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Abstract. Dense conditional random fields (CRF) with Gaussian pair-
wise potentials have emerged as a popular framework for several com-
puter vision applications such as stereo correspondence and semantic
segmentation. By modeling long-range interactions, dense CRFs provide
a more detailed labelling compared to their sparse counterparts. Vari-
ational inference in these dense models is performed using a filtering-
based mean-field algorithm in order to obtain a fully-factorized distri-
bution minimising the Kullback-Leibler divergence to the true distri-
bution. In contrast to the continuous relaxation-based energy minimi-
sation algorithms used for sparse CRFs, the mean-field algorithm fails
to provide strong theoretical guarantees on the quality of its solutions.
To address this deficiency, we show that it is possible to use the same
filtering approach to speed-up the optimisation of several continuous
relaxations. Specifically, we solve a convex quadratic programming (QP)
relaxation using the efficient Frank-Wolfe algorithm. This also allows us
to solve difference-of-convex relaxations via the iterative concave-convex
procedure where each iteration requires solving a convex QP. Finally,
we develop a novel divide-and-conquer method to compute the subgradi-
ents of a linear programming relaxation that provides the best theoretical
bounds for energy minimisation. We demonstrate the advantage of con-
tinuous relaxations over the widely used mean-field algorithm on publicly
available datasets.

Keywords: Energy minimisation · Dense CRF · Inference · Linear pro-
gramming · Quadratic programming

1 Introduction

Discrete pairwise conditional random fields (CRFs) are a popular framework for
modelling several problems in computer vision. In order to use them in prac-
tice, one requires an energy minimisation algorithm that obtains the most likely
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output for a given input. The energy function consists of a sum of two types of
terms: unary potentials that depend on the label for one random variable at a
time and pairwise potentials that depend on the labels of two random variables.

Traditionally, computer vision methods have employed sparse connectivity
structures, such as 4 or 8 connected grid CRFs. Their popularity lead to a con-
siderable research effort in efficient energy minimisation algorithms. One of the
biggest successes of this effort was the development of several accurate con-
tinuous relaxations of the underlying discrete optimisation problem [1,2]. An
important advantage of such relaxations is that they lend themselves easily to
analysis, which allows us to compare them theoretically [3], as well as establish
bounds on the quality of their solutions [4].

Recently, the influential work of Krähenbühl and Koltun [5] has popularised
the use of dense CRFs, where each pair of random variables is connected by
an edge. Dense CRFs capture useful long-range interactions thereby providing
finer details on the labelling. However, modeling long-range interactions comes
at the cost of a significant increase in the complexity of energy minimisation.
In order to operationalise dense CRFs, Krähenbühl and Koltun [5] made two
key observations. First, the pairwise potentials used in computer vision typically
encourage smooth labelling. This enabled them to restrict themselves to the
special case of Gaussian pairwise potentials introduced by Tappen et al. [6].
Second, for this special case, it is possible to obtain a labelling efficiently by using
the mean-field algorithm [7]. Specifically, the message computation required at
each iteration of mean-field can be carried out in O(N) operations where N
is the number of random variables (of the order of hundreds of thousands).
This is in contrast to a näıve implementation that requires O(N2) operations.
The significant speed-up is made possible by the fact that the messages can be
computed using the filtering approach of Adams et al. [8].

While the mean-field algorithm does not provide any theoretical guarantees
on the energy of the solutions, the use of a richer model, namely dense CRFs,
still allows us to obtain a significant improvement in the accuracy of several com-
puter vision applications compared to sparse CRFs [5]. However, this still leaves
open the intriguing possibility that the same filtering approach that enabled the
efficient mean-field algorithm can also be used to speed-up energy minimisation
algorithms based on continuous relaxations. In this work, we show that this is
indeed possible.

