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Abstract. In this paper, we address the task of object counting in
images. We follow modern learning approaches in which a density map
is estimated directly from the input image. We employ CNNs and incor-
porate two significant improvements to the state of the art methods:
layered boosting and selective sampling. As a result, we manage both to
increase the counting accuracy and to reduce processing time. Moreover,
we show that the proposed method is effective, even in the presence of
labeling errors. Extensive experiments on five different datasets demon-
strate the efficacy and robustness of our approach. Mean Absolute error
was reduced by 20 % to 35 %. At the same time, the training time of each
CNN has been reduced by 50 %.

Keywords: Counting · Convolutional Neural Networks · Gradient
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1 Introduction

Counting objects in still images and video is a well-defined cognitive task in which
humans greatly outperform machines. In addition, automatic counting has many
important real-world applications, including medical microscopy, environmental
surveying, automated manufacturing, and surveillance.

Traditional approaches to visual object counting were based on object detec-
tion and segmentation. This direct approach assumes the existence of adequate
object localization algorithms. However, in many practical applications, object
delineation is limited by significant inter-object occlusions or by cluttered back-
ground. Due to these limitations, in many cases, direct approaches can lead to
gross under- or over-counting.

Starting with the seminal work of Lempitsky and Zisserman [1], a density
based approach is used to translate the counting problem into a regression prob-
lem. This approach is demonstrated in Fig. 1. Each object is represented by a
density kernel in a density map F . The goal of the algorithm is to estimate F
directly from the image, turning the discrete counting problem to a multivari-
ate regression problem. Counting is then performed by integrating the density
function over the entire image.

Recently, a method based on Convolutional Neural Networks (CNNs) has
been proposed for the problem of crowd counting [2]. The network estimates
the density map, which is then corrected by a second regression step. Like other
c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part II, LNCS 9906, pp. 660–676, 2016.
DOI: 10.1007/978-3-319-46475-6 41



Learning to Count with CNN Boosting 661

Fig. 1. Examples of density maps. (a) A synthetic fluorescence-light microscopy
image [1] (left) and corresponding label density map (right). (b) A perspective nor-
malized crowd image from the UCSD dataset [3] (left) and corresponding label density
map (right). In both applications, machine learning techniques are used to estimate
the appropriate density map values for each pixel. (c) The kernel used to create the
microscopy density map. (d) The kernel used to create the crowd density map.

CNN based methods, this approach allows end-to-end training without the need
to design any hand crafted image features and yields state of the art results as
demonstrated on current object counting benchmarks: USCD [3] and UCF [4].

In this work, we adopt the CNN approach and introduce several novel mod-
ifications, which yield a significant improvement both in accuracy and perfor-
mance. One such modification is in the boosting process. We propose a layered
approach, where training is done in stages. We iteratively add CNNs, so that
every new CNN is trained to estimate the residual error of the earlier predic-
tion. After the first CNN is trained, the second CNN is trained on the difference
between the estimation and the ground truth. The process then continues to the
third CNN and so on.

Our second contribution is an intuitive yet powerful sample selection algo-
rithm that yields both higher accuracy and faster training times. The idea is to
streamline the training process by reducing the impact of the low quality sam-
ples, such as trivial cases or outliers. We propose to use the error of each sample
as a measure of its quality. Our assumption is that very low errors indicate trivial
cases. Conversely, very high errors indicate outliers. Accordingly, for a number of
training epochs, we mute both low and high error samples. Reducing the impact
of outliers is instrumental in increasing the overall accuracy of the method. At
the same time, an effective decrease in the overall number of training samples
reduces the training time of each CNN in the boosted ensemble.

It should be noted that layered boosting and selective sampling complement
each other. Boosting increases the overall number of trained network layers,
which drives up the training time. Boosting also leads to an over emphasis of
misclassified samples such as outliers. Selective sampling mitigates both these
undesirable effects.
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2 Previous Work

The straightforward approach to counting is based on counting objects detected
by an image segmentation process, see, for example, [5,6]. However, such meth-
ods are limited by the accuracy of the underlying detection methods. Accord-
ingly, direct approaches tend to have difficulties in handling severe occlusions
and cluttered backgrounds.

