4) is equivalent to the following optimization problem:

max
A

Tr
{
HSK̄TAT

}
,

s.t. AK̄K̄TAT = nIr,H = sgn(AK̄).
(5)

Equation (5) is clearly different from the objective function in [7] with two major
differences: (i) Eq. (5) aims to learn the projection matrix A for supervised
hashing, while [7] is an unsupervised method; (ii) The discrete constraint in Eq.
(5) is asymmetric, while the objective function of [7] adopts symmetric discrete
constraints. Eq. (5) is also different from the objective function in [21], which
relaxes the hashing functions into a continuous set [−1, 1]. In the following, we
will explain our proposed procedure to solve this optimization problem.

To solve Eq. (5), we introduce an auxiliary variable C and let C = AK̄, and
then C1n = 0 due to K̄1n = 0 (the implicit constraint). The model in Eq. (5)
can be rewritten as:

max
C

Tr
{
HSCT

}
,

s.t. CCT = nIr,C1n = 0,H = sgn(C).
(6)

After obtaining C, the projection matrix A is calculated by A = CK̄T (K̄K̄T )−1.
In practice, we obtain A by A = CK̄T (K̄K̄T +εIm)−1 to attain a stable solution.
An alternative optimization strategy is used to solve Eq. (6). The detailed steps
are shown in the following.

Fix H and update C: With H fixed, the optimization problem in Eq. (6)
becomes:

max
C

Tr
{
HSCT

}
,

s.t. CCT = nIr,C1n = 0.
(7)

whose solution is shown in Proposition 1.

Proposition 1: Suppose the rank of the matrix S is c, C =
√

nV
[
U, Ū

]T is
an optimal solution of Eq. (7). V ∈ R

r×r can be obtained by applying singular
value decomposition (SVD) to HSJSHT = VΣ2VT , J = In − 1

n1n1T
n . If r ≤ c,

U = JSHTVΣ−1 and Ū = ∅; otherwise, U = JSHTV(:, 1 : c)Σ(1 : c, 1 : c)−1,
ŪT Ū = nIr−c and [U,1n]T Ū = 0.

Proposition 1 is derived from the Lemma 2 in [7]. If r ≤ c, Eq. (7) has a unique
global solution; otherwise, Eq. (7) has numerous optimal solutions.
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Algorithm 1. KSDH H

Input: Kernelized data matrix K̄ ∈ R
m×n, weight matrix S, number of bits r,

and ε = 0.01
Output: Projection matrix A ∈ R

r×m

Initialize: t=0, let A0 be the eigenvectors of K̄SK̄T and H0 = sgn(AK̄);
Calculate J = In − 1

n
1n1

T
n , P = JS, and M = K̄T (K̄K̄T + εIm)−1;

while not converge or reach the maximum iterations
Calculate Ut+1, Ūt+1 and Vt+1 by Proposition 1;

Update Ct+1 =
√

nVt+1

[
Ut+1, Ūt+1

]T
;

Update Ht+1 = sgn(Ct+1);
end while
Calculate A = CM.

Fix C and update H: With C fixed, H = sgn(C).
In summary, we present the detailed optimization procedure of Eq. (5) in

Algorithm 1. Because this algorithm preserves the hashing function H in the
objective function, we name it as KSDH H.

3.2 KSDH with a Relaxed Binary Code Matrix

KSDH H is very effective for binary encoding, but sometimes the objective value
might fluctuate during the optimization procedure and thus would affect the
binary code generation. For example, Figs. 2(a) and (b) show the objective value
and the retrieval accuracy, mean average precision (MAP), with respect to the
number of optimization iterations, respectively. In order to address this problem,
we further improve the model Eq. (4) as:

min
B∈{−1,1},A

∥∥BTAK̄ − rS
∥∥2

F
+ λ

∥∥B − AK̄
∥∥2

F
,

s.t. AK̄K̄TAT = nIr,
(8)

