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Abstract. In this paper, we propose a highly efficient metric learn-
ing approach to non-rigid 3D shape analysis. From a training set of 3D
shapes from different classes, we learn a transformation of the shapes
which optimally enforces a clustering of shapes from the same class. In
contrast to existing approaches, we do not perform a transformation of
individual local point descriptors, but a linear embedding of the entire
distribution of shape descriptors. It turns out that this embedding of the
input shapes is sufficiently powerful to enable state of the art retrieval
performance using a simple nearest neighbor classifier. We demonstrate
experimentally that our approach substantially outperforms the state of
the art non-rigid 3D shape retrieval methods on the recent benchmark
data set SHREC’14 Non-Rigid 3D Human Models, both in classification
accuracy and runtime.

Keywords: Shape retrieval · Shape representation · Supervised
learning

1 Introduction

The analysis of 3D shapes is becoming more and more important with increas-
ing amounts of 3D shape data becoming available through novel 3D scanning
technology and 3D modeling software. Among the numerous challenges in 3D
shape analysis, we will focus on the problems of non-rigid shape similarity and
non-rigid 3D shape retrieval: Given a set of 3D shapes and a previously unob-
served query shape, we would like to efficiently determine the similarity of the
query to all shapes in the database and identify the most similar shapes in the
database – see Fig. 1. The computation of shape similarity is a difficult prob-
lem, in particular if we wish to allow for non-rigid deformations of the shapes.
Under such deformations the appearance of the object may change significantly.
For many real-world retrieval applications on large 3D shape databases, it is of
importance that the retrieval of similar shapes can be computed efficiently.
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Fig. 1. Example of shape retrieval from SHREC’14 Humans - real (scanned) dataset.
The query model (top left) belongs to class 16. The top row shows the best five matches
retrieved by the Supervised Dictionary Learning method [1]. The best five matches
retrieved by the proposed method (CSD+LMNN) are shown in the bottom row. The
blue color indicates that the retrieved model corresponds to the correct class (i.e. 16)
and the red color indicates an incorrect class. The quantitative experiments in Sect. 3
show that the proposed method outperforms the state of the art methods significantly
on the SHREC’14 Humans dataset. (Color figure online)

1.1 Related Work

Much like in image analysis, the analysis of 3D shapes often starts with the
extraction of local feature descriptors which are invariant to rigid and robust
to non-rigid transformations of the shape. Popular descriptors include the Heat
Kernel Signature [2], the Wave Kernel Signature [3] and the scale-invariant Heat
Kernel Signature [4]. For computing a correspondence between 3D shapes, the
shape analysis community has devised a variety of machine learning approaches
to learn optimal point descriptors [5–8].

Learning approaches have also been used for shape retrieval as in [9] and
[1]. In [1] the authors define a dictionary of point descriptors and use it to
compute sparse representations of the point descriptors of each shape. Then they
obtain global shape descriptors by sum pooling. The distances between them
are considered to be the dis-similarity between the shapes. The authors go on to
use unsupervised and supervised learning methods to optimize the classification
results. In the supervised case, the authors try to minimize a loss function as
in [10] using a subset of the pooled descriptors as a training set. They actually
propagate the error back to the dictionary of point descriptors. This means their
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objective is to learn an optimal dictionary of point descriptors for the specific
task of shape retrieval and similarity ranking. Although this approach yielded
state of the art results, as shown in [11], the computation time needed to learn
the optimal dictionary (3–4 h) prohibits it from being used for larger datasets.
In [9] the main purpose of the method is to learn the invariant representation
of each shape of a given dataset. The authors use a statistical framework to
address classification tasks. While achieving state of the art performance, a major
drawback of this method, from a learning point of view, is that it uses a large
subset of the shapes (even 90 %) for training.

1.2 Contribution

In this work, we propose a 3D shape retrieval method which provides state of
the art performance while being substantially faster than previous techniques.
We achieve this using a novel combination of stacked shape descriptors and a
linear embedding of their distribution by means of a metric learning approach. In
contrast to the approach by Litman et al. [1], we do not employ dictionary learn-
ing to obtain shape descriptors from sparse point descriptors, but instead use
weighted averaging directly on the point descriptors of a shape. We then learn
a metric for the resulting shape descriptors so that samples from the same class
are closer to each other than samples from different classes. Letting the learning
process operate only on shape descriptors reduces our overall runtime tremen-
dously. One of the main insights of our work is that the stacked shape descriptor
alone does not lead to better performance, but in combination with the Large
Margin Nearest Neighbor (LMNN) approach for metric learning, classification
performance is significantly higher, reaching almost 98 % mean average precision
on the challenging “SHREC’ 14 Humans - scanned” data set. Furthermore, our
method is much faster than previous methods, as the individual steps require
comparably only a few computations: Rather than several hours, our approach
only needs approximately 4 min to learn the optimal embedding of shapes using
only 40 % of the shapes.

