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Abstract. We propose an approach to multi-view object detection and
pose estimation that considers combinations of single-view estimates.
It can be used with most existing single-view pose estimation systems,
and can produce improved results even if the individual pose estimates
are incoherent. The method is introduced in the context of an existing,
probabilistic, view-based detection and pose estimation method (PAPE),
which we here extend to incorporate diverse attributes of the scene. We
tested the multiview approach with RGB-D cameras in different environ-
ments containing several cluttered test scenes and various textured and
textureless objects. The results show that the accuracies of object detec-
tion and pose estimation increase significantly over single-view PAPE
and over other multiple-view integration methods.
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1 Introduction

Detection and pose estimation of textureless objects are well-studied challenges
in robot vision. However, there are still problems that need to be solved. One of
the problems is that the estimated pose can be ambiguous due to the ambiguity
in the detected shape of the object [22] as shown in Fig. 1a. When a probabilistic,
appearance-based pose-estimation method is used, it can be difficult to determine
the viewing angle of the object due to similar appearances from the observed
views. Another problem is due to the presence of outliers [9] (Fig. 1b). One of
the solutions to overcome these difficulties is to observe the scene with multiple
cameras. To use multiple attributes of the scene would also improve the pose
estimation performance. In this paper, we introduce an approach that uses RGB-
D images from different viewpoints to overcome these difficulties. Multi-view
integration can face difficult problems when the objects are occluded or totally
unseen in one of the views as shown in Fig. 1c. Another difficulty can arise
when the sensor information is incomplete or noisy. Noise or incompleteness
may even result from interference between multiple RGB-D cameras as shown
in Fig. 2. Therefore, we consider the integration of information from multiple
RGB-D cameras and pose estimation in the presence of noisy or incomplete
data as a coupled problem.
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(a) (b)
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Fig. 1. Some of the problems that can be solved with integration of multi-view pose
estimations. (a) Ambiguities in the pose of an object; (b) Correct pose estimates are
shown with green bounding boxes in two views. Outliers, which are shown with red, are
eliminated after integration; (c) The cup is not visible in the right view. The integration
method is capable of finding the object even if it is not visible in all of the views. The
images are taken from the MPII Multi-Kinect Dataset [20]. (Color figure online)

For each view, possible 6DoF (3DoF in translation and 3 DoF in rotation)
poses of the object are estimated with a probabilistic, appearance-based method
which can combine multiple features for recognition. Pose estimates from all of
the views are integrated while allowing for absence of a correct estimation from
some of the views. Absence of a correct estimation can occur due to various
reasons including partial or entire occlusion of the object, unobservability of the
object within the limits of the sensor, or a false pose estimate. After integration,
all of the integrated pose estimates are associated with a probability value, and
the candidate with the highest score is selected as the final estimate.

We use a probabilistic, appearance-based method to detect and estimate the
pose of the object from a single view. We introduce an approach to combine
different attributes of the scene, e.g., edge orientations, depth values, surface
normals, and color. Combining multiple attributes of the scene can increase the
performance of recognition in cluttered environments. In the presence of noisy
or incomplete data, a “probability of absence” parameter is used as explained in
Sect. 2.1.

To summarize, our work makes two main contributions:

– An approach that integrates the pose estimates in 6DoF from multiple views
even in the absence of a correct estimation in some of the views.

– A method to combine the different appearance-based attributes in the presence
of noisy or incomplete data.

In Sect. 1.1, we review related work. In Sect. 2, we explain how to com-
bine multiple attributes in the probabilistic, appearance-based pose estimation
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(PAPE) method. In Sect. 3, we explain our approach to object recognition in
a multiview camera setup. The proposed algorithm is evaluated in Sect. 4, and
Sect. 5 concludes the paper with a brief summary.

1.1 Related Work

There have been several studies on integrating information from multiple cam-
eras to increase the accuracy of detection and pose estimation of objects. How-
ever, only a few of them are interested in the specific task of object detection
and pose estimation. For example, “KinectFusion”, which is developed by Izadi
et al. [12], mainly deals with the problem of scene reconstruction.