In more detail, we make three contributions to the problem of energy minimi-
sation in dense CRFs. First, we show that the conditional gradient of a convex
quadratic programming (QP) relaxation [1] can be computed in O(N) com-
plexity. Together with our observation that the optimal step-size of a descent
direction can be computed analytically, this allows us to minimise the QP
relaxation efficiently using the Frank-Wolfe algorithm [9]. Second, we show
that difference-of-convex (DC) relaxations of the energy minimisation prob-
lem can be optimised efficiently using an iterative concave-convex procedure
(CCCP). Each iteration of CCCP requires solving a convex QP, for which we
can once again employ the Frank-Wolfe algorithm. Third, we show that a linear
programming (LP) relaxation [2] of the energy minimisation problem can be
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optimised efficiently via subgradient descent. Specifically, we design a novel
divide-and-conquer method to compute the subgradient of the LP. Each sub-
problem of our method requires one call to the filtering approach. This results
in an overall run-time of O(N log(N)) per iteration as opposed to an O(N2)
complexity of a näıve implementation. It is worth noting that the LP relaxation
is known to provide the best theoretical bounds for energy minimisation with
metric pairwise potentials [2].

Using standard publicly available datasets, we demonstrate the efficacy of
our continuous relaxations by comparing them to the widely used mean-field
baseline for dense CRFs.

2 Related Works

Krähenbühl and Koltun popularised the use of densely connected CRFs at the
pixel level [5], resulting in significant improvements both in terms of the quantita-
tive performance and in terms of the visual quality of their results. By restricting
themselves to Gaussian edge potentials, they made the computation of the mes-
sage in parallel mean-field feasible. This was achieved by formulating message
computation as a convolution in a higher-dimensional space, which enabled the
use of an efficient filter-based method [8].

While the original work [5] used a version of mean-field that is not guaranteed
to converge, their follow-up paper [10] proposed a convergent mean-field algo-
rithm for negative semi-definite label compatibility functions. Recently, Baqué
et al. [11] presented a new algorithm that has convergence guarantees in the gen-
eral case. Vineet et al. [12] extended the mean-field model to allow the addition
of higher-order terms on top of the dense pairwise potentials, enabling the use
of co-occurence potentials [13] and Pn-Potts models [14].

The success of the inference algorithms naturally lead to research in learning
the parameters of dense CRFs. Combining them with Fully Convolutional Neural
Networks [15] has resulted in high performance on semantic segmentation appli-
cations [16]. Several works [17,18] showed independently how to jointly learn
the parameters of the unary and pairwise potentials of the CRF. These meth-
ods led to significant improvements on various computer vision applications, by
increasing the quality of the energy function to be minimised by mean-field.

Independently from the mean-field work, Zhang and Chen [19] designed a
different set of constraints that lends itself to a QP relaxation of the original
problem. Their approach is similar to ours in that they use continuous relaxation
to approximate the solution of the original problem but differ in the form of the
pairwise potentials. The algorithm they propose to solve the QP relaxation has
linearithmic complexity while ours is linear. Furthermore, it is not clear whether
their approach can be easily generalised to tighter relaxations such as the LP.

Wang et al. [20] derived a semi-definite programming relaxation of the energy
minimisation problem, allowing them to reach better energy than mean-field.
Their approach has the advantage of not being restricted to Gaussian pairwise
potentials. The inference is made feasible by performing low-rank approxima-
tion of the Gram matrix of the kernel, instead of using the filter-based method.
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However, while the complexity of their algorithm is the same as our QP or DC
relaxation, the runtime is significantly higher. Furthermore, while the SDP relax-
ation has been shown to be accurate for repulsive pairwise potentials (encour-
aging neighbouring variables to take different labels) [21], our LP relaxation
provides the best guarantees for attractive pairwise potentials [2].

In this paper, we use the same filter-based method [8] as the one employed
in mean-field. We build on it to solve continuous relaxations of the original
problem that have both convergence and quality guarantees. Our work can be
viewed as a complementary direction to previous research trends in dense CRFs.
While [10–12] improved mean-field and [17,18] learn’t the parameters, we focus
on the energy minimisation problem.

3 Preliminaries

Before describing our methods for energy minimisation on dense CRF, we estab-
lish the necessary notation and background information.

