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Abstract. Approaches inspired by Newtonian mechanics have been suc-
cessfully applied for detecting abnormal behaviors in crowd scenarios,
being the most notable example the Social Force Model (SFM). This class
of approaches describes the movements and local interactions among
individuals in crowds by means of repulsive and attractive forces. Despite
their promising performance, recent socio-psychology studies have shown
that current SFM-based methods may not be capable of explaining
behaviors in complex crowd scenarios. An alternative approach consists
in describing the cognitive processes that gives rise to the behavioral
patterns observed in crowd using heuristics. Inspired by these studies,
we propose a new hybrid framework to detect violent events in crowd
videos. More specifically, (i) we define a set of simple behavioral heuris-
tics to describe people behaviors in crowd, and (ii) we implement these
heuristics into physical equations, being able to model and classify such
behaviors in the videos. The resulting heuristic maps are used to extract
video features to distinguish violence from normal events. Our violence
detection results set the new state of the art on several standard bench-
marks and demonstrate the superiority of our method compared to stan-
dard motion descriptors, previous physics-inspired models used for crowd
analysis and pre-trained ConvNet for crowd behavior analysis.

Keywords: Violent events · Social force model · Behavioral heuristics

1 Introduction

Video surveillance cameras have become ubiquitous in our cities. However, their
usefulness for preventing crimes, is often questioned due to the lack of adequately
trained personnel to monitor a large number of videos captured simultaneously,
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and to the loss of attention from surveillance operators after a few tens of minutes
inspecting such videos [1].

This has attracted great attention from the computer vision community
aimed at developing techniques to automatically detect abnormal behaviors in
videos which may preserve safety and likely prevent crimes.
Although the proposed methods have achieved significant outcomes, still they
are far away to being applied for real world scenarios. In particular, the biggest
challenge lies in the definition of abnormality as it is strongly context dependent.
In most cases, violence and panic are considered as abnormal behaviors, how-
ever, even people running or walking in some areas of a scene may be considered
an abnormal event in particular situations. In video surveillance scenarios, the
most well-known approach to detect abnormalities is to codify the pedestrians’
behaviors by means of sociological models, being the most notable example the
social force model (SFM) [2], which was successfully employed for abnormality
(mostly panic) detection in crowd scenes [3]. Specifically, SFM is a method for
describing local crowd interactions using Newtonian mechanics.

Although many variants of the SFM have been proposed in the social psychol-
ogy literature [4–6], the central tenet of all such models is the ability to describe
different crowd scenarios (e.g., cross walk, panic and evacuation) by calibrating
a set of physical forces on empirical observations [7]. Despite the interesting per-
formances of the SFM-based models [2], recent social psychology studies argued
that they are too simplified [7,8] to capture complex crowd behaviors, other than
being heavily affected by a poor generalization power, meaning that a model cal-
ibrated on a set of empirical observations may often fail to deal with a different
set of observations1.

To face these limitations, recent works try to exploit a set of simple, yet effec-
tive, behavioral heuristic to describe complex individuals’ behaviors observed in
crowded scenarios, while using physics-based equations to quantify such rules
on crowd videos [7–9]. Unlike SFM-based models which aim at describing com-
plex crowd movements by calibrating a set of forces on empirical observations,
this class of approaches defines a set of behavioral heuristic which are formu-
lated using concepts such as velocity and acceleration borrowed from New-
tonian mechanics [7]. The effectiveness of such heuristics for modeling complex
human (re)actions and decision-making have been well noted in psychology lit-
erature [10–12] and share the common characteristics to be fast and frugal [13].
They are fast because of their low computational complexity, and frugal since
they benefit from a few pieces of information [13]. Readers may refer to [7,8]
for a full treatment of the above methods from psychological and sociological
perspectives.