where B ∈ R
r×n represents binary codes of training data, the term

∥∥B − AK̄
∥∥2

F
aims to reduce the accumulated quantization error between binary code matrix
B and linear functions AK̄, and the parameter λ is to balance the semantic infor-
mation and the accumulated quantization error. The major differences between
Eqs. (4) and (8) are: (i) The binary code matrix B in Eq. (8) is not required to be
equivalent to sgn(AK̄), and B = sgn(AK̄) can be viewed as one particular case
of Eq. (8); (ii) The regularization term can guarantee Eq. (8) to have a stable
optimal solution (see Propositions 2 and 3). Similar to Eq. (4), the optimization
problem in Eq. (8) is equivalent to the following optimization problem:

max
B∈{−1,1},A

Tr
{
B(rS + λIn)K̄TAT

}
,

s.t. AK̄K̄TAT = nIr.
(9)

Let C = AK̄, Eq. (9) becomes:

max
B∈{−1,1},C

Tr
{
B(rS + λIn)CT

}
,

s.t. CCT = nIr,C1n = 0.
(10)
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Fig. 2. Retrieval accuracy (32-bit) of KSDH H and KSHD B with respect to the num-
ber of iterations. (a) The objective value of Eq. (5) vs. Iteration #. (b) MAP of KSDH H
vs. Iteration #. (c) The objective value of Eq. (9) vs. Iteration #. (d) MAP of KSDH B
vs. Iteration #. (In total 1K training data are selected from CIFAR-10 database, and
100 training data are chosen as anchors to construct kernels)

We can obtain a stable projection matrix A by A = CK̄T (K̄K̄T + εIm)−1

after obtaining C. Similar to Algorithm 1, we also adopt an alternative strategy
to solve the optimization problem in Eq. (10), and the two alternate steps are
presented in details below.
Fix B and update C: The matrix C in Eq. (10) can be obtained by Proposi-
tion 2, which can be viewed as a particular case of Proposition 1.

Proposition 2: With B fixed, the unique global optimal solution of Eq. (10)
is C =

√
nVUT , where V ∈ R

r×r is obtained based on the SVD of B(rS +
λIn)J(rS + λIn)BT = VΣ2VT , and U = J(rS + λIn)BTVΣ−1.

Fix C and update B: The optimization problem in Eq. (10) becomes:

max
B∈{−1,1}

Tr
{
B(rS + λIn)CT

}
, (11)

whose optimal solution is B = sgn(C(rS + λIn)).
The detailed optimization procedure of solving the model Eq. (8) is shown

in Algorithm 2. Since Eq. (8) maintains the discrete constraint using binary
code matrix B, we name it as KSDH B. In Algorithm 2, since each iterative
optimization step maximizes the objective function in Eq. (9) and the objective
value in each iteration is always non-decreasing and bounded, Algorithm 2 will
converge to an optimal solution. Therefore, we have the following proposition:

Proposition 3: The loop step in Algorithm 2 will monotonously increase in
each iteration, and thus Algorithm 2 will converge to an optima.

Figures 2(c) and (d) show the iteration process of the loop steps and the
objective value of Eq. (9) does not exhibit significant variations after three iter-
ations, which implies that the loop step converges rapidly. This is attributed
to the fact that each iteration has a closed-form solution. Usually we set the
maximum iteration number l to be three.
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Algorithm 2. KSDH B

Input: Kernelized data matrix K̄ ∈ R
m×n, weight matrix S, number of bits r,

the parameter λ and ε = 0.01
Output: Binary code matrix B ∈ R

r×n, projection matrix A ∈ R
r×m

Initialize: t=0, let A0 be the eigenvectors of K̄SK̄T and B0 = sgn(AK̄);

Calculate J = In − 1
n
1n1

T
n , Ŝ = rS + λIn, P = JŜ, and M = K̄T (K̄K̄T + εIm)−1;

Repeat

Update Vt+1 and Σt+1 with the SVD of BtŜPBT
t ;

Update Ut+1 = PBT
t Vt+1Σ

−1
t+1;

Update Ct+1 =
√

nVt+1U
T
t+1;

Update Bt+1 = sgn(Ct+1Ŝ);
Until convergence
Calculate A = CM.