Dense CRF Energy Function. We define a dense CRF on a set of N random
variables X = {X1, . . . , XN} each of which can take one label from a set of M
labels L = {l1, . . . lM}. To describe a labelling, we use a vector x of size N such
that its element xa is the label taken by the random variable Xa. The energy
associated with a given labelling is defined as:

E(x) =
N∑

a=1

φa(xa) +
N∑

a=1

N∑

b=1
b�=a

ψa,b(xa, xb). (1)

Here, φa(xa) is called the unary potential for the random variable Xa taking
the label xa. The term ψa,b(xa, xb) is called the pairwise potential for the ran-
dom variables Xa and Xb taking the labels xa and xb respectively. The energy
minimisation problem on this CRF can be written as:

x� = argmin
x

E(x). (2)

Gaussian Pairwise Potentials. Similar to previous work [5], we consider arbi-
trary unary potentials and Gaussian pairwise potentials. Specifically, the form
of the pairwise potentials is given by:

ψa,b(i, j) = μ(i, j)
∑

m

w(m)k(f (m)
a , f (m)

b ), (3)

k(fa, fb) = exp
(−‖fa − fb‖2

2

)
(4)

We refer to the term μ(i, j) as a label compatibility function between the labels
i and j. An example of a label compatibility function is the Potts model, where
μpotts(i, j) = [i �= j], that is μpotts(i, j) = 1 if i �= j and 0 otherwise. Note
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that the label compatibility does not depend on the image. The other term,
called the pixel compatibility function, is a mixture of gaussian kernels k(·, ·).
The coefficients of the mixture are the weights w(m). The f (m)

a are the features
describing the random variable Xa. Note that the pixel compatibility does not
depend on the labelling. In practice, similar to [5], we use the position and RGB
values of a pixel as features.

IP Formulation. We now introduce a formulation of the energy minimisation
problem that is more amenable to continuous relaxations. Specifically, we for-
mulate it as an Integer Program (IP) and then relax it to obtain a continuous
optimisation problem. To this end, we define the vector y whose components
ya(i) are indicator variables specifying whether or not the random variable Xa

takes the label i. Using this notation, we can rewrite the energy minimisation
problem as an IP:

min
N∑

a=1

∑

i∈L
φa(i)ya(i) +

N∑

a=1

N∑

b=1
b�=a

∑

i,j∈L
ψa,b(i, j)ya(i)yb(j),

s.t.
∑

i∈L
ya(i) = 1 ∀a ∈ [1, N ],

ya(i) ∈ {0, 1} ∀a ∈ [1, N ] ∀i ∈ L. (5)

The first set of constraints model the fact that each random variable has to be
assigned exactly one label. The second set of constraints enforce the optimisation
variables ya(i) to be binary. Note that the objective function is equal to the
energy of the labelling encoded by y.

Filter-Based Method. Similar to [5], a key component of our algorithms is
the filter-based method of Adams et al. [8]. It computes the following operation:

∀a ∈ [1, N ], v′
a =

N∑

b=1

k(fa, fb)vb, (6)

where v′
a, vb ∈ R and k(·, ·) is a Gaussian kernel. Performing this operation the

näıve way would result in computing a sum on N elements for each of the N terms
that we want to compute. The resulting complexity would be O(N2). The filter-
based method allows us to perform it approximately with O(N) complexity. We
refer the interested reader to [8] for details. The accuracy of the approximation
made by the filter-based method is explored in the supplementary material.

4 Quadratic Programming Relaxation

We are now ready to demonstrate how the filter-based method [8] can be used to
optimise our first continuous relaxation, namely the convex quadratic program-
ming (QP) relaxation.
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Notation. In order to concisely specify the QP relaxation, we require some
additional notation. Similar to [10], we rewrite the objective function with linear
algebra operations. The vector φ contains the unary terms. The matrix μ corre-
sponds to the label compatibility function. The Gaussian kernels associated with
the m-th features are represented by their Gram matrix K(m)

a,b = k(f (m)
a , f (m)

b ).
The Kronecker product is denoted by ⊗. The matrix Ψ represents the pairwise
terms and is defined as follows:

Ψ = μ ⊗
(

∑

m

K(m) − IN

)
, (7)

where IN is the identity matrix. Under this notation, the IP (5) can be concisely
written as

min φTy + yT Ψy,

s.t. y ∈ I, (8)

with I being the feasible set of integer solution, as defined in Eq. (5).