In this work, taking inspiration from such socio-psychological studies above
mentioned, we propose to employ cognitive heuristics together with physical
equations for detecting violence in video sequences. To the best of our knowledge,
this is the first attempt in computer vision that investigates the use of heuristic
rules for violence detection in crowd scenarios. More specifically, (I) We extended

1 This is referred to low predictive power in socio-psychology [7].
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Fig. 1. Overview of the proposed framework, from behavioral heuristic rules to the
Vision Information Processing Signature descriptor (VIPS).

the heuristics of the cognitive model proposed in [7,8] to model violent in crowds.
(II) We formalized the heuristics with mathematical equations and (III) we
showed how we are able to efficiently approximate and extract them from a
video sequence. (IV) Finally, we use the estimated heuristic maps to form a
video descriptor, called Vision Information Processing Signature (VIPS) which
strongly outperform the social force model, ConNet and other state of the art
descriptor on the violence classification task.

Figure 1 depicts an overview of our framework. First, we define three behav-
ioral heuristic rules based on social-psychology studies [7,8]. Then, we compute
motion information from two successive frames along with particle advection
to track particles (to capture as much as possible individual subject motion in
crowd scenes). This is followed by computing physics-based feature maps from
each behavior heuristic rule. Finally, following the standard bag-of-words para-
digm, we sampled P patches and encode them into a number of centers. Then, we
concatenate the histograms to form the VIPS descriptor. Eventually, The result-
ing histograms are fed into a classifier to detect/quantify the violence behaviors.

The rest of the paper is organized as follows. In Sect. 2, we review the state-of-
the-art on violence detection using computer vision techniques. Section 3 presents
the proposed cognitive models and describe the envisaged heuristic rules. In
Sect. 4, we illustrate how to estimate the formulated forces from video sequences.
This involves extracting a set of maps from the heuristics, which we will further
exploit to define the VIPS descriptor for crowd violence detection. In Sect. 5
we evaluate our approach on several benchmark datasets comparing with prior
dominant techniques and descriptors. Finally, Sect. 6 draws a conclusion and
presents the future work.

2 Related Works

The first work for detecting violence in videos was proposed in [14]. This app-
roach focused on two- person fight episodes and employed motion trajectory
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information of individual limbs for fight classification. It required limbs segmen-
tation and tracking, which are very challenging tasks in presence of occlusion
and clutters, specially in crowd situations.

More recent methods [15–19] mainly differ in the used feature descriptor, sam-
pling strategy and the classifier adopted. For example, [15] used Spatial Temporal
Interest Point (STIP) detector and descriptor along with linear Support Vector
Machines (SVMs). Nievas et al. [20] applied STIPs, Histogram of Oriented Gra-
dients (HOG) and Motion SIFT (MoSIFT) descriptors along with the Histogram
Intersection Kernel SVM [20] for violence detection. Other approaches derived
local motion patterns from optical flows. For instance, Solmaz et al. [21] analyzed
motion flows (derived from optical flows) to identify a particular set of simple
crowd behaviors (e.g., bottlenecks and lanes). The statistics of flow-vector mag-
nitudes changing over the time are exploited in [18] to represent motion patterns
for the task of violence detection. The social force model [3] and its variations
[22–24] represented motion patterns using physics concepts such as attractive
and repulsive forces, motion equations and interaction energy. The success of
this class of methods, however, is heavily dependent on the video quality and
the density of people involved in crowds, and they may not be capable of cap-
turing a wide range of complex crowd behaviors.

3 Formulation of Heuristic Rules

In this section, first, we define a set of heuristic rules inspired from socio-
psychological studies [7–9] describing how individuals behave in violence crowd.
Then, we explain how to formulate these rules using physics equations and basic
visual information extracted from the observed scenes.

Our proposed framework consists of the following heuristic rules:

H1: An individual chooses the direction that allows the most direct path to a
destination point, adopting his/her moving regarding the presence of obstacles.

H2: In crowd situations, the movement of an individual is influenced by his/her
physical body contacts with surrounding persons.

H3: In violent scenes, an individual mainly moves towards his/her opponents to
display violent actions.