A direct machine learning approach was suggested in [4,7,8], which esti-
mates the number of objects based on a predetermined set of image features
such as image histograms. Naturally, the use of 1D statistics leads to a great
computational efficiency. However, these global approaches tend to disregard
2D information on the object location. As a result, in some complex counting
applications, accuracy may be affected.

Lempitsky et al. [1] introduced an object counting method that is based on
pixel-level object density map regression. The method was shown to perform well,
even in the face of a high number of objects that occlude each other. Following
this work, Fiaschi et al. [9] used random forest regression in order to estimate
the object density and improve training efficiency. Pham et al. [10] suggested
additional improvements using modified random forests.

Deep learning is often used for tasks that are related to crowd counting
such as pedestrian detection [11,12] and crowd segmentation [13]. Two recent
contributions [2,14] have used deep models specifically for the application of
crowd counting. In [2], a dual-loss function was suggested for the estimation of
both the density function and the crowd count simultaneously. In [14], a method
was proposed for counting extremely dense crowds using a CNN. In this work,
the step of estimating the density function was not performed. Instead, the CNN
directly estimated the number of people in the crowd. In addition, the utility of
augmenting the training data with negative samples (no people) was explored.

In contrast to other methods, our approach proposes to estimate the den-
sity map directly with a single loss function. In order to mitigate the difficulty
of training deep regression networks, we propose the use of relatively shallow
networks augmented by the boosting framework.

Boosting Deep Networks: Boosting is a well-known greedy technique for ensemble
learning. The basic idea is to literately train a new classifier that learns to
fix the errors of the previous classifiers. In general, boosting is most powerful
when used to combine weak models, and boosting stronger models is often not
beneficial [15]. Specifically, only a few attempts have been made for boosting
deep neural networks.

In [16], a hybrid method based on boosting is proposed. First, object can-
didates are determined based on low-level features extracted from the bottom
layers of a trained CNN. AdaBoost [17] is then used to build a final classifier.

In this paper, we employ boosting in a straightforward manner, working
iteratively with the same network. The method is general and the same network
architecture is used for all the applications. Despite the simplicity of the proposed
approach, it yields excellent results.
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Sample Selection: Training deep networks is often done by utilizing very large
datasets. Many methods have been proposed for data augmentation in order to
increase the training set size even further. However, not all training samples are
created equal. For instance, [18] proposed a sample selection scheme to choose
the best samples within a sample augmentation framework. For each training
sample, a continuous stream of augmented samples is created. Then, in between
epochs, the network evaluates the error of each of the synthesized samples. Only
high error samples are retained to form the final training set.

Sample selection is often used as a part of cascaded architectures. Cascades
have been used, e.g., for face detection using either hand crafted features [19], or
deep learning [20]. When constructing the next level of the cascade, the samples
that did not pass the previous classifiers are filtered out.

Another commonly used method is the one of harvesting hard negative sam-
ples, which is used for face detection and for object detection in general, e.g.
see [21]. Recently, in the domain of face recognition [22], it has been proposed to
construct a dataset of individuals that are similar to each other and are therefore
harder to identify. The face recognition network is then fine-tuned on this more
challenging sample set.

3 Density Counting with CNNs

Following previous work, we define the density function as a real-valued function
over the pixel grid, such that its integral over the image domain matches the
object counts. The input to our method is a single image I, and, during training,
a set S of image locations that correspond to the centers of the objects to be
counted. The density map F is the image obtained by placing a 2D kernel P at
each location p ∈ S:

F (x) =
∑

p∈S

P (x − p), (1)

where x denotes 2D image coordinates. For the microscopy dataset, we follow [1]
and employ P that is a normalized 2D Gaussian kernel. For the crowd-counting
experiment, we follow [2] and use a specific smoothing kernel designed for this
task. This filter is a human-shaped structure composed as a superposition of two
Gaussians, one for the head and one for the body. In Fig. 1, examples of ground
truth density maps are presented for both microscopy and crowd counting, as
well as the kernels used.