Relaxation. In general, IP such as (8) are NP-hard problems. Relaxing the
integer constraint on the indicator variables to allow fractional values between 0
and 1 results in the QP formulation. Formally, the feasible set of our minimisation
problem becomes:

M =

⎧
⎪⎨

⎪⎩
y such that

∑

i∈L
ya(i) = 1 ∀a ∈ [1, N ],

ya(i) ≥ 0 ∀a ∈ [1, N ],∀i ∈ L

⎫
⎪⎬

⎪⎭
. (9)

Ravikumar and Lafferty [1] showed that this relaxation is tight and that solv-
ing the QP will result in solving the IP. However, this QP is still NP-hard, as
the objective function is non-convex. To alleviate this difficulty, Ravikumar and
Lafferty [1] relaxed the QP minimisation to the following convex problem:

min Scvx(y) = (φ − d)Ty + yT (Ψ + D)y,

s.t. y ∈ M, (10)

where the vector d is defined as follows

da(i) =
N∑

b=1
b�=a

∑

j∈L
|ψa,b(i, j)|, (11)

and D is the square diagonal matrix with d as its diagonal.

Minimisation. We now introduce a new method based on the Frank-Wolfe
Algorithm [9] to minimise problem (10). The Frank-Wolfe algorithm allows to
minimise a convex function f over a convex feasible set M. The key steps of
the algorithm are shown in Algorithm1. To be able to use the Frank-Wolfe
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Algorithm 1. Frank-Wolfe algorithm
1: Get y0 ∈ M
2: while not converged do
3: Compute the gradient at yt as g = ∇f(yt)
4: Compute the conditional gradient as s = argmins∈M〈s,g〉
5: Compute a step-size α = argminα∈[0,1] f(αyt + (1 − α)s)

6: Move towards the negative conditional gradient yt+1 = αyt + (1 − α)s
7: end while

algorithm, we need a way to compute the gradient of the objective function
(Step 3), a method to compute the conditional gradient (Step 4) and a strategy
to choose the step size (Step 5).

Gradient Computation
Since the objective function is quadratic, its gradient can be computed as

∇Scvx(y) = (φ − d) + 2(Ψ + D)y. (12)

What makes this equation expensive to compute in a näıve way is the matrix
product with Ψ . We observe that this operation can be performed using the
filter-based method in linear time. Note that the other matrix-vector product,
Dy, is not expensive (linear in N) since D is a diagonal matrix.

Conditional Gradient
The conditional gradient is obtained by solving

argmin
s∈M

〈s,∇Scvx(y)〉. (13)

Minimising such an LP would usually be an expensive operation for problems of
this dimension. However, we remark that, once the gradient has been computed,
exploiting the properties of our problem allows us to solve problem (13) in a
time linear in the number of random variables (N) and labels (M). Specifically,
the following is an optimal solution to problem (13).

sa(i) =

{
1 if i = argmini∈L

∂Scvx
∂ya(i)

0 else.
. (14)

Step Size Determination
In the original Frank-Wolfe algorithm, the step size α is simply chosen using line
search. However we observe that, in our case, the optimal α can be computed
by solving a second-order polynomial function of a single variable, which has a
closed form solution that can be obtained efficiently. This observation has been
previously exploited in the context of Structural SVM [22]. The derivations for
this closed form solution can be found in supplementary material. With careful
reutilisation of computations, this step can be performed without additional
filter-based method calls. By choosing the optimal step size at each iteration, we
reduce the number of iterations needed to reach convergence.
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The above procedure converges to the global minimum of the convex relax-
ation and resorts to the filter-based method only once per iteration during the
computation of the gradient and is therefore efficient. However, this solution has
no guarantees to be even a local minimum of the original QP relaxation. To
alleviate this, we will now introduce a difference-of-convex (DC) relaxation.