The first heuristic rule (H1) is inherited from the socio-psychological literature
[7] and encompasses individual’s internal motivation towards a goal avoiding
obstacles or other individuals. The second heuristic rule (H2), on the other hand,
states that individual movements in a crowd is not only governed by his/her
internal motivation but also by the unintentional physical body interactions with
his/her surrounding individuals. This is especially true in overcrowded situations
where crowd dynamics is unstable and body contacts frequently occur. The third
heuristic rule (H3) defines behavioral patterns within violent scenes, where there
are two or more parties (e.g., police and rioters) fighting and showing violent
behaviors to each other.
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We formulate the above heuristic rules using visual information of individuals
such as their spatial coordinates and velocity flows, following [7–9]. For each
individual i, we consider its position (xi, yi) in the 2D image plane and its
velocity vi. With the scalar di,j , we refer to the distance between i and j, and
nji is a normalized unit vector pointing from the coordinates of j to i. The visual
motion information of i with respect to j is captured by the angle between the
velocity vectors vi and vj , which we call it φij . Based on these visual cues, the
heuristic rules are formulated as follows.

Heuristic rule H1: In normal situations, individual i chooses the most direct
path towards a destination with a desired velocity of v des

i . It is, however, a
norm that individual i changes his/her desired velocity v des

i to vi(t), due to an
unexpected obstacle at time t [2]. This heuristic can be formulated as:

dv des
i

dt
=

(v des
i − vi(t))

τ
(1)

where τ is the amount of time individual i requires to change its desired velocity
facing an unexpected obstacles. If velocity is constant over time, dv des

i

dt = 0,
meaning the individual is approaching his/her target destination without facing
any obstacle. Otherwise, the presence of an obstacle implies a change at the
individual ’s velocity.

Heuristic rule H2: The heuristic H1 is, however, valid in sparse crowd scenarios
(e.g., walking in a street) where individuals have enough time and space to
keep safe distance from other pedestrians, and change their desired velocity
against unexpected obstacles. This is not the case in crowd situations (e.g.,
riots), where individuals do not have enough time and space to control their
movements. Hence, they are subject to unintentional physical body contacts that
may strongly affect their movements. Borrowing from [7,25], the body contact
force imposed on i from j is formulated as:

F bc
ij = nji · gi(j) (2)

where gi(j) is a function that returns zero if i and j are not close enough to have
body contact and a scalar value inversely proportional to their spatial distance
dij , otherwise.

Heuristic rule H3: In violent situations, individual j may exhibit an action (ver-
bally, emotionally or physically) to individual i that triggers i to move towards
j for a reaction [26]. This is what heuristic H3 aims to model. We named this as
aggression force F agg

ij which is defined as:

F agg
ij = nji ·

(1 − vi·vj

‖vj‖·‖vi‖ )

2
· fi(j) (3)

f(·) returns 1 for each individual j who is in the view field of individual i
regardless of their distance, and 0 otherwise. The term 1

2 (1− vi·vj

‖vj‖·‖vi‖ ) is referred
to as aggression factor and measures how much the individual i is stimulated
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to move towards j based on the angle between the velocity vectors vj and vi .
The value of aggression factor is in the [0 1] interval, 1 when individuals i and
j are moving against each other (the angle between vectors vj and vi is π ),
and 0 when individuals i and j are moving towards a same direction (the angle
between vj and vi is 0). nji codes the spatial relation of i and j and gives the
aggression force a vector form (with direction and magnitude).

4 Estimating Heuristic Rules from Videos

In this section, we quantify each heuristic rule on video sequences. This provides
a set of maps (one map for each rule) which will be further used to define our
video descriptor for violence detection.

Assume that the goal is to quantify the heuristic rules on a gray-level video
V = {I1, ..., IT } with T frames of size h × w. Toward this, we need to compute
the basic variables in Eqs. 1–3, including each individual’s spatial coordinate
and velocity. This can be performed by detecting and tracking individuals over
the video frames. This, however, is very challenging in crowd videos with severe
occlusions and clutter. An alternative, without individual detection and tracking,
is particle advection [3], where a grid of particles is placed over each frame
and moved according to the video flow field computed from the optical flow
(OF) [27]. The velocity vector of each particle i located at (xi, yi) over frame t
is approximated by averaging OF vectors in its neighborhood using a Gaussian
kernel in the spatial and temporal domains, i.e., oi =

〈
OF(xi, yi, t)

〉
avg

. More
details about particle advection can be found in [3]. From now on, we will use
the term particle(s) instead of individual(s), and optical flow instead of velocity.