2 Approach

Our problem dictates to compare non-rigid shapes therefore we aim to obtain
representations that capture their intrinsic properties. Our goal is to find rep-
resentations such that similar shapes have proportionally similar descriptors.
This becomes a particularly challenging problem when considering all possible
deformations a single shape can have. In the next paragraphs we explain in detail
every tool that we use. First we present an overview of our pipeline as illustrated
in Fig. 2.

2.1 Overview

A commonly used scheme in shape analysis is to model a shape S as a two-
dimensional manifold M and representing it as a triangular mesh with a set of n
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Combined Spectral Point Descriptors
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Fig. 2. Overview: Schematic illustration of the proposed method.
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vertices V = {v1, v2, . . . , vn}, a set of triangular faces F ⊂ V3 and a set of edges
E ⊂ V2 between adjacent vertices.

At first, we compute the Laplace-Beltrami operator (LBO) for each mesh in
our dataset. We then compute a point descriptor d(x) - based on the LBO - for
each vertex of our mesh. There are different descriptors that can be utilized. We
use the Wave Kernel Signature [3] and the scale-invariant Heat Kernel Signature
[4]. The reason to choose LBO-based descriptors is their inherent invariance to
isometric deformations.

As a mesh can have several thousands vertices and datasets contain a large
number of meshes, it becomes intractable to compare all point descriptors. There-
fore we compute a weighted average of the point descriptors of each mesh and
obtain a q-dimensional descriptor yf for each shape. The shape descriptors yf can
either be the averaged siHKS, the averaged WKS or a combination of them. Our
rational for the particular choice of descriptors is that siHKS captures global,
while WKS focuses on local shape features. We argue that a stacked combina-
tion of them contains diverse information that can be fully exploited by a metric
learning algorithm.

In the end we feed a subset of our shape descriptors yf along with their labels
to a supervised metric learning algorithm (LMNN). The algorithm learns a linear
mapping L of the shape descriptors such that shapes with different labels are
easier to distinguish from one another in the new space.

Now when we want to classify a new shape, all we need to do is to compute
the same type of shape descriptor yf as the one we trained our classifier with
and transform it into the new space by applying the learned mapping L. The
labels of the k closest shapes in the transformed space determine the predicted
label for our query shape.

2.2 The Laplace-Beltrami Operator

The Laplace-Beltrami operator (LBO) is a natural generalization of the Laplace
operator for Riemannian manifolds. Like the Laplacian, it is defined as the (neg-
ative) divergence of the gradient, and it is a linear operator mapping functions
to functions. Therefore the LBO is often also simply referred to as the Laplacian.
Formally, given a smooth scalar field f : M → R on the manifold M associated
to shape S, the Laplace-Beltrami operator Δ is defined as

Δf := −div(∇f). (1)

One of the most important properties of the Laplacian is that it is invariant
under isometric deformations. Particularly useful are the eigenvalues λi ∈ R and
the eigenfunctions φi : M → R of the Laplacian, i.e.

Δφi := λiφi. (2)

The eigenvalues λi of Eq. (2) – known as the Helmholtz equation – are non-
negative and represent a discrete set (0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ +∞). The
corresponding eigenfunctions can be chosen to form an orthonormal basis:
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〈φi, φj〉 =
∫

M
φi(x)φj(x)dx =

{
0, if i 
= j

1, if i = j.
(3)

Discretization. A popular discretization of the LBO is the cotangent scheme
[12,13]. It allows to compute the eigenvalues λi and eigenvectors φi as the solu-
tions to the generalized eigenvalue problem

Aφi = λiBφi, (4)

where A ∈ R
n×n is the stiffness matrix and B ∈ R

n×n is the mass matrix.
Concretely, A is defined as

Aij =

{
cotαij+cotαji

2 , if (vi, vj) ∈ E
−∑

k∈N(i) Aik, if i = j,
(5)

where αij and αji are the two angles opposite of the edge (vi, vj) and N(i) is
the one-ring neighborhood of vertex vi. The mass matrix B is defined as