5 Difference of Convex Relaxation

5.1 DC Relaxation: General Case

The objective function of a general DC program can be specified as

SCCCP(y) = p(y) − q(y). (15)

One can obtain one of its local minima using the Concave-Convex Procedure
(CCCP) [23]. The key steps of this algorithm are described in Algorithm 2.
Briefly, Step 3 computes the gradient of the concave part. Step 4 minimises
a convex upper bound on the DC objective, which is tight at yt.

In order to exploit the CCCP algorithm for DC programs, we observe that
the QP (8) can be rewritten as

min
y

φTy + yT (Ψ + D)y − yTDy,

s.t. y ∈ M.
(16)

Formally, we can define p(y) = φTy + yT (Ψ + D)y and q(y) = yTDy, which
are both convex in y.

Algorithm 2. CCCP Algorithm
1: Get y0 ∈ M
2: while not converged do
3: Linearise the concave part g = ∇q(yt)
4: Minimise a convex upper-bound yt+1 = argminy∈M p(y) − gTy
5: end while

We observe that, since D is diagonal and the matrix product with Ψ can
be computed using the filter based method, the gradient ∇q(yt) = 2Dy (Step
3) is efficient to compute. The minimisation of the convex problem (Step 4)
is analogous to the convex QP formulation (10) presented above with different
unary potentials. Since we do not place any restrictions on the form of the unary
potentials, (Step 4) can be implemented using the method described in Sect. 4.

The CCCP algorithm provides a monotonous decrease in the objective func-
tion and will converge to a local minimum [24]. However, the above method
will take several iterations to converge, each necessitating the solution of a con-
vex QP, and thus requiring multiple calls to the filter-based method. While the
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filter-based method [8] allows us to compute operations on the pixel compati-
bility function in linear time, it still remains an expensive operation to perform.
As we show next, if we introduce some additional restriction on our potentials,
we can obtain a more efficient difference of convex decomposition.

5.2 DC Relaxation: Negative Semi-definite Compatibility

We now introduce a new DC relaxation of our objective function that takes
advantage of the structure of the problem. Specifically, the convex problem to
solve at each iteration does not depend on the filter-based method computations,
which are the expensive steps in the previous method. Following the example
of Krähenbühl and Koltun [10], we look at the specific case of negative semi-
definite label compatibility function, such as the commonly used Potts model.
Taking advantage of the specific form of our pairwise terms (7), we can rewrite
the problem as

S(y) = φTy − yT (μ ⊗ IN )yT + yT (μ ⊗
∑

m

K(m))y. (17)

The first two terms can be verified as being convex. The Gaussian kernel is
positive semi-definite, so the Gram matrices K(m) are positive semi-definite. By
assumption, the label compatibility function is also negative semi-definite. The
results from the Kronecker product between the Gram matrix and μ is therefore
negative semi-definite.

Minimisation. Once again we use the CCCP Algorithm. The main difference
between the generic DC relaxation and this specific one is that Step 3 now
requires a call to the filter-based method, while the iterations required to solve
Step 4 do not. In other words, each iteration of CCCP only requires one call
to the filter based method. This results in a significant improvement in speed.
More details about this operation are available in the supplementary material.

6 LP Relaxation

This section presents an accurate LP relaxation of the energy minimisation prob-
lem and our method to optimise it efficiently using subgradient descent.

Relaxation. To simplify the description, we focus on the Potts model. How-
ever, our approach can easily be extended to more general pairwise potentials
by approximating them using a hierarchical Potts model. Such an extension,
inspired by [25], is presented in the supplementary material. We define the follow-
ing notation: Ka,b =

∑
m w(m)k(m)(f (m)

a , f (m)
b ),

∑
a =

∑N
a=1 and

∑
b<a =

∑a−1
b=1 .