Estimation of heuristic rule H1. The formulation of heuristic rule H1 estimates
the change of a particle’s velocity over the time, which is particle’s acceleration,
ai

2. Borrowing from [3], we estimate Eq. 1 by computing the derivation of OF
vectors with respect to the time:

dvi

dt
=

v des
i − vi(t)

τ
� o t+Δt

i − o t
i

Δt
(4)

where the apex states the time (frame index). If we set Δt = 1 (two successive
frames), then the particle’s acceleration (dvi

dt ) at frame t + 1 can be efficiently
estimated by subtracting two successive OF vectors:

dvi

dt
� at+1

i = o t+1
i − o t

i (5)

Estimation of heuristic rule H2. According to Eq. 2, the formulation of body
contact force involves computing the unit vector nji for all particles i and j which

2 According to the physics motion laws.
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is not computationally efficient (it is quadratic in the number of particles). It is
obvious that body interaction occurs when individual j moves toward individual
i and contacts his/her body at time t. This implies that in the case of body
contact, the moving direction of j toward i (vj) is similar to the direction of nji

(according to the definition). Furthermore, body contact changes the velocity of
individual j, vj , at time t (individual i is considered an obstacle). As a result, nji

can be effectively estimated by acceleration (corresponding to a velocity change)
at a very low computational cost. Based on above explanation, we estimate the
contact force of particle i caused by its neighboring particles j’s as:

F bc
i =

∑
j aj · gi(j)
∑

j gi(j)
(6)

where, aj is the acceleration vector of particle j (Eq. 5). gi(j) is defined by a

Gaussian function with bandwidth R as gi(j) = 1
πR2 exp

(−d2
ij

R2

)
, where dij is the

Euclidean distance of particles i and j. In practice, Eq. 6 for all particles can be
estimated by simply convolving a precomputed 2D Gaussian function over the
acceleration map. The magnitude of body contact force, which is the map of H2,
is referred to as body compression.

Estimation of heuristic rule H3. To estimate the accumulated aggression force
imposed on particle i from its opponent particles, we re-formulate Eq. 3 as:

F agg
i =

∑

j

(
nji · wij · fα

oi
(j)

)
(7)

where, using OF, the aggression factor wij is defined as:

wij =
1
2

· (1 − oi · oj

‖oi‖ · ‖oj‖ ) =
1
2

· (1 − cos φij) (8)

such that φij is the angle between the optical flows oj and oi of the jth and
ith particles, respectively.

Computing the aggression factor wij for particle i requires to calculate the
cosine between oj and oi for each i and j which is quadratic in the number
of particles. To reduce the computations, therefore, we propose two approxima-
tions of wij over Q quantized bins of OF orientations, θq, q = 1, ..., Q, instead
of directly computing them exhaustively. θq

i indicates the bin to which the ori-
entation of OF vector oi (with respect to a fixed reference axis) belongs. As the
first approximation, we set wij = 1 when θq

i = −θq
j and zero otherwise, denoted

by w̃[1]
i,j . This implies that the aggressive factor of the particle i depends on

its neighboring particles approaching particle i from exactly opposite quantized
direction. As second approximation, wij = 1 when the orientations of oi and
oj do not fall in a same quantized bin, θq

i �= θq
j , and zero otherwise, w̃[2]

i,j . This
approximation, on the other hand, states that any particle approaching particle
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Fig. 2. (a) The windowing function g(·) returns non zero value for particles inside
the circle and zero for the rest. The window function f(·) simulates the view field of
the green particle and returns non-zero for the articles in the view field. The particles
marked in red are considered as opponents approaching the green particle. (b) top:
two approximations of w varying the direction of vj as shown on the bottom x-axis
respect to vi with fixed direction on the top x-axis, Eq. 9. Bottom: the binary filters
fα
q modeling the particle’s view field, Q = 8 and α = 120◦ (Best viewed in color)

i from a different orientation (bin) is considered in the aggression factor. The
first and the second approximations, w̃[1]

i,j and w̃[2]
i,j , are defined as follows:

w̃[1]
i,j =

{
1 if θq

i = −θq
j

0 otherwise
w̃[2]

i,j =

{
1 if θq

i �= θq
j

0 otherwise
(9)