Counting in the density map domain is done by spatial integration. It is
important to note, however, that using the definition above, the sum of the
ground truth density F over the entire image will not match the object count
exactly. This effect is caused by objects that lie very close to the image boundary
so that part of the associated probability mass is located outside of the image.
However, for most applications, this effect can be neglected.

Any regression algorithm can be used for counting within such a framework.
The objective of the regression model is to learn the mapping from the image
pixels to the density map of the image. In our deep learning method, similar
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to [2], a CNN is used in order to map an image patch to the corresponding
patch of the density image.

Patches randomly selected from the training images are treated as training
samples, and the corresponding patches of the density map form the labels.
As with other density based methods, counting is performed by summing the
estimated density map. Note that unlike [2], we do not use the density map as
a feature for a second regression model. Instead, we directly integrate over the
density map. We have used two slightly different CNN architectures to address
the two counting problems. In both cases, the input consists of patches of the
input image I, and the output is an estimated density map for each patch. The
CNN architecture for microscopy counting can be seen in Fig. 2(a), and the one
used for crowd counting is depicted in Fig. 2(b). The differences are mainly in
the size of the input patch, which, in turn, is determined by the size of the
objects to be counted. In both cases, the architecture is built out of several
convolutional blocks, which contain interleaving 2 × 2 pooling layers. After each
convolutional block, we add a dropout layer [23], with a parameter 0.5. The
final block is composed of a single convolutional layer (for crowd) and a series of
fully connected layers without pooling. After each layer, except for the topmost
hidden layer, we employ a ReLU activation function [24].

Fig. 2. The proposed CNN architecture. The basic network architecture is composed
of 3 blocks. The first two blocks contain convolutional layers followed by max-pooling.
The final block is composed of a single convolutional layer (for crowd) and a series
of fully connected layers without pooling. (a) The cell counting problem. We use 2
convolutional blocks. Each block consists of 3 × 3 convolution layers, ending with 2× 2
pooling and dropout. After the two convolutional blocks, we add a fully connected layer
with 100 neurons. (b) The crowd counting problem. There are two 7 × 7 convolutions,
each followed by 2 × 2 pooling. Finally, a 5 × 5 convolution layer followed by two fully
connected layers are added.
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Since we use two 2×2 pooling layers, the output density patch is 1/4 the size
of the original patch, in each dimension. We use the Euclidean (L2) distance as
the loss function. This is in contrast to [2], which employs a dual regression loss
function in order to overcome the relatively more challenging training of regres-
sion problems. In our case, we train using RMSProp [25] instead of Stochastic
Gradient Descent and are able to train even without modifying the loss function.
Weights were initialized using the Xavier-improved method [26].

At test time, patches are extracted from the test image using a sliding window
approach. We adjust the stride such that there is a 50 % overlap. The density
estimation of each pixel in the output image is obtained by averaging all the
predictions of the overlapping patches that contain the given pixel. The final
object count in the image is then obtained by summing all values of the recovered
density map.

4 Gradient Boosting of CNNs

Gradient boosting machines belong to a family of powerful machine-learning
ensemble techniques that have shown considerable success in a wide range of
practical applications. Common ensemble techniques, such as random forests,
rely on simple averaging of models in the ensemble. Boosting methods, including
gradient boosting, are based on a different, constructive strategy for the ensemble
formation. There, new models are added to the ensemble sequentially. At each
iteration, a new base-learner model fn is trained to fix the errors of the previous
ensemble Fn−1

fn(x) = arg min
fn(x)

Ex[

expected loss for one sample︷ ︸︸ ︷
Ey(Ψ [y, fn + Fn−1(x)]) |x]

︸ ︷︷ ︸
expectation over the entire dataset

, (2)

where fn(x) is the n-th base-learner, Ψ is the loss function and Fn−1 =
∑n−1

1 fi.
One can consider several different strategies for boosting, i.e. different ways

to find the error-minimizing function. A well-known formulation is that of
the gradient-descent method, which is called gradient boosting machines or
GBMs [27,28]. The principle idea is to construct the next learner fn to be max-
imally correlated with the negative gradient of the loss function of the current
ensemble Fn−1. Therefore, this method follows gradient descent in the function
space.