With these notations, a LP relaxation of (5) is:

min SLP (y) =
∑

a

∑

i

φa(i)ya(i)

︸ ︷︷ ︸
unary

+
∑

a

∑

b�=a

∑

i

Ka,b
|ya(i) − yb(i)|

2
︸ ︷︷ ︸

pairwise

,

s.t. y ∈ M. (18)
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The feasible set remains the same as the one we had for the QP and DC relax-
ations. In the case of integer solutions, SLP (y) has the same value as the objective
function of the IP described in (5). The unary term is the same for both formula-
tions. The pairwise term ensures that for every pair of random variables Xa,Xb,
we add the cost Ka,b associated with this edge only if they are not associated
with the same labels.

Minimisation. Kleinberg and Tardos [2] solve this problem by introducing extra
variables for each pair of pixels to get a standard LP, with a linear objective
function and linear constraints. In the case of a dense CRF, this is infeasible
because it would introduce a number of variables quadratic in the number of
pixels. We will instead use projected subgradient descent to solve this LP. To
do so, we will reformulate the objective function, derive the subgradient, and
present an algorithm to compute it efficiently.

Reformulation
The absolute value in the pairwise term of (5) prevents us from using the filtering
approach. To address this issue, we consider that for any given label i, the
variables ya(i) can be sorted in a descending order: a ≥ b =⇒ ya(i) ≤ yb(i).
This allows us to rewrite the pairwise term of the objective function (18) as:

∑

i

∑

a

∑

a�=b

Ka,b
|ya(i) − yb(i)|

2
=

∑

i

∑

a

∑

b>a

Ka,bya(i) −
∑

i

∑

a

∑

b<a

Ka,bya(i).

(19)
A formal derivation of this equality can be found in supplementary material.

Subgradient.
From (19), we rewrite the subgradient:

∂SLP

∂yc(k)
(y) = φc(k) +

∑

a>c

Ka,c −
∑

a<c

Ka,c. (20)

Note that in this expression, the dependency on the variable y is hidden in the
bounds of the sum because we assumed that ya(k) ≤ yc(k) for all a > c. For a
different value of y, the elements of y would induce a different ordering and the
terms involved in each summation would not be the same.

Subgradient Computation
What prevents us from evaluating (20) efficiently are the two sums, one over
an upper triangular matrix (

∑
a>c Ka,c) and one over a lower triangular matrix

(
∑

a<c Ka,c). As opposed to (6), which computes terms
∑

a,b Ka,bvb for all a
using the filter-based method, the summation bounds here depend on the random
variable we are computing the partial derivative for. While it would seems that
the added sparsity provided by the upper and lower triangular matrices would
simplify the operation, it is this sparsity itself that prevents us from interpreting
the summations as convolution operations. Thus, we cannot use the filter-based
method as described by Adams et al. [8].
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We alleviate this difficulty by designing a novel divide-and-conquer algorithm.
We describe our algorithm for the case of the upper triangular matrix. However,
it can easily be adapted to compute the summation corresponding to the lower
triangular matrix. We present the intuition behind the algorithm using an exam-
ple. A rigorous development can be found in the supplementary material. If we
consider N = 6 then a, c ∈ {1, 2, 3, 4, 5, 6} and the terms we need to compute for
a given label are:

⎛

⎜⎜⎜⎜⎜⎜⎝

∑
a>1 Ka,1∑
a>2 Ka,2∑
a>3 Ka,3∑
a>4 Ka,4∑
a>5 Ka,5∑
a>6 Ka,6

⎞

⎟⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 K2,1 K3,1 K4,1 K5,1 K6,1

0 0 K3,2 K4,2 K5,2 K6,2

0 0 0 K4,3 K5,3 K6,3

0 0 0 0 K5,4 K6,4

0 0 0 0 0 K6,5

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
U

·

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
1
1

⎞

⎟⎟⎟⎟⎟⎟⎠
(21)

We propose a divide and conquer approach that solves this problem by splitting
the upper triangular matrix U. The top-left and bottom-right parts are upper
triangular matrices with half the size. We solve these subproblems recursively.
The top-right part can be computed with the original filter based method. Using
this approach, the total complexity to compute this sum is O(N log (N)).