Some studies try to find corresponding features in between images. For exam-
ple, Yang et al. [26] use complex descriptors (SIFT [14]) in sensor networks to
detect objects with texture; such methods are not suitable for textureless objects.
In another study, Aldoma et al. [1] capture multiple RGB-D images of the same
scene from different viewpoints. They reconstruct the scene and transform the
hypothesis obtained in each single view into the reconstructed scene. There is no
interference noise of multiple Kinects since only a single camera is used. Mustafa
et al. [15], compute 3D descriptors in the reconstructed 3D scene, which requires
distinctive features and reconstructed 3D data of the scene.

Another group of studies approaches the problem by integrating the detected
objects from different viewpoints. Franzel et al. [7] use X-Ray images of the
same scene from different viewpoints and integrate them with a voting-based
approach to find the object pose. Roig et al. [17] detect cars, buses and people
by combining different detections from six cameras by using conditional random
fields. Another approach was introduced by Viksten et al. [24], to detect objects
from different views and integrate the information using a mean-shift clustering
algorithm. Even if there are false detections in single views, detection is improved
by integration. However, it is not mentioned how to overcome the cases where
there is not a correct pose estimate in some of the views, which can occur due
to the absence of the object in one of the views.

There have also been studies that used appearance-based models in multiple-
camera setups. For example, Helmer et al. [9] combine different viewpoints by
using the projections of the objects into 3D. They argue that any appearance-
based method can be used. Their method maximizes the conditional likelihood
of object detections. They do not use RGB-D cameras. In another study, Coates
and Ng [4] use corresponding appearance features to compute the posterior pose
probability. They use a pant-tilt-zoom camera and only one object category for
experiments. Finally, Susanto et al. [20] combine the final pose estimate from
each individual viewpoint into a single 3D location. VFH descriptors [18] are
computed in the reconstructed 3D scene and are integrated with the results
from a DPM object detector, where DPM uses a discriminatively learned part
model with a latent SVM model. They perform intensive experiments with 4
Kinects, which result in interference. Therefore, there is significant noise in the
depth data. We compare our results with this method in Sect. 4.
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Fig. 2. The interference of multiple RGB-D cameras results in noisy depth data as
seen on right. Gray areas have a valid depth, while the black regions do not provide
any information about depth.

As mentioned previously, pose estimates of the objects are necessary from
multiple views, and any pose estimation method can be used. There are some
alternatives that can be used to detect textureless objects. For example, Papazov
and Burschka [16] use an efficient RANSAC-like sampling strategy to establish
correspondence between the scene and the model. However, this work requires
a robust local descriptor like SHOT [23]. It can be difficult to find correspon-
dences for object features without distinctive depth features. Furthermore, when
multiple Kinects are used, 3D data may be noisy due to interference problems.
Brachman et al. [2] use a single decision forest and use the minimization of an
energy function which uses depth as one of the components. Background RGB-D
images are necessary to train the objects. Although they use a uniform noise or
a simulated plane, when the background has similar texture with the object, it
may be difficult to find the object in such a setting. Also the simulated plane will
be affected by interference problems during testing. It should be mentioned that
although some studies obtain features by using learning algorithms like Convo-
lutional Neural Networks [25], we prefer to use manually designed features. In
another study, Tejani et al. [21] use LineMOD features [10] and adopt Latent-
Class Hough Forests [8]. LineMOD matches viewpoint samplings of the object
by using selected features. In LineMOD, if the surfaces of the objects don’t have
distinctive features, it can be difficult to detect objects. Another alternative
is a probabilistic appearance model which is reported to estimate the poses of
objects without texture [22]; however, it is not possible to combine multiple fea-
tures if one of the attributes has noise, or unavailable. We introduce depth, color
and surface normal attributes together with edge orientations into this method,
details of which are explained in Sect. 2.2.