For the Euclidean loss, this amounts to a simple strategy of fitting a model to
the current error. In our case, in each step, we fit a new CNN model fn = CNNn

to the error of the last round F (x)−Fn−1 and update the ensemble accordingly

Fn ← Fn−1 + CNNn(θ) (3)

An overview of our boosting mechanism is presented in Fig. 3. The validation
error can be used to obtain a stopping criterion for the boosting process. As
shown in Sect. 6, the gradient boosted CNN converges after a few rounds and
greatly improves the prediction accuracy.
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Fig. 3. The proposed boosting scheme.
Each net has the same basic architec-
ture with 2 convolutional blocks fol-
lowed by the final block. In each itera-
tion, we fix the trained ensemble and
train a CNN to predict the current
error.

Fig. 4. Fine-tuning a four-ensemble
network. Each of the networks was
trained on the error of the previous
ensemble. Then, all the CNNs were
joined via a sum layer and training con-
tinues jointly to all network weights.

Fine-Tuning. In many applications of deep neural networks, fine-tuning is used
in order to improve the results. In the framework of boosted CNNs, instead
of just summing the outputs of the ensemble regressors, we can fine-tune the
weights of the entire network by employing backpropagation to the resulting
structure. Our fine-tuning method is presented in Fig. 4. We compose all the
base-networks using a sum layer. A sum layer merges several inputs by doing an
element-wise sum. Then, using backpropagation, we retrain the entire ensemble
simultaneously. In order to avoid overfitting, we keep early layers fixed and allow
training of the last two layers of each network, only.

5 Sample Selection

There are several instances in which we would like to weigh down certain samples.
In particular, we would like to mitigate the adverse impact of trivial samples and
outliers. Trivial samples are the ones that are correctly classified early on. For
example, it is easy to classify points sampled from two classes, each a multivariate
Gaussian, if these points lie far away from the separating hyperplane. For the
task of visual object counting, uniform background patches are easy to classify,
and the trained network learns to classify such background patches fairly early
in the training process. Continuing to train on such patches would consume
unnecessary training resources.
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Algorithm 1. The sample selection scheme.

∀s ∈ allSamples:
Sleep[s] ← 0

for each training epoch do
activeSamples ← {s|sampleSleep[s] = 0}
∀s ∈ allSamples , Sleep[s] ← max(0, Sleep[s] − 1)
net ← processEpoch(net, activeSamples)
∀s ∈ activeSamples , Err(s) ← loss (net, s)
Θlow ← percentile(Err, activeSamples, 30)
Θhigh ← percentile(Err, activeSamples, 97)
badSamples ← {s ∈ activeSamples|Err[s] < Θlow ∨ Err[s] > Θhigh}
∀s ∈ badSamples , Sleep[s] ← 4

end for

Another source of training inefficiency is due to the presence of outliers. In
many practical applications, outliers are caused by the mislabeled samples. Such
errors in the input data are clearly detrimental to the classifier’s efficacy. Indeed,
it was shown that some boosting algorithms including AdaBoost are extremely
sensitive to outliers [29].

Accordingly, we propose to reduce the impact of low quality training samples
by decreasing their participation in the training process. This raises the question
of identifying the low quality samples described above. In our method, we employ
the current error of each individual training sample as a measure of the sample’s
quality. A very low L2 distance between the estimated and true target, indicates
a trivial sample, while a high error indicates an outlier. Therefore, samples with
either high or low errors are deemed to be of low quality.