With this algorithm, we have made feasible the computation of the subgradi-
ent. We can therefore perform projected subgradient descent on the LP objective
efficiently. Since we need to compute the subgradient for each label separately
due to the necessity of having sorted elements, the complexity associated with
taking a gradient step is O(MN log(N)). To ensure the convergence, we choose
as learning rate (βt)∞

t=1 that is a square summable but not a summable sequence
such as ( 1

1+t )
∞
t=1. We also make use of the work by Condat [26] to perform fast

projection on the feasible set. The complete procedure can be found in Algo-
rithm3. Step 3 to 7 present the subgradient computation for each label. Using
this subgradient, Step 8 shows the update rule for yt. Finally, Step 9 project this
new estimate onto the feasible space.

Algorithm 3. LP subgradient descent
1: Get y0 ∈ M
2: while not converged do
3: for i ∈ L do
4: Sort ya(i) ∀a ∈ [1, N ]
5: Reorder K
6: g(i) = ∇SLP (yt(i))
7: end for
8: yt+1 = yt − βt · g
9: Project yt+1 on the feasible space

10: end while



Efficient Continuous Relaxations for Dense CRF 829

The algorithm that we introduced converges to a global minimum of the LP
relaxation. By using the rounding procedure introduced by Kleinberg and Tardos
[2], it has a multiplicative bound of 2 for the dense CRF labelling problem on
Potts models and O(log (M)) for metric pairwise potentials.

7 Experiments

We now demonstrate the benefits of using continuous relaxations of the energy
minimisation problem on two applications: stereo matching and semantic seg-
mentation. We provide results for the following methods: the Convex QP relax-
ation (QPcvx), the generic and negative semi-definite specific DC relaxations
(DCgen and DCneg) and the LP relaxation (LP). We compare solutions
obtained by our methods with the mean-field baseline (MF).

7.1 Stereo Matching

Data. We compare these methods on images extracted from the Middlebury
stereo matching dataset [27]. The unary terms are obtained using the absolute
difference matching function of [27]. The pixel compatibility function is similar to
the one used by Krähenbühl and Koltun [5] and is described in the supplementary
material. The label compatibility function is a Potts model.

Results. We present a comparison of runtime in Fig. (1a), as well as the asso-
ciated final energies for each method in Table (1b). Similar results for other
problem instances can be found in the supplementary materials.

Method

MF -1.137e+07
DCneg -1.145e+07

QP -1.037e+07
QP-DCneg -1.191e+07
QP-DCgen -1.175e+07

QP-DCneg-LP -1.193e+07

(a) Runtime comparisons

Final energy

(b) Final Energy achieved

Fig. 1. Evolution of achieved energies as a function of time on a stereo matching prob-
lem (Teddy Image). While the QP method leads to the worst result, using it as an
initialisation greatly improves results. In the case of negative semi-definite potentials,
the specific DCneg method is as fast as mean-field, while additionally providing guar-
antees of monotonous decrease. (Best viewed in colour) (Color figure online)
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We observe that continuous relaxations obtain better energies than their
mean-field counterparts. For a very limited time-budget, MF is the fastest
method, although DCneg is competitive and reach lower energies. When using
LP, optimising a better objective function allows us to escape the local minima
to which DCneg converges. However, due to the higher complexity and the fact
that we need to perform divide-and-conquer separately for all labels, the method
is slower. This is particularly visible for problems with a high number of labels.
This indicates that the LP relaxation might be better suited to fine-tune accu-
rate solutions obtained by faster alternatives. For example, this can be achieved
by restricting the LP to optimise over a subset of relevant labels, that is, labels
that are present in the solutions provided by other methods. Qualitative results
for the Teddy image can be found in Fig. 2 and additional outputs are present
in supplementary material. We can see that lower energy translates to better
visual results: note the removal of the artifacts in otherwise smooth regions (for
example, in the middle of the sloped surface on the left of the image).