2 Probabilistic Appearance Based Estimation

In this section, we will first briefly explain the probabilistic model of appearance
and present how we combine different features. Next, we will show the feature
types that we used in this study for pose estimation from single views.
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2.1 Probabilistic Model of Appearance

We assume that we want to find the pose of a previously-learned object in a
given test scene. Let the features of the test scene t be denoted by xf

t = {af
xt, pxt}

where f is the feature type, af
xt is the appearance attribute, and pxt ∈ R

+ is
the position of the feature in the image plane. A similar notation can be used
for the features of the learned object l, xf

lv = {af
xlv, pxlv}, where v denotes the

viewpoint of the learned object. Viewpoint is important because we are using
the appearance of the object for detection. The viewpoint v includes the azimuth
(θ), elevation (γ) and image-plane rotation (α) angles, and the distance d of the
object to the camera (Fig. 3 left). The object is learned from multiple viewpoints
at a known distance to the camera during training. The pose of the object can
be found in 6DoF if the viewpoint v and the camera parameters are known and
the object is at a known position pxt in the test image.

We turn the set of image features into a distribution of features using the
approach explained by Teney and Piater [22]:

φf
t (xf

t ) =
∫

It

N (pf
xt

, pf
y , σf )Kf (af

xt
, ay) dy (1)

Here, It denotes the test image, and K is a kernel associated with the feature type
f . Then, the distribution of training features φf

lv(xf
l ) can be obtained similarly.

The similarity between the test scene and the learned object at viewpoint v is
given as the cross-correlation between two distributions:

(
φf

t � φf
lv

)
(xt) =

∫
I

φf
t (xt + y)φf

lv(y) dy (2)

As suggested by Teney and Piater [22], we use Monte Carlo integration for effi-
ciency, which involves drawing samples yi from I. We obtain the cross-correlation
of distributions for viewpoint v at image position xt for feature type f as

Φf
xt,v ≈ 1

NL

yL∑
yi

φf
t (xt + yi)φ

f
lv(yi), (3)

where NL is the total number of samples drawn from the image features. We
combine different features using

Φxt,v =
F∏
f

Φf
xt,v(1 − λf ) + λf , (4)

where each type of feature is denoted by f = 1, . . . , F , and λf is the parameter
related to the probability of the absence of a feature. This parameter increases
the possibility that the corresponding location will be considered as a candidate
pose estimate even if there is no attribute ax that supports the existence of a
candidate pose at position xt. The local maxima of Φxt,v, which can be isolated
by non-maximum suppression, constitute the pose estimates for the object. Each
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pose estimate is denoted by an ordered pair (xt, v), and can be converted into
a 6DoF pose via the camera parameters. The 6DoF pose estimates are denoted
by xe with a corresponding confidence score se. The score is the value of Φxt,v

at the local maxima points, which is the similarity between the estimated pose
and the corresponding learned object. We make an assumption such that the
similarity score is related to the confidence of the spatial pose of the object.
When the score is high for a pose xe, the confidence is also high.

2.2 Feature Types

In this section, we show the feature types that we used to recognize the objects.
Note that the feature types can be extended for other studies in a straightforward
fashion. We select the features which can be detected in textureless objects.
For each feature type, a dedicated kernel Kf (af

x1
, af

x2
) is used. All features are

associated with a position px ∈ R
2 in the image plane. An overview of the process

can be seen in Fig. 3.

Edge Orientation. We use an intensity-based Canny edge detector [3]. Each edge
point feature has an appearance attribute a◦

x ∈ S+
1 giving the local orientation

of the edge at a given position. The kernel uses a von Mises distribution on the
half circle, which is defined as K◦(a◦

x1, a
◦
x2) = Coeκo cos(a◦

x1−a◦
x2). Our distance

measure can be said to be a general form of the directed chamfer distance [13].
Co is a normalization constant.

Depth. Depth values are obtained from depth images. Each depth feature has
only one depth value as an appearance attribute ad ∈ R

+. The kernel can be
defined as Kd(ad

x1, a
d
x2) = Cde−(ad

x1−ad
x2)

2
. Cd is a normalization constant.