After each epoch, we continue to train only on the samples with an error
rate between Θlow and Θhigh, where Θlow and Θhigh are thresholds chosen as a
certain percentiles of the errors of the entire training set. Based on initial cross
validation tests performed on 20 % of the training data of the UCSD dataset, we
set Θhigh to be the 97 percentile and Θlow as the 30 percentile throughout our
experiments. The examples that did not meet the threshold criteria are removed
from the training process for several epochs. Specifically, in our experiments, a
low quality sample “sleeps” for four epochs. Algorithm 1 shows our proposed
sample selection scheme.

One can think of other sample selection schemes. For instance, another
scheme could be weighting each sample’s gradients according to its error. How-
ever, a temporal elimination of a sample has clear advantages in terms of the
training time, since irrelevant training samples are completely removed and not
just weighted down.

Note that for the above mentioned parameters, at each epoch, 33 % of the
active samples are removed. Viewed as a timed process in which the number
of active samples converge, we obtain that at each round the same number of
samples are removed. Let N be the total number of training samples. At the
steady state, the following equation holds: N = x + 4 × 0.33 × x, where x is
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the number of active samples. Therefore, the number of active training samples
converges to x ≈ 0.43N . In other words, at any given epoch, after an initial
number of epochs, only about 43 % of all the samples actively participate in the
training process.

Our sample selection approach is simple and straightforward. Nevertheless,
as demonstrated in the experiments below, it yields a significant improvement
both in terms of training time and, especially for noisy labeled data, also in
terms of accuracy.

6 Experiments

We compare our algorithm to the state of the art in two domains: Bacterial cell
images and crowd counting. Overall, our experiments are more extensive than
any previous counting paper. The only dataset that seems to be missing is the
Expo crowd dataset [2], which is not publicly available. Additional experiments
holding out 5 % of the tagging are done in order to demonstrate the method’s
robustness to outliers. Finally, we present surprising results for depth estimation
from a single image, which are obtained using the same network we propose for
the completely different task of crowd counting.

6.1 Bacterial Cells Microscopy Images

The dataset presented in [1] is composed out of 200 simulated fluorescence
microscopy images of cell cultures, each containing 171 ± 64 cells on average.
100 images are reserved for training and validation, and the remaining 100 for
testing. Each image has a labeled equivalent with dots marked at the center of
each cell. The label density map was calculated by smoothing this point density
map using a Gaussian kernel with σ = 3 pixels.

Following [9], we discard the green and red channels of the raw images and use
only the blue channel. From each training image, we take 1600 random 32 × 32
patches. Our CNN architecture is the one presented in Fig. 2(a).

The results are summarized in Table 1. As in other counting benchmarks, the
mean absolute error (MAE) is used for evaluating the accuracy of each method.
As can be seen, for the given data set, without boosting, the single network does
not achieve good results. However, with the increase in the number of boosting
stages, MAE is reduced yielding a significant (more than 30 %) improvement
over the state of the art results. While the improvement in accuracy following the
booting rounds is significant, it seems that more than four rounds (five networks)
are not necessary and even detrimental. This is probably due to overfitting the
remaining error. On this very small dataset of 100 images, we could not improve
results using fine-tuning.

The boosted classifier, which consists of multiple networks, has increased
capacity. Therefore, we perform additional experiments in order to rule out the
possibility that the increased performance is simply due to the increase in the
capacity. For this purpose, we have added more convolutional layers creating
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Table 1. MAE on the microscopy dataset. We present literature results as well as
results for our boosted network, following 1–6 rounds of boosting. Deeper networks
(without boosting) and ensemble of multiple CNNs are also shown. In our terminology,
1 boost means two networks. For completeness, we also present (rightmost column)
MAE on the test set without sample selection.