3.3 Time Complexity Analysis

Before analyzing the time complexity of two proposed algorithms, we first inves-
tigate the time cost of calculating the kernel data matrix K̄. Given a data matrix
X ∈ R

n×d, the time complexity of constructing kernel matrix K is O(mdn) with
m selected points, and normalizing K to have zero-mean needs at most O(mn)
operations. Therefore, the time complexity of calculating the kernel data matrix
K̄ is O(mdn). Usually, m << n and d < n.

KSDH H contains initialization, the loop step, and projection matrix com-
putation. In the initialization step, the time complexity of calculating A0 and
H0 is O(mn2) and O(rmn), respectively. Calculating the matrices J, P and
M requires at most O(n2), O(n2), O(m2n) operations, respectively. Hence, the
initialization step takes O(mn2). In the loop step, computing matrices Ut+1

and Vt+1 needs O(rn2) operations. Updating matrices Ct+1 and Ht+1 requires
O(rmn) and O(rn), respectively. Thus, the time complexity of the loop step
is O(lrn2), where l is the number of iterations, and it is empirically set to be
three. Calculating the projections matrix A takes at most O(rmn) operations.
Therefore, the total time complexity of KSDH H is max(O(mn2),O(lrn2)).

Similarly, KSDH B also consists of initialization, the loop step, and projec-
tion matrix calculation. Initialization and calculating the projection matrix A
takes O(mn2) and O(rmn), respectively. In the loop step, calculating the matrix
BtŜPBT

t costs O(rn2), and its SVD spends at most O(r3) operations. Updating
matrices Ut+1, Ct+1 and Bt+1 requires O(rn2), O(rmn), and O(rn2) operations,
respectively. Thus, the time complexity of the loop step is O(lrn2). The total
time complexity of KSDH B is also max(O(mn2),O(lrn2)).

In summary, the time complexity of the training stage of both KSDH H and
KSDH B is max(O(mn2),O(lrn2)) determined by the weight matrix S with size
n × n. Note that both algorithms can be easily paralleled to handle large-scale
datasets, since the weight matrix S is simply used for matrix multiplication. In
the test stage, the time complexity of encoding one test sample into r-bit binary
codes is O(md + mr).



Kernel-Based Supervised Discrete Hashing for Image Retrieval 427

4 Experiments and Analysis

We evaluate the proposed KSDH H and KSDH B on four publicly available
benchmark databases: CIFAR-10, MNIST, Youtube, and ImageNet. CIFAR-10
database is a labeled subset of 80M tiny images [22], containing 60K color images
of ten object categories. Each of which is constituted of 6K images. Every image is
aligned and cropped to 32 × 32 pixels and then represented by a 512-dimensional
GIST feature vector [23]. MNIST database [24] consists of 70K images each of
which is represented by a 784-dimensional vector, with handwritten digits from
‘0’ to ‘9’ contained. Youtube face database [25] contains 1,595 individuals, from
which we choose 400 people to form a set with 136,118 face images and then
randomly select 50 individuals that each one has at least 300 images to form a
subset. We use the LBP feature vector [26] with 1,770-dimension to represent
each face image. ImageNet database [27] contains over 14 million labeled data,
and we adopt the ILSVRC 2012 subset, which has more than 1.2 million images
of totally 1000 object categories. We use GIST to extract a 2048-dimensional
feature vector for each image.