Color. The color feature ah ∈ [0, 1] is given by the hue component of the HSV
color space. The kernel can be defined as Kh(ah

x1, a
h
x2) = Cheκh cos(ah

x1−ah
x2). Ch

is a normalization constant.

Surface Normal. The surface normals an ∈ S+
2 are normal vectors at a point

p. The kernel can be defined as Kn(an
x1, a

n
x2) = Cneκn cos(‖an

x1−an
x2‖). Cn is a

normalization constant.

3 Multiple-View Integration

In this section, we explain how to integrate pose estimates from multiple views
to obtain the actual pose of the object in 6D. We are going to use the pose
estimates and the associated scores obtained with the approach explained in the
previous section; however, it should be noted that any pose estimation method
can be used. If there are no scores associated with the pose estimations, then we
can assume a uniform probability distribution among all pose estimates.
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Fig. 3. Left: The object is at the center of the sphere. The dots on the sphere illustrate
the viewpoints. Right: The feature types related to the learning of the object.

An overview of the integration process can be seen in Fig. 4. First, pose
estimations are made for each view by using information obtained from sensors
1 and 2, only two of which are correct for each view. Each pose estimate from
each view is integrated to obtain the integrated pose estimate surfaces. The
highest values are the scores of final pose estimates, which are the first two
diagonal elements in Fig. 4. If the correct estimation was made by only one of
the views, it would still be possible for our proposed method to make a correct
estimate, because a high score would dominate in the integrated surface. Now,
we will explain this process in detail.

Fig. 4. Pose estimations are made for the object shown on the upper left. For example,
there are three estimates for each view. The integration is made in the world frame.
The process is shown in 2D for illustration purposes.

We have a set of pose estimates xe
vi from view vi, each associated with a score

se
vi. During integration, we consider all the pose estimations from all the views,

i.e. the target object can be seen and recognized correctly by any combination
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of the views. Therefore, first, we obtain all the subsets of the views, V p =
{(vp1 , vp2 , . . . , vpNp ) : vpj ⊆ V,∀j = 1, . . . , 2Nv}, where V is the set of all the
views, ‖V ‖ = Nv is the number of views, vpi is one of the subsets, and Np = 2Nv

is the number of subsets. Next, we consider the set of all possible pose estimation
combinations from view subsets V p which can be defined as C = {(xe

v1, . . . , x
e
vn) :

xe
vi ∈ vi,∀vi ∈ vpj , vpj ∈ V p,∀j = 1, . . . , 2Nv}. Each element ck ∈ C contains

a set of pose estimates, which includes at most one estimate from each view.

The total number of pose estimate combinations will be ‖C‖ =
Np∑
j

∏
vi∈vpj

‖xe
vi‖,

where ‖xe
vi‖ is the number of estimates for view vi.

Now, we have a combination set of pose estimates. Next, we obtain a distri-
bution in 6D for each pose estimate in vi,

Φ(xe
vi) = N (xe

vi, Σ), (5)

which is simply a Gaussian centered at the estimate in the ith view with a
covariance of Σ. The covariance matrix is a 6×6 diagonal matrix and its diagonal
values are selected to be equal to se

vi
−1.

After we obtain the distributions of each pose estimate, we use them to
construct the distribution of the combined pose estimates cj ∈ C,

ϕ(cj) =
∏

xe
vi∈cj

Φ(xe
vi). (6)

The ϕ(cj) are what is visualized as surfaces in Fig. 4. We need to find the value
which maximizes ϕ(cj) to obtain possible pose estimates for each cj . This can
be achieved by taking the derivative of ϕ(cj) with respect to x:

∇ϕ(cj) =
[
∂ϕ(cj)
∂x1

· · · ∂ϕ(cj)
∂x6

]
= 0 (7)

and solving it for each dimension:

∂ϕ(cj)
∂xk

=
Nv∑
i=1

xk − xe
k,vi

se
vi

−1 = 0 (8)