(Figure 2 b-top) illustrates the real values of wi,j (Eq. 8) and its approxi-
mations w̃[·]

i,j (Eq. 9), where the black arrows indicate the directions of particle

i and its neighboring particles j’s. It is shown that w̃[1]
i,j is 1 only for particles

approaching i from opposite direction (and zero from other directions), while
w̃[2]

i,j is 1 for particles approaching i from any different direction with respect to
i’s direction.

According to the heuristic rule H3, the windowing function fα
oi

(·) should
reflect what each particle sees (i.e., individual’s view field). Therefore, we define
it as a naive-shaped that resembles one’s field of view, oriented in the direc-
tion of the particle’s optical flow oi. Here we are making the fair assumption
that a pedestrian looks at his/her walking direction, which is especially valid in
crowd scenarios. We set the angle of view α to 120◦ as in human vision. The
definition of angle of view α and length of view field L in fα

oi
(·) is illustrated in

Fig. 2(a). In practice, we model particle’s field of view on the image plane using a
fixed filter bank composed of Q filters (binary masks), {fα

q }Q
q=1, where each filter

implies a quantized orientation bin as illustrated in (Fig. 2 b-bottom) for Q = 8
and α = 120◦. Similar to H2, computing nji is also quadratic in the number
of particles. According to H3, individual i moves towards individual j from the
coordinates i to j. This implies that the direction of vi is in the opposite of nji.
Therefore, for the sake of complexity, we approximate nji � −vi.
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Taking into account all the approximations, the aggression force on particle
i is estimated as:

F agg
i � −oi ·

Q∑

q=1

(
[θq

i = q] · (
w̃[·]

i � fα
q

)
(i)

)
(10)

where [·] is a indicator function that returns 1 if θq
i = q and zero otherwise, and

� is the convolution operator which identically performs the summation over
neighboring particles j in Eq. 7.

(
w̃[·]

i � fα
q

)
(i) is the value of the convolution at

the coordinates of particle i. According to the Convolution Theorem [28], Eq. 10
can be efficiently computed in the Fourier domain. We called the magnitude of
aggression force as aggressive drive.

Visual Information Processing Signature - VIPS. Each heuristic cap-
tures a different aspect of visual information processed by individual cognition
in crowd scenarios. To define a single informative feature, we simply combine
together acceleration, body compression and aggression drive in a feature we
called Visual Information Processing Signature, in short VIPS.

More specifically, we employ the standard bag-of-words (BOW) paradigm
separately for each of the three maps (Eqs. 5, 6 and 10). Then, for each video clip
we sampled P patches of size 5 × 5 × 5 from locations where the corresponding
optical flow is not zero, and we build a visual dictionary of size K using K-
means clustering3. In the BOW assumption, each video is encoded by a bag;
to compute such bags we assign each of the P patches to the closest codebook,
and we pool together all the patches to generate an histogram over the K visual
words. The final VIPS is obtained by concatenating the histograms resulting from
acceleration, body compression and aggressive drive. This process is illustrated
in the right-most part of Fig. 1.

To address the specific approximations, we employed for the aggressive drive,
w̃[1]

i,j or w̃[2]
i,j (see Eq. 9), in the experiments we will refer to our descriptor as

VIPS[1] and VIPS[2], respectively. Finally, to further validate the aggressive drive,
we also considered a third baseline version of w̃ in which we did not remove any
orientation (Eq. 9), and we simply filtered the quantized OF with the wedge
filters of (Fig. 2 b-bottom). We will refer to this baseline as VIPS[∗].