Method MAE test Method MAE

test

MAE

validation

No

selection

Detection+ correction [1] 4.9 Our model (no boosting) 6.82 8.59 6.93

Density+MESA [1] 3.5 Boosted CNN (1 boost) 3.20 3.46 3.42

Regression trees [9] 3.2 Boosted CNN (2 boosts) 2.81 3.00 2.71

Ensemble of 2 CNNs 6.71 Boosted CNN (3 boosts) 2.42 2.50 2.39

Ensemble of 3 CNNs 6.54 Boosted CNN (4 boosts) 2.19 2.16 2.21

Ensemble of 4 CNNs 6.42 Boosted CNN (5 boosts) 2.33 2.18 2.41

Ensemble of 5 CNNs 6.45 Fine-tuned (4 boosts) 2.19 2.16 2.22

Ensemble of 6 CNNs 6.44 CNN twice as deep 5.40 5.62 5.22

Ensemble of 7 CNNs 6.43 CNN three times as deep 16.42 17.39 14.68

networks twice and three times as deep. The results show that a network twice
as deep is better than the shallow network we use for boosting. However, boosting
significantly outperforms increase in the network depth. The network three times
as deep is much worse than even the shallow network, probably due to overfitting
and the difficulty of training very deep networks.

It is well known that one can improve results by creating an ensemble of
CNNs trained from different random starting points. Hence, we have performed
a second experiment applying this technique. The same CNN, as the one uti-
lized for boosting, is used for the ensemble experiments. Clearly, the boosting
approach outperforms that of ensemble averaging.

6.2 Crowd Counting Benchmarks

The UCSD dataset [3] is comprised of a 2000-frame video chosen from one
surveillance camera on the UCSD campus. The video in this dataset was recorded
at 10 fps with a frame size of 158×238. The labeled ground truth is at the center
of every pedestrian. The ROI and perspective map are provided in the dataset.
We follow the setup of [2], and perform perspective normalization such that a
ground area of 3-m by 3-m is mapped to a 48 pixel by 48 pixel region.

The benchmark sets aside frames 601–1400 as the training data and the
remaining 1200 frames as the test set. For training, we extract 800 48 × 48
random patches from each training image.

Unlike some density map models that use regression on the density map [2] as
a post-processing step, our estimated count is the direct integral over the density
map. Comparison with other methods performing crowd counting on the UCSD
dataset is presented in the Table 2. Once again, the MAE metric is employed
for the accuracy evaluation. As can be seen, the proposed boosted CNN model
outperforms the best state of the art method by over 30 %. In this dataset,
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Table 2. MAE for different techniques applied on the UCSD crowd dataset. For com-
pleteness, we also present (rightmost column) MAE on the test set for a single Gaussian
kernel instead of the human shaped kernel that is composed out of two guassians.

Method MAE

test

MAE

validation

MAE test

Single-Gaussian

Density+MESA [1] 1.7 - -

Crowd CNN Model with global regression [2] 1.6 - -

COUNT forest [10] 1.6 - -

Our CNN model (no boosting) 1.63 1.42 1.57

Boosted CNN (1 boost) 1.15 1.32 1.19

Boosted CNN (2 boosts) 1.25 1.69 1.19

Fine-tuned model (1 boost) 1.10 1.28 1.18

Twice as deep 1.82 1.88 1.91

Three times as deep 2.42 2.63 2.88

Ensemble of 2 CNNs 1.55 1.55 1.63

Ensemble of 3 CNNs 1.53 1.51 1.56

one round of boosting seems optimal. The low-capacity of this benchmark is
also manifested in the low performance of the twice as deep network. In this
dataset, fine-tuning the boosted network, which contains two CNNs (1 boost),
does improve performance. However, for this specific benchmark, the gain is
relatively small (about 5 % only).

The mall crowd counting dataset [32] contains over 60,000 pedestrians in
2,000 video sequences taken in a city-mall. We follow the dataset setting in [32]
and employ frames 1–800 for training and the remaining 1200 frames as the
test set. 400 random patches of size 48 × 48 are extracted from each training
image. Table 3 presents the MAE for different state-of-the-art methods and for
our approach. It is interesting to note the large initial error. We hypothesize that
this large error is caused by the large variability in this dataset. It is remarkable
that the boosting network, as is, without any additional adaptations is able to
amend this situation. Indeed, using 2-boosting stages yields 17 % decrease in the
MAE (in comparison to the best literature technique). The fine-tuned network,
now composed of 3 CNNs, provides additional 3 % improvement.