For each pose estimate combination cj we can find the x∗
cj that maximizes

ϕ(cj) by solving this equation. The final pose estimate can be obtained by finding
the maximum score among combinations C:

x∗ = arg max
x∗
cj

‖v
pj ‖
√

ϕ(cj)λv (9)

Equation 9 ensures that pose estimations in a combination subset of views are
not selected only because of the small number of views in the subset. ‖vpj‖ is
the number of views in the pose estimation combination subset and ϕ(cj) < 1.
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When an estimation is made by a combination subset cm with large number of
views, ϕ(cm) will be lower than an estimation made by a combination subset cn

with less number of views if the ‖vpj‖th root of ϕ(cm) is not taken. λv ∈ [0, 1]
is a parameter used to induce the estimations made with a smaller number of
views. As λv gets closer to 0, combination subsets cm with higher number of
views are selected.

4 Experiments

In this section, the approach is evaluated in three different environments
with different objects. In all the experiments, the necessary parameters
σ, λf , Co, κo, Cd, Ch, κh, Cn, κn are obtained by cross-validation. The “probabil-
ity of absence” parameter is set to λf = 0.3 for all features except edge orien-
tations, where λ◦ = 0.0. In Sect. 4.1, the probabilistic appearance pose estima-
tion method is compared with other widely used pose estimation approaches.
In Sect. 4.2, we mainly compare our method with another detection method. In
Sect. 4.3, we give the results of the accuracy of pose estimation.

4.1 Single View Pose Estimation

In the first set of experiments, the poses of multiple objects are estimated in a
cluttered scene [21]. There are 6 objects with multiple instances in each scene.
The number of scenes are over 700 images for each object. The objects are
learned by using the 3D object models as shown in Fig. 5. The training images
are captured for azimuths in the range of θ ∈ [0, 2π] and elevations in the range
of γ ∈ [0, π/2] in 5-degree steps (δθ = 5◦, δγ = 5◦). There are foreground
occlusions, 2D and 3D clutters in the test scenes.

Fig. 5. Object models used in Sect. 4.1.

The comparison is made against two methods, LineMOD [10] and LCHF [21].
The measure defined in [11] is used to determine a successful pose estimation.
For each object instance in each scene, there exists a ground truth rotation R
and translation T. If the estimated rotation and translation for the object with
the model M are annotated as R̂ and T̂ respectively, then the measure for pose
estimation of symmetric objects can be given as

m = avg
x∈M

∥∥∥(Rx + T) −
(
R̂x + T̂

)∥∥∥ , (10)
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and for non-symmetric objects as

m = avg
x1∈M

min
x2∈M

∥∥∥(Rx1 + T) −
(
R̂x2 + T̂

)∥∥∥ . (11)

Estimation is a success if m < kmd where d is the diameter of the object and
km = 0.15 in our comparison. The F1-scores for three methods can be seen in
Table 1. As can be observed, three objects are recognized better with probabilis-
tic appearance-based pose estimation method, while three objects are recognized
better with LCHF. On average, accuracies are roughly equal. For PAPE, the best
estimate performances are for the camera and coffecup with respect to LCHF.
The superiority of PAPE for these objects can be related to the discriminative
visual features. They have unique colors and their edges are visible under dif-
ferent viewing angles, which is important for edge orientations. On the other
hand, the accuracy is lower especially for the milk bottle and juice carton. For
the milk, the background has features similar the the milk, which inreases the
rate of wrong estimates. For the juice carton, as can be seen in its model in
Fig. 5, the visual features are not clear, which makes it difficult to discriminate
its visual appereance features that are important for PAPE. It should also be
noted that since multiple attributes are combined, the pose estimation accuracy
in cluttered scenes increases with respect to the single-attribute method. As the
PAPE results are comparable with other state-of-art methods for pose estima-
tion, we can conclude that it can be used with the multi-view pose estimation
method. Some of the results for the pose estimation in this set of experiments
can be seen in Fig. 6.