Left Image MF DCneg QPcvx

Ground Truth QP − DCneg QP − DCgen QP − DCneg − LP

Fig. 2. Stereo matching results on the Teddy image. Continuous relaxation achieve
smoother labeling, as expected by their lower energies

7.2 Image Segmentation

Data. We now consider an image segmentation task evaluated on the PASCAL
VOC 2010 [28] dataset. For the sake of comparison, we use the same data splits
and unary potentials as the one used by Krähenbühl and Koltun [5]. We perform
cross-validation to select the best parameters of the pixel compatibility function
for each method using Spearmint [29].

Results. The energy results obtained using the parameters cross validated for
DCneg are given in Table 1. MF5 corresponds to mean-field ran for 5 iterations
as it is often the case in practice [5,12].

Once again, we observe that continuous relaxations provide lower energies
than mean-field based approaches. To add significance to this result, we also
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Table 1. Percentage of images the row method outperforms the column method on
final energy, average energy over the test set and Segmentation performance. Contin-
uous relaxations dominate mean-field approaches on almost all images and improve
significantly more compared to the Unary baseline. Parameters tuned for DCneg

Unary MF5 MF QPcvx DCgen DCneg LP Avg. E Acc IoU

Unary - 0 0 0 0 0 0 0 79.04 27.43

MF5 99 - 13 0 0 0 0 −600 79.13 27.53

MF 99 0 - 0 0 0 0 −600 79.13 27.53

QPcvx 99 99 99 - 0 0 0 −6014 80.38 28.56

DCgen 99 99 99 85 - 0 1 −6429 80.41 28.59

DCneg 99 99 99 98 97 - 4 −6613 80.43 28.60

LP 99 99 99 98 97 87 - −6697 80.49 28.68

compare energies image-wise. In all but a few cases, the energies obtained by the
continuous relaxations are better or equal to the mean-field ones. This provides
conclusive evidence for our central hypothesis that continuous relaxations are
better suited to the problem of energy minimisation in dense CRFs.

For completeness, we also provide energy and segmentation results for
the parameters tuned for MF in the supplementary material. Even in that
unfavourable setting, continuous relaxations still provide better energies. Note
that, due to time constraints, we run the LP subgradient descent for only 5 iter-
ations of subgradient descent. Moreover, to be able to run more experiments, we
also restricted the number of labels by discarding labels that have a very small
probability to appear given the initialisation.

Some qualitative results can be found in Fig. 3. When comparing the segmen-
tations for MF and DCneg, we can see that the best one is always the one we
tune parameters for. A further interesting caveat is that although we always find
a solution with better energy, it does not appear to be reflected in the quality of
the segmentation. While in the previous case with stereo vision, better energy

Original MF Parameters DCneg Parameters
Image Ground Truth MF DCneg MF DCneg

E=-3.08367e+7 E=-3.1012e+7 E=155992 E=154100

E=-3.10922e+7 E=-3.18649e+7 E=170968 E=163308

Fig. 3. Segmentation results on sample images. We see that DCneg leads to better
energy in all cases compared to MF. Segmentation results are better for MF for the
MF-tuned parameters and better for DCneg for the DCneg-tuned parameters
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implied qualitatively better reconstruction it is not so here. Similar observation
was made by Wang et al [20].

8 Discussion

Our main contribution are four efficient algorithms for the dense CRF energy
minimisation problem based on QP, DC and LP relaxations. We showed that
continuous relaxations give better energies than the mean-field based approaches.
Our best performing method, the LP relaxation, suffers from its high runtime.
To go beyond this limit, move making algorithms such as α-expansion [30] could
be used and take advantage of the fact that this relaxation solves exactly the
original IP for the two label problem. In future work, we also want to investigate
the effect of learning specific parameters for these new inference methods using
the framework of [18].
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