The UCF 50 crowd counting dataset [4] contains only 50 densely
crowded images. Following the dataset setting in [4], we split the dataset ran-
domly and perform 5-fold cross-validation. We ignore the perceptive effect, which
varies from one image to the next and is hard to estimate. To mitigate the effect
of the views, we employ a 2D gaussian kernel similar to the microscopy dataset.
The results are presented in Table 4. Once again, the benefits of boosting are
observed. In this case, optimum is achieved for a single boosting round, which
obtains a 20 % drop in MAE compared to the best literature method.
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Table 3. MAE for different tech-
niques applied on the mall crowd-
counting dataset.

Method MAE

test

MAE

validation

CA-RR [30] 3.43 -

COUNT forest [10] 2.50 -

One CNN 9.54 8.51

Boosted CNN (1 boost) 2.43 3.19

Boosted CNN (2 boosts) 2.08 2.31

Boosted CNN (3 boosts) 2.13 2.78

Fine-tuned (2 boosts) 2.01 2.25

Twice as deep 10.41 11.24

Three times as deep 15.37 14.42

Ensemble of 2 CNNs 6.52 7.21

Ensemble of 3 CNNs 6.67 7.19

Table 4. MAE for different techniques
applied on the UCF crowd-counting
dataset.

Method MAE

test

MAE vali-

dation

Density+MESA [1] 493.4 -

Idrees et al. [4] 468.0 -

Zhang et al. [2] 467.0 -

One CNN (no boost) 434.4 452.4

Boosted (1 boost) 376.2 425.2

Boosted (2 boosts) 382.2 560.3

Find-tuned (1 boost) 364.4 341.4

Twice as deep 539.2 500.3

Three times as deep 914.2 712.8

Ensemble of 2 CNNs 414.2 553.2

Ensemble of 3 CNNs 474.0 680.5

6.3 Robustness to Outliers

The sample selection process has a dramatic effect on the training time, since, at
the steady state, only 43 % of samples are used at each epoch, while the amount
of epochs stays the same. However, its effect on accuracy is more limited. Table 1
shows MAE, for the cell counting dataset, with and without sample selection.
As one can see, the effect on accuracy is small. For example, with four boosting
steps, sample selection reduces MAE from 2.21 to 2.19.

However, as shown below, in more ambiguous tagging situations, or in cases
where tagging is inaccurate, sample selection becomes crucial. In order to sim-
ulate this effect, we randomly removed 5 % of points from the set S of the true
object locations for the training samples.

The results are summarized in Table 5 for the cell counting benchmark and
Table 6 for the mall crowd counting dataset. It is interesting to see that even a
very limited 5 % corruption in the ground truth causes a very significant (up to
3-fold ) increase in the MAE. However, introduction of the selective sampling

Table 5. Impact of the sample
selection on the MAE when 5 % of
the cells are randomly untagged in
the cell microscopy benchmark.

Boost No

selection

With

selection

The selection pro-

posed in [31]

none 18.80 14.55 15.72

1 10.09 7.88 8.18

2 8.12 6.25 6.32

3 8.49 4.94 5.12

4 9.12 4.96 5.42

Table 6. Impact of the sample selection
process on the MAE when a random sub-
set containing 5% of the people in the mall
dataset are untagged.

Boost No

selection

With

selection

The selection

proposed in [31]

none 9.03 7.82 11.39

1 6.92 2.97 4.44

2 5.49 2.52 2.46

3 3.76 2.25 2.48

4 4.01 2.64 2.81
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method allows over 40 % error rate reduction (4.94 instead of 8.49 for three
boosting steps in the cell dataset).

It is interesting to note that, in the mall dataset, our method applied on the
noisy ground truth data achieves better accuracy than the best literature result
obtained on the uncorrupted truth set (2.25 compared to 2.50).