4.2 Multi-view Detection

In the second set of experiments, we detect the location of the objects in different
scenes using the MPII Multi-Kinect Dataset [20]. It is one of the few available
datasets containing real RGB and depth images from different viewpoints for
object recognition. The dataset contains 9 different object classes and a total of
33 scenes. Four Kinects are used to capture the scene, but only three of them

Table 1. F1-scores for Sect. 4.1

PAPE LCHF [21] LineMOD [10]

Joystick 51.5 53.4 45.4

Camera 80.7 37.2 42.2

Coffee cup 99.5 87.7 81.9

Shampoo 82.5 75.9 62.5

Milk carton 27.2 38.5 17.6

Juice carton 41.2 87.0 49.4

Avg 63.8 63.3 49.8
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Fig. 6. Visualization of some of the results for Sect. 4.1. The estimates of the 3D object
models are rendered on the image for visualization.

are used to recognize the objects, as one of them is used to obtain the ground-
truth poses of the objects. The sensors interfere with each other; therefore, the
quality of the depth data is poor. Another point to mention is that the provided
calibration, which is obtained from the depth data, contains large errors reported
as up to 13 cm in 3D space. The dataset includes two parts, for classification and
detection respectively. In the classification part, there is only one object instance
in the scene. We have used this part to learn the objects. We have used RGB-D
images from three viewpoints (Nv = 3).

Since our method mainly finds the pose estimate of the target object, we
have found the bounding box after finding the pose estimation for comparison
reasons. We compared our results with those obtained by Susanto et al. [20].
We used RGB and depth images and calibration files provided with the dataset.
The ground truth of the objects was also available with the dataset.

Susanto et al. [20] use a Deformable Parts Model (DPM) [6] together with
VFH descriptors using reconstructed 3D scenes and estimate the poses by using
the combinations of these features from multiple views (mDPM + mVFH). The
comparison of the results can be seen in Table 2. The first column reproduce the
average precision (AP) results from [20], and the remaining columns indicate
the AP results obtained using our PAPE approach with different numbers of
cameras. The AP is computed as described in [19] with a bounding-box overlap
of 50 % of the detected object [5].

The APs are generally higher than the results obtained by Susanto et al. [20].
Avocado, bowl, plate, cup and sponge are detected with a high AP. An advantage
of using multiple cameras is occlusion handling. For example, the bowl is detected
successfully as shown in Fig. 7. It can also be observed that when the number
of cameras increases, the accuracy of detections also increases. Therefore, we
can suggest that the detection rate of the probabilistic, appearance-based pose
estimate will increase if it is used with multiple cameras; however, it should be
mentioned that the effect of adding new cameras on pose estimation performance
reduces with the number of views. It can be reasoned that new views do not
provide new information regarding the scene. Quantitatively, we can state that
with our approach the accuracy increases by almost 24 % when multiple cameras
are used instead of a single camera. One of the possible reasons is that the
proposed method uses simple appearance-based attributes of the scene, so that
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Table 2. Detection results and comparison (AP in %)

mDPM + mVFH [20] mPAPE 3 Cams mPAPE 2 Cams mPAPE 1 Cam

Avocado 100.0 100.0 99.2 79.7

Bowl 87.0 99.7 99.7 90.3

Coffee box 80.0 92.4 87.3 80.0

Coffee can 89.6 89.9 91.1 98.1

Cup 100.0 97.6 96.2 82.8

Nutella can 89.2 93.6 87.0 58.4

Plate 90.2 98.1 97.2 82.3

Spice can 98.5 96.8 97.4 78.0

Sponge 97.0 97.4 95.4 48.3

Mean 92.4 96.2 94.5 77.5

objects without texture can be recognized with a higher performance, while
the method proposed by Susanto et al. [20] uses VFH, which would need more
complex shape features. This may be one reason why mDPM + mVFH has
better performance when estimating objects like the spice can and the coffee
can, while mPAPE has a better recognition rate for textureless objects like plate
and bowl. Surprisingly, for coffee cup, the single-view method performs better
with the proposed approach. This may be due to false detections with high
scores in the other views which resemble the appearance of the coffee can in the
scene. Overall, it can be summarized that mPAPE can estimate the poses of the
objects even if the information is partly absent/noisy for some of the features in
the scene, e.g. depth features in the mentioned dataset.