We compare KSDH H and KSDH B against four start-of-the-art supervised
hashing methods including semi-supervised hashing (SSH) [9], binary reconstruc-
tive embedding (BRE) [14], kernel supervised hashing (KSH) [17], and supervised
discrete hashing (SDH) [18]. In addition, we also show the results of the baseline
method nearest neighbors (NN). In KSDH H and KSDH B, we choose the same
kernel as KSH for fair comparison and set the regularization parameter λ = r
in experiments. For SSH, we kernelize the labeled data using the same kernel as
KSH and apply the non-orthogonal method to its relaxed objective function; for
BRE, we assign label 1 to similar pairs and 0 to dissimilar pairs. Since all these
methods refer to kernels, we choose ten percent of training data as anchors to
construct the kernels.

Two standard main criterions: mean average precision (MAP) and precision-
recall (PR) curve, are used to evaluate the above hashing methods. Note that
since KSDH H, KSDH B, SSH, KSH and SDH use the same type of kernels, they
have almost the same test time. However, different methods have significantly
different training speeds. In the experimental part, we will provide the training
time of each hashing method for comparison. All experiments are conducted
using Matlab on a 3.60 GHz Intel Core i7-4790 CPU with 32 GB memory.

4.1 CIFAR-10

We partition this database into two parts: a training subset of 59K images and a
test query set of 1K images, which contains ten categories with each consisting
of 100 images. We uniformly select 100 and 500 images from each category to
form two training sets, respectively. The weight matrix S is constituted by the
true semantic neighbors. We encode each image into 8-,16- and 32-bit binary
codes by SSH, BRE, KSH, SDH and our proposed KSDH H and KSDH B. The
ranking performance is shown in term of MAP together with their training time
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Table 1. Ranking performance and training time (seconds) on the CIFAR-10 database.

Method n = 1000 n = 5000

MAP Time MAP Time

8-bit 16-bit 32-bit 32-bit 8-bit 16-bit 32-bit 32-bit

NN 0.1755 - 0.1713 -

SSH [9] 0.1544 0.1517 0.1684 0.02 0.1540 0.1529 0.1598 0.66

BRE [14] 0.1587 0.1715 0.1852 156.36 0.1589 0.1723 0.1905 1989.20

KSH [17] 0.2474 0.2782 0.3135 21.75 0.2787 0.3317 0.3746 692.78

SDH [18] 0.3580 0.4937 0.5314 0.05 0.5224 0.5889 0.6218 0.70

KSDH H 0.5102 0.5109 0.4633 0.50 0.5661 0.5974 0.6131 3.10

KSDH B 0.5185 0.5481 0.5495 0.05 0.5995 0.6208 0.6317 1.65

(seconds) in Table 1. In addition, we also provide the PR curves with 8-, 16- and
32-bit codes in Fig. 3.

As shown in Table 1 and Fig. 3, KSDH B achieves the highest retrieval accu-
racy (MAP and PR curve) among all hashing methods, and KSDH H is the
second best at 8- and 16-bit. More importantly, both KSDH H and KSDH B
significantly outperform the other hashing methods at 8-bit, which is smaller
than the number of categories, and the gain in MAP ranges from 8.3 % to 44.8 %
over the best competitor SDH. It is clear that KSDH H and KSDH B are very
effective with short binary codes, which are often favorable due to their low
requirement of storage. Compared to KSH and BRE, KSDH H and KSDH B
are much faster to learn a training model, and in contrast with SSH and SDH,
the training time cost is also acceptably low. In addition, KSDH H requires more
training cost than KSDH B due to the construction of Ū (see Proposition 1). As
shown in Fig. 3, we want to emphasize that our proposed KSDH H and KSDH B
are significantly better than other state of the arts especially when the number
of bits is low in the hashing code (Fig. 3).
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Fig. 3. PR curves of different hashing methods using 8, 16, 32-bit codes on the CIFAR-
10 database with 1000 labeled training data.
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Table 2. Ranking performance and training time (seconds) on the MNIST database.