5 Experiments

We evaluate our approach on three standard benchmarks namely Violence in
Crowds (VIC) [18], Violence in Movies (VIM) [20] and BEHAVE [29] datasets.
In particular, VIC is the only available dataset specifically assembled for clas-
sifying acts of violence in crowd scenes, while VIM allows us to evaluate the
robustness of our approach in person-on-person violent scenes. We also select
3 To employ K-means, we rasterize each patch in a vector of length 125 along with

the Euclidean distance. we empirically set K = 500 selected from a range of
[100, 200, ..., 2000].
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Fig. 3. First three columns are frame samples taken from Violence in Crowds (VIC),
Violence in Movies (VIM), BEHAVE and Violence-Cross (VC) datasets, respectively.
Reader is encouraged to review the text for details.

BEHAVE dataset, which constitutes several complex group activities (e.g., walk-
ing together, splitting, escaping, and fighting). Besides, we realized that the
most similar behavior to our first approximation (V IPS[1]) is “crowd cross-
ing” in which people cross a road in opposite directions. Therefore, to show the
robustness of the proposed method to distinguish violent from crossing behav-
iors in normal situations, we create a new dataset called Violence-Cross (VC)
whose videos gathered from VIC dataset and CUHK dataset [30]. It includes
300 videos, equally divided into three classes (100 videos for each class). Class 1
consists of videos of violent behaviors, Class 2 contains videos of people walking
in opposite directions (cross walk), and Class 3 contains videos showing actions
different than violent and crowd crossing behaviors (e.g., marathon, crowd walk-
ing in a same direction). The last column of Fig. 3 shows some sample frames of
this new dataset.

Effect of varying filter size. We examined the performance of body compres-
sion force (F bc) and aggression force (F agg) with respect to different length of
the view field L and filter size (Gaussian bandwidth) R, respectively, on VIC
dataset4. We set the number of random patches to 1000 and varied R and L as
β ∗max(h,w) pixels (for both R and L), where β ∈ {0.025, 0.05, 0.075, 0.1, 0.15}
and h × w is the dimension of video frame (320 × 240 in this case). Figure 4(a)
shows that a larger length of field of view results in better performance for aggres-
sion forces (F agg). However, we observed that increasing size of the Gaussian
filter leads to decreasing performance of the body compression (F bc). This is
indeed consistent with our definition of body contact force, where only particles
(individuals) that are really close may impose body compression forces.

Effect of number of random sampled patches. We evaluated the perfor-
mance of VIPS varying P , the number of random patches extracted from each
video or clip. We empirically set β for R and L to 0.025 and 0.1, respectively
(i.e., R = 8 and L = 32 pixels). We varied P ∈ {50, 100, 200, 400, 800, 1000}.
Figure 4(b) summarizes the results. As expected, the accuracy on VIC and VIM
are improved by increasing the number of sampled patches P . Interestingly,
VIPS[1] outperformed VIPS[2] and VIPS[∗] for all the P values on all datasets.

4 Without concatenating them to form the final VIP signature.
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Fig. 4. Evaluating (a) the effect of filter size on aggression and body compression force
values, and (b) the effect of varying number of random sampled patches.

This supports our choice of considering individuals approaching from opposite
direction as opponents. Finally, the results show the superiority of VIPS com-
pared to optical flow and interaction force (SFM) [3] methods with respect to
different number of sampled patches.