Fig. 7. Partially occluded object bowl can be detected successfully. The images are
cropped for illustration purposes.

A common cause of failure is the resemblance of objects in terms of the visual
features used in our approach. For example the cup and bowl can be mistaken
for each other as shown in Fig. 8. Both of them have a convex inner surface and
their inner surfaces are white which results in similar visual appearance. Other
errors are due to object viewpoints that were not learned during training. There
is only a limited number of viewpoints present in the dataset.
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Fig. 8. A wrong detection. Bowl is detected as a cup.

4.3 Multi-view Pose Estimation

In the third set of experiments, we estimate the poses of textureless objects.
IKEA chair parts are used as shown in Fig. 9a. The training images are captured
for azimuths in the range of θ ∈ [0, 2π] and elevations in the range of γ ∈ [0, π/2]
in 5-degree steps (δθ = 5◦, δγ = 5◦).

(a) Objects (b) Test scenes by two cameras.

Fig. 9. Experimental setup for the pose estimation experiments.

There are three different object types and six different object instances in
the test scenes. Their poses are estimated in 13 different scenes. Since we used
the KUKA Light-Weight-Robot arm for recording the poses of the objects, only
those views that lie in the workspace of the robot were used for pose estimation.
The poses of the objects are determined in the reference frame of the robot;
therefore, the errors in the calibration of the camera position will also contribute
to the error of the final evaluation. It should be noted that, in other studies, the
reference frame is generally the camera itself. The scenes are captured using
two Kinects as seen in Fig. 9b. To avoid interference issues, we used the freenect
library, which has the capability of shutting down the IR light of the Kinects.
However, due to delayed onset times of the IR light in the camera, some of the
depth images do not contain sufficient information, as seen in Fig. 10.

In the first part of the evaluation, we compare the results obtained from
single and multiple cameras. We used training data with coarse (δθ, δγ = 20◦)
and dense (δθ, δγ = 5◦) angular spacing to see the capacity of our approach under
both conditions. LineMOD [10] is also used to estimate the poses of the objects;
however, since the bottom and back parts of the chair have no discriminative
surface normal values or any discriminative visual feature from the surrounding,
the detection rate performance was low with LineMOD; therefore, only the pose
estimation for the chair leg is compared with the proposed method by using
two cameras. The results are given in Table 3. As can be seen, the average error
gets smaller with angular sampling step size. The error is smallest when the
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Fig. 10. Left: The pose estimates for two objects. Right: Corresponding depth image.
Black regions contain no depth information.

Table 3. Average pose estimation errors

Single cam Multi-cam LineMOD singleview LineMOD multiview

Coarse 0.0226 m, 11.8◦ 0.0190 m, 11.1◦ – –

Dense 0.0186 m, 10.0◦ 0.0179 m, 9.3◦ 0.0400 m, 13.8◦ 0.0347 m, 12.6◦

multi-view method is used. There is a decrease of around 10 % in orientation
estimation error between dense single-camera and dense multi-camera settings.
The pose estimation with LineMOD has a performance worse than mPAPE.
This is probably due to the lack of discriminative surface features of the chair
leg, which makes it harder for LineMOD to make precise pose estimates. The
multi-view method increases the coarse pose estimation by approximately 15 %
in position. An increase of this magnitude is not observed in dense estimation.

Using multiple-camera pose estimation with dense training data, we obtained
the errors in translation and orientation shown in Fig. 11. For mPAPE, the errors
are concentrated at 0.015 m, while for lineMOD, the errors are concentrated
around 0.03 m. As it can be seen, mPAPE has a higher estimation accuracy;
however, there are still errors higher than 0.01 m which can cause problems if a
high precision estimation is necessary. Multiple reasons exists for these errors.
The first is the difficulty of obtaining stable features for recognizing textureless,
flat objects. Features can be different under changing illumination conditions
and the noise in the depth data due to multiple RGB-D cameras. We have
used a probabilistic, appearance-based pose estimation method to overcome this.
The second source is related to occlusion of the objects in some of the scenes.
Unsurprisingly, it has been observed that the error increases when the object
is occluded in one of the views. The third reason is the calibration error of the
cameras. The poses of the objects are recorded with respect to the robot frame.
When the estimated pose is transformed into the robot frame, this affects the
result.