Method n = 1000 n = 5000

MAP Time MAP Time

8-bit 16-bit 32-bit 32-bit 8-bit 16-bit 32-bit 32-bit

NN 0.4466 - 0.4394 -

SSH [9] 0.2301 0.3117 0.3642 0.02 0.2432 0.3406 0.3338 0.67

BRE [14] 0.4306 0.5352 0.6247 138.20 0.4389 0.5515 0.6662 2283.90

KSH [17] 0.7381 0.8160 0.8478 20.48 0.8169 0.8803 0.9185 717.46

SDH [18] 0.6039 0.8485 0.8680 0.06 0.9031 0.9410 0.9427 0.90

KSDH H 0.8591 0.8621 0.8626 0.50 0.9330 0.9320 0.9379 3.43

KSDH B 0.8463 0.8757 0.8792 0.04 0.9339 0.9415 0.9482 1.69

4.2 MNIST

Similar to CIFAR-10, we also partition the MNIST handwritten digit database
into two subsets. Specifically, we select 6.9K images from each digit to constitute
a training set with the remaining 1K images as a test query set, and then we
uniformly select 100 and 500 images from each digit for training. Table 2 and
Fig. 4 present the retrieval accuracy in term of MAP and PR curves at 8-, 16-
and 32-bit, respectively. As we can see, KSDH B outperforms the other hashing
methods in most of cases, especially at 8-bit, at which its MAP is 10.82 % and
3.08 % higher than the best competitor except KSDH H on two different train-
ing sets, respectively. In addition, KSDH H and KSDH B exhibit similar high
retrieval accuracy (MAP) at all three types of bit numbers. This implies that
they can produce very effective and compact binary codes.

4.3 Youtube

We split the selected set constituted by 50 people into a training set and a test
query set, and then uniformly choose 20 and 100 images from each individual
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Fig. 4. PR curves of different hashing methods using 8, 16, 32-bit codes on the MNIST
database with 1000 labeled training data.
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Table 3. Ranking performance and training time (seconds) on the Youtube database.

Method n = 1000 n = 5000

MAP Time MAP Time

16-bit 32-bit 64-bit 64-bit 16-bit 32-bit 64-bit 64-bit

NN 0.2965 - 0.3067 -

SSH [9] 0.1631 0.1678 0.2241 0.03 0.1697 0.2134 0.2293 0.75

BRE [14] 0.2198 0.2347 0.2361 3113.38 0.2428 0.2510 0.2909 26888.55

KSH [17] 0.2520 0.3009 0.3106 34.90 0.3390 0.3946 0.4246 1356.09

SDH [18] 0.2449 0.2314 0.2764 0.64 0.3572 0.3693 0.3942 3.83

KSDH H 0.3222 0.3351 0.3060 2.14 0.3580 0.4014 0.4402 10.51

KSDH B 0.2727 0.3140 0.3492 0.08 0.3790 0.4420 0.4475 1.93
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Fig. 5. PR curves of different hashing methods using 16, 32, 64-bit codes on the
Youtube database with 1000 labeled training data.

in the training set for training, and 20 images from each individual in the query
set for test. Evaluation results in term of MAP and PR curves are shown in
Table 3 and Fig. 5. Table 3 shows that KSDH H achieves the best retrieval accu-
racy (MAP) at 8- and 16-bit, respectively, and when n = 1000, the MAP is
7.02 % and 3.52 % higher than the best competitor except KSDH B, respec-
tively. In addition, KSDH B consistently has superior retrieval accuracy to the
other hashing methods except KSDH H. It also costs the least training time
among all comparative methods as well.

4.4 ImageNet

We randomly pick around 65K images with 10 categories from the ILSVRC
2012 database, and then partition this set into two subsets: a training set about
64K images and a test query set of 1K images evenly sampled from these ten
categories. Next, we uniformly select 500 and 1000 images of each category from
the training set for training. Evaluation results in term of MAP and PR curve
are presented in Table 4 and Fig. 6, respectively, which show that KSDH H and
KSDH B outperform the other hashing methods, and the gain in MAP ranges
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Table 4. Ranking performance and training time (seconds) on the ImageNet database.