Comparison with the state of the art. We compared our approach with the
Interaction Force (SFM) [3], Acceleration Measure Vector (AMV) [14], optical
flow [27], and ViF [18] as baselines, and some state-of-the-art descriptors used
for violent acts from crowd videos including MoSIFT [17,20], and Substantial
Derivative (SD) approach [31]. Moreover, in order to demonstrate the effectiv-
ness of the proposed method, we compared with ConNet. Although there is no
existing pre-trained ConvNet network exist for violence detection, mainly due
to scarcity of training example, we evaluate our method with pre-trained model
on WWW-crowd dataset [32], which is the most relevant pre-trained model for
crowd behavior analysis. We first construct the feature vector by getting the
average deep features vector of 10 jittered samples of the original image. Then,
we L2 normalized the feature vectors, and evaluate its performance on VIC,
VIM, and BEHAVE datasets. We performed violence classification at video level
for VIC, VIM, and VC datasets. For the first two datasets, we followed the stan-
dard training-testing splits that come with each dataset, whilst for the VC we
equally divide each class into a test set of 150 videos (50 video sequences for
each class) and the rest for testing. Then, we compute VIPS for each video and
a Support Vector Machine (SVM) with Histogram Intersection Kernel [17] is
adopted for video classification. However, for the BEHAVE dataset, the associ-
ated task is temporal detection by assigning either normal or abnormal (violent)
label to each frame of a video. For this purpose, we computed VIPS at frame
level. Since abnormal data is not available in the training time, following the
standard procedure of [3], we employed Latent Dirichlet Allocation (LDA) [33]
to generatively model normal crowd behaviors. In order to compensate the effect
of random sampling, we repeated each experiment 10 times, reporting mean per-
formance. It is also worth mentioning that, for all the experiments, we employed
four quantized orientations to compute the aggression force, i.e., Q = 4 in Eq. 10.
We also tried larger values of Q, but results did not improve. We set filter sizes
to L = 32 and R = 8 and select P = 1000 with size of 5 × 5 × 5. Table 1 reports
the comparison with the state-of-the-art methods as well as the performance
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of each element of VIPS descriptor on VIC, VIM, and BEHAVE datasets. As
immediately visible in dense (VIC) and moderate crowd scenes (BEHAVE), the
first approximation of aggression force (F agg − W [1](H [1]

3 )) shows a better per-
formance as compared to acceleration (H1), Body Compression (H2), and the
second approximation of aggression force (F agg − W [2](H [2]

3 )). In addition, we
observe that for person-to-person violent situations, H2 and H

[1]
3 show very simi-

lar performance, and their combination with acceleration (VIPS[1]) improved the
overall performance of the classifier for all scenarios including moderate crowd
scene (BEHAVE dataset). However, we can see that, as compared to the Energy
Potential descriptor [23], VIPS[1] does not achieve significant improvement. We
believe that this is mainly due to our sampling strategies, and that the results
can be improved using trajectory-based method. Nonetheless, we conclude that
VIPS[1] has a strong discriminative power on detecting violent behaviors regard-
less the scene crowdedness (from dense to moderate crowd scenes, as well as
person-to-person fight). As an example, MoSIFT [17,20] obtained very promis-
ing accuracy (the second best after our approach) on VIM (person-to-person),
but poor performance on VIC (which is characterized by a dense crowd). This
states that, unlike our approach, MoSIFT is sensitive to the crowd density. More-
over, the SFM and AMV obtained very competitive accuracy on VIM, while
their performance on VIC drastically decreased. This supports the discussion
in the socio-psychology literature [7,25] reporting that social force models per-
form poorly in overcrowded situations, since they are not capable of modeling
complex behavioral patterns in such scenarios. In addition, one can observe that
ConNet based approach obtained significant inferior performance compared with
hand-crafted competitors on BEHAVE and VIM, however, it gained comparable
performance on VIC. This is also understable since VIC has a closer charac-
teristic to the source database used for training the pre-trained network com-
pared with VIM and BEHAVE dataset. Finally, we evaluate robustness of our
descriptors to distinguish between acts of violence from crossing behaviors. In
particular, we conducted experiments on each element of VIPS to show their
contributions to the final performance. Moreover, we select ViF [14] descriptor
which was designed for detecting violent behaviors in crowd and SFM [3], which
is considered as one of the most well-known descriptor to detect abnormality
in crowds. Figure 5 shows the confusion matrices of two state-of-the-art meth-
ods and elements of the proposed method. We observe that ViF shows a good
performance on detecting acts of violence compared to the SFM, however, its
overall accuracy is low since it is much confuse to distinguish violent from nor-
mal and crossing behaviors. On the other hand, similar to what we observed in
the previous experiments, H

[1]
3 plays an important role in distinguishing violent

behaviors, which results in significantly high performance on V IPS[1], able to
well discriminate among the three classes.