In all sets of experiments, pose estimation integration from multiple cameras
with our approach provided higher accuracy and precision with respect to single-
camera pose estimation. The improvement in detection rate, around 24%, is even
higher than the improvement in the pose estimation, which is around 10%.
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Fig. 11. Histogram of translational and orientation errors of mPAPE and lineMOD
for chairleg parts respectively. Errors of up to 0.04 m in translation and 20◦ in orien-
tation can be observed for mPAPE, while errors upto 0.05 m in translation and 25◦ in
orientation can be observed for lineMOD method.

5 Conclusion

We proposed a method for integrating pose estimations from multiple sensors.
A probabilistic appearance-based pose estimation method has been improved to
combine multiple attributes of the scene, even if one of the features (e.g. depth
information) is noisy or incomplete in the scene.

We have developed a method to integrate poses from multiple views and
used it with PAPE; however, it should be noted it was also possible to use with
other pose estimation methods (e.g. lineMOD [10] which had lower performance
as shown in the experiments). The results show that mPAPE can achieve high
accuracies when pose estimations are integrated with the approach proposed
in this paper; and they are comparable to or exceed state-of-the-art results.
Furthermore, errors in object pose estimation are reduced with multiple cameras.
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170 Ö. Erkent et al.

20. Susanto, W., Rohrbach, M., Schiele, B.: 3D object detection with multiple kinects.
In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7584,
pp. 93–102. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33868-7 10

21. Tejani, A., Tang, D., Kouskouridas, R., Kim, T.k.: Latent-class hough forests for
3D object detection and pose estimation. In: European Conference on Computer
Vision, pp. 462–477 (2014)

22. Teney, D., Piater, J.: Multiview feature distributions for object detection and
continuous pose estimation. Comput. Vis. Image Underst. 125, 265–282 (2014).
https://iis.uibk.ac.at/public/papers/Teney-2014-CVIU.pdf

23. Tombari, F., Salti, S., Stefano, L.: Unique signatures of histograms for local
surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15558-1 26

24. Vikstén, F., Söderberg, R., Nordberg, K., Perwass, C.: Increasing pose estimation
performance using multi-cue integration. In: IEEE International Conference on
Robotics and Automation, pp. 3760–3767 (2006)

25. Wohlhart, P., Lepetit, V.: Learning descriptors for object recognition and 3D pose
estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp. 3109–3118 (2015)

26. Yang, A., Maji, S., Christoudias, C., Darrell, T., Malik, J., Sastry, S.: Multiple-view
object recognition in smart camera networks. In: Bhanu, B., Ravishankar, C.V.,
Roy-Chowdhury, A.K., Aghajan, H., Terzopoulos, D. (eds.) Distributed Video Sen-
sor Networks, pp. 55–68. Springer, London (2011)

http://dx.doi.org/10.1007/978-3-642-33868-7_10
https://iis.uibk.ac.at/public/papers/Teney-2014-CVIU.pdf
http://dx.doi.org/10.1007/978-3-642-15558-1_26
http://dx.doi.org/10.1007/978-3-642-15558-1_26

	Integration of Probabilistic Pose Estimates from Multiple Views
	1 Introduction
	1.1 Related Work

	2 Probabilistic Appearance Based Estimation
	2.1 Probabilistic Model of Appearance
	2.2 Feature Types

	3 Multiple-View Integration
	4 Experiments
	4.1 Single View Pose Estimation
	4.2 Multi-view Detection
	4.3 Multi-view Pose Estimation

	5 Conclusion
	References