Bij =

{
a(T1)+a(T2)

12 , if (vi, vj) ∈ E
∑

k∈N(i) a(Tk)

6 , if i = j,
(6)

where T1, T2 are the triangles that share the edge (vi, vj), and a(T ) is the area
of triangle T . Often a simplified “lumped” diagonal version of the mass matrix
is used:

Bii =

∑
k∈N(i) a(Tk)

3
, (7)

i.e. Bii is considered as the corresponding area element of vertex vi. The geo-
metric concepts of these formulas are depicted in Fig. 3.

vi vi

vj

αji

αij

Bii

Fig. 3. Stiffness Matrix (left): The entries Aij of the stiffness matrix A contain the
average of the cotangents of the angles αij , αji opposite to the edge (vi, vj). Thus the
name cotangent scheme. Mass Matrix (right): The diagonal entries Bii of the mass
matrix B correspond to the Voronoi area around vertex vi.
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2.3 Point Descriptors

Local feature descriptors have been proven particularly useful in shape analy-
sis tasks such as shape matching (point-to-point correspondence) and shape
retrieval. In the following we describe three of the most used ones.

Heat Kernel Signature. The HKS [2] is - as the name indicates - based on the
heat diffusion process on a surface S which is governed by the Heat equation:

Δu(x, t) = − ∂

∂t
u(x, t). (8)

The solution kt(x, x) can be interpreted as the amount of heat that remains
at point x of surface S after time t when starting with a unit heat source u0

concentrated at x at t0 = 0. The eigen-decomposition of the Heat Kernel is

kt(x, y) =
∞∑

k=0

e−λktφk(x)φk(y), (9)

so the HKS is just

kt(x, x) =
K−1∑
k=0

e−λktφk(x)2, (10)

as we truncate the basis to the first K eigenfunctions of the LBO. Concatenating
the solutions for different times {t1, t2, . . . , tT } we obtain a descriptor of the form

HKS(x) = (kt1(x, x), kt2(x, x), . . . , ktT
(x, x)). (11)

Scale Invariant Heat Kernel Signature. Bronstein and Kokkinos [4] devel-
oped a scale-invariant version of the Heat Kernel Signature (siHKS) using the
logarithm, the derivative and the Fourier transform moving from the time
domain to the frequencies domain. Assuming a shape is scaled by a factor β, and
rewriting time t as ατ , the heat kernel of the scaled shape would only be shifted
in τ by 2 logα β. The authors first constructed a scale-covariant heat kernel :

scHKS(x, x) = −

K∑
k=1

λkατ log αe−λkατ

φk(x)2

K∑
k=1

e−λkατ φk(x)2
. (12)

In the Fourier domain this shift results in a complex phase H(ω)e−iω2 logα β

where H(ω) denotes the Fourier transform of scHKS w.r.t. τ . Finally the scale-
invariant HKS is constructed by taking the absolute value of H(ω) (thus undoing
the phase) and then sampling |H(ω)| at q frequencies {ω1, . . . , ωq} [1]:

siHKS(x) = (|H(ω1)|, . . . , |H(ωq)|)T . (13)

Wave Kernel Signature. The Wave Kernel Signature (WKS) [3] - inspired
by quantum mechanics - describes the average probability over time to locate
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a particle with a certain energy distribution fE at point x. The movement of a
quantum particle on a surface is governed by the wave function ψ(x, t) which is
a solution of the Schrödinger equation

∂ψ(x, t)
∂t

= iΔψ(x, t). (14)

The energy distribution of a quantum particle depends on the LBO eigenvalues.
Therefore the wave equation for a particle can be written as

ψE(x, t) =
∞∑

k=0

eiλktφk(x)fE(λk). (15)

The probability to locate the particle at point x is then |ψE(x, t)|2. Therefore
the average probability over time is

p(x) = lim
T→∞

1
T

∫ T

0

|ψE(x, t)|2 =
∞∑

k=1

φk(x)2fE(λk)2. (16)

As we described, the LBO and its spectrum capture intrinsic properties of a
shape. Therefore different choices of fE give us shape properties at different
scales. Evaluating with energy distributions {e1, . . . , eq} we get the vector for
the Wave Kernel Signature:

WKS(E, x) = (pe1(x), . . . , peq
(x))T . (17)

Note that as with the HKS we must truncate the sum at the first K eigenvalues.