Runtime performance. The final experiment evaluated the complexity (run-
time) of computing the proposed video signature comparing to the real time
violent-flows descriptor [18]. The time for BOW encoding is not considered in



Angry Crowds: Detecting Violent Events in Videos 15

Fig. 5. Average accuracy on Violent-Cross dataset. Class1, Class2, and Class3 are
referred to as violent, cross walk, and normal behaviors, respectively. ViF [18] with
57% overall accuracy; SFM [3] with 69% overall accuracy, Acceleration (H1) with
74% overall accuracy, Body Compression (H2) with 75% accuracy; (bottom, first):

Aggression force (H
[1]
3 ) with 89 % overall accuracy, Aggression force (H

[2]
3 ) with 80 %

overall accuracy, V IPS[1] with 92 % overall accuracy and V IPS[2] with 86% overall
accuracy.
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Fig. 6. Runtime performance. (a) Evaluating the running time of VIPS with respect
to different sampled patches and video resolutions. (b) Accumulated accuracy on 21
videos as a function of distance from violence outbreak.

this experiment (the real time efficiency of BOW encoding is shown in [34]).
First, we measured the relative computational time of our method with respect
to violent-flows [18]. Figure 6(a) shows the ratio between time to process a clip
for VIPS and violent-flows as a function of number of sampled patches and video
resolution. For both methods we employed the same implementation of the opti-
cal flow in [27]. The results show that our method is roughly 1.5 to 2 times
slower compared to [18]. During the experiments, we observed that the domi-
nant computational cost of our method belongs to the optical flow computation,
in particular for medium-to-high resolutions, whereas the convolutions (in the
frequency domain) add negligible computational burden. Second, we evaluated
the accuracy and detection time of both methods. For this purpose, following
[18], we selected 21 videos from the VIC dataset that start with a non-violent
behavior and then turn to violent situations mid-way through the video. The
goal is to detect the violence as close to its annotated violence start point (out-
break). Figure 6(b) summarizes the results, where our approach (VIPS[1] and
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Table 1. Average accuracy over 10 times of repeated trials for the VIC, VIM and
BEHAVE datasets.

Violence in crowds Violence in movies BEHAVE

Optical flow [27] 78.48 % 91.31 % 93.48 %

SFM [3] 74.50 % 95.51 % 94.23 %

AMV [14] 74.18 % 95.02 % 86.72 %

SD [31] 85.43 % 96.89 % 94.8 %

ConvNet [32] 83.48 % 89.52 % 79.12 %

MoSIFT [17,20] 83.42 % 89.50 % -

ViF [18] 81.30 % - -

Energy potential [23] - - 94.50 %

Acceleration(H1) 79.14 % 93.40 % 90.23 %

F bc(H2) 78.83% 94.10% 92.07%

F agg − W [1](H
[1]
3 ) 81.87% 95.12% 91.15%

F agg − W [2](H
[2]
3 ) 78.45 % 94.23 % 89.87 %

VIPS[1] 86.61% 96.91% 95.73%

VIPS[2] 83.77% 96.51% 94.3%

VIPS[∗] 82.26% 96.11% 94.26%

VIPS[2]) obtained higher accumulated accuracy for all the expected detection
delays. This test, overall, shows that our approach outperforms ViF with slightly
higher computational cost. The curve of ViF is fixed after five seconds meaning
that its accuracy is not improved anymore.

6 Conclusions

This paper introduced a novel framework to identify violent behaviors in crowd
scenes. In particular, we have proposed three behavioral heuristic rules to model
a wide range of complex actions underlying crowd scenarios. We explained how
to formulate the behavioral heuristics in computational terms and how to esti-
mate them with very low complexity from video sequences. Experimental results
illustrated that the proposed approach is not only computationally efficient, but
also it is highly robust to various situations in terms of crowd density and differ-
ent crowd behaviors, such as crossing and fighting, various imaging conditions,
occlusions, and camera motions to name a few. Moreover, we observed that
the proposed aggressive drive force has a considerable ability to localize regions
of conflict at the pixel level, as compared to other descriptors such as optical
flow and SFM. However, due to lack of annotated data, we were not able to
fully present this type of evaluation. A potential weakness of this work is using
fixed-size filter regardless of the scene properties and imaging conditions, which
may have a negative impact on the performance. Both the latter aspects require
further investigations and will be subject of future work.
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