In addition, we evaluated the sample selection scheme proposed in [31], which
employs a robust loss function based on Tukeys biweight function that weighs
the training samples based on the residual magnitude. As can be seen in Tables 5
and 6, our method yields lower error than state of the art.

6.4 Depth Estimation

Since the proposed boosting method, at the core of our method, is general, it can
be applied outside the realm of object counting. There are many image to image
regression problems with a similar structure to the density estimation task. We
arbitrarily select the problem of depth estimation from a single image.

The Make3D range image dataset [33,38] is used in the following depth esti-
mation experiments. Each image in this dataset is of size 2272 × 1704 and is
supplied with a 55 × 305 depth map. We adhere to the benchmark splits pro-
vided in [36], which consist of 400 training images and 134 test images.

For training, we resize the images by half and sample 800 112 × 112 patches.
We use the same CNN architecture as the crowd counting(!). The only difference
is the number of neurons in the final fully-connected layers. Since the last layer
represents the estimated depth for a patch of size 28 × 28 pixels the final fully-
connected layers contain 1000 and then 784 neurons instead of the original sizes
of 400 and 200. The ground truth depth data of Make3D is inaccurate for depths
greater than 80 m. Therefore, we follow the commonly applied post-processing
described in [37] that classifies sky pixels and sets their depth to 80 m.

The results on the Make3D benchmark are evaluated using the RMS (root
mean-squared) measure. Table 7 presents our boosting results in comparison to
the literature, and Fig. 5 shows an example. The only literature methods, we are
aware of, that outperform us are the Discrete-continuous CRF [37] and Deep
convolutional neural fields [36]. Note that our method is local and does not use

(a) (b) (c) (d)

Fig. 5. Examples of Make3D [33] depth maps. (a) A test image. (b) Estimation with
a single CNN. (c) Estimation after 1 additional round of boosting. (d) Ground truth.
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Table 7. Results on the depth estimation Make3D dataset [33]. We present literature
results as well as results for our boosted network.

Method RMS(m) test RMS(m) validation

Depth MRF [33] 16.7 -

Feedback cascades [34] 15.2 -

Depth transfer [35] 15.10 -

DCNF [36] 12.89 -

Discrete-continuous CRF [37] 12.60 -

Our CNN model (no boosting) 14.36 13.69

Boosted CNN (1 boost) 13.69 13.31

Boosted CNN (2 boosts) 13.61 12.57

Boosted CNN (3 boosts) 13.89 13.12

Fine-tuned model (2 boosts) 13.28 12.52

CRF models as the other leading methods do. The application of our method is
direct, and does not include the common practice of working with superpixels.
Nevertheless, our simplified approach is within 5.5 % of the state of the art.

7 Conclusions and Future Work

In this work, we propose two contributions that improve the effectiveness of
CNNs: gradient boosting and selective sampling. The efficacy of these techniques
was evaluated in the domain of visual object counting. We applied the techniques
on four public benchmarks and showed that our approach yields a 20 %–30 %
reduction in the counting error rate. When training the CNNs, we are able to
obtain more than 50 % reduction in training time of each CNN.

An additional advantage of the proposed approach is its simplicity. We
are using the same basic architecture for three different counting applications
(microscopy, indoor and outdoor crowd) and achieve improved results in com-
parison to the state-of-the-art methods tuned to each specific application. Inter-
estingly, in all the cases we had a similar degree of accuracy improvement over
the literature, even though each benchmark has its own leading method.

In this paper, we explored the basic premise of the above methods. However,
there are several improvements that we would like to explore in the future. These
include an adaptive parameterization for the sample selection parameters: high
and low thresholds and number of muted epochs. This can be based, for example,
on the relative contribution of each sample to the weight updates.

Finally, it is our intention to extend the proposed techniques to more CNN
regression applications. Such problems exist in a variety of domains including
tasks that differ significantly from the task of counting such as age estimation
in face images and human pose estimation.
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