Method n = 5000 n = 10000

MAP Time MAP Time

8-bit 16-bit 32-bit 32-bit 8-bit 16-bit 32-bit 32-bit

NN 0.1427 - 0.1356 -

SSH [9] 0.1593 0.1485 0.1507 0.61 0.1556 0.1472 0.1514 4.09

BRE [14] 0.1522 0.1515 0.1620 3153.42 0.1492 0.1506 0.1577 15453.53

KSH [17] 0.2268 0.2321 0.2454 1292.50 0.2147 0.2466 0.2616 4663.91

SDH [18] 0.3882 0.5007 0.5063 1.03 0.4860 0.5316 0.5610 2.98

KSDH H 0.5042 0.5170 0.5199 4.92 0.5429 0.5461 0.5501 12.54

KSDH B 0.4987 0.5368 0.5509 1.63 0.5255 0.5734 0.5714 7.06
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Fig. 6. PR curves of different hashing methods using 8, 16, 32-bit codes on the Ima-
geNet database with 5000 labeled training data.

from 1.9 % to 29.9 % over the best competitor. Meanwhile, KSDH H has almost
the same retrieval accuracy (MAP) at all 8, 16 and 32 bits.

4.5 Discussion

Based on the experiments on the four benchmark databases, we can observe
that KSDH H usually achieves the best or the second to the best retrieval accu-
racy with short r-bit (r ≤ c) binary codes, while generally KSDH B exhibits
more stable and better retrieval accuracy than KSDH H. Moreover, KSDH B
has superior retrieval accuracy in term of MAP and PR curve to SSH, BRE,
KSH and SDH in most cases. The main possible reasons are summarized as
follows:

• KSDH B performs better than KSDH H in most cases, probably because
KSDH B relaxes the hashing function constraints into a binary code matrix
and adds a regularization term, which can help us to obtain optimal and stable
solutions of Eq. (9) at different number of bits.
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• Unlike SSH that directly relaxes its objective function and KSH that adopts
the relaxation as well as the greedy algorithm to solve its non-differential objec-
tive function, KSDH H and KSDH B preserve the discrete constraint in their
optimization models and reduce the accumulated quantization error between
the binary code matrix and the linear projection functions. Meanwhile, the
effective optimization algorithms that we used can effectively capture and pre-
serve the semantic information in a low-dimensional Hamming space.

• Compared with the discrete hashing methods such as BRE and SDH, KSDH H
and KSDH B can obtain significantly better retrieval accuracy (MAP and PR
curve) with shorter binary codes (r ≤ c), because their objective functions can
better capture the low-rank semantic information determined by the weight
matrix S. Usually, SDH can achieve the best retrieval accuracy of itself when
r > c, because it aims to reduce the dimension of the discrete matrix to c.

5 Conclusions

In this paper, we propose a novel yet simple kernel-based supervised discrete
hashing algorithm, including two effective and efficient models: KSDH H and
KSDH B, via the asymmetric relaxation strategy. To reduce the accumulated
quantization error between hashing and linear projection functions, KSDH H
adopts the element-wise product between the hashing and linear projection func-
tions to approximate the weight matrix; KSDH B relaxes the hashing function
into a general binary code matrix and introduces a regularization term, which
can guarantee optimal and stable solutions to the objective function. In addi-
tion, we adopt an alterative strategy to efficiently solve the corresponding opti-
mization models, and the semantic information are captured and preserved into
a low-dimensional Hamming space. Experiments on four benchmark databases
demonstrate that the proposed hashing framework has superior retrieval perfor-
mance to the state of the arts, and can achieve very good retrieval accuracy with
short binary codes. Since the time complexity and the memory consumption are
determined by the weight matrix, in the future we plan to investigate the weight
matrix to further reduce the time complexity without sacrificing the retrieval
accuracy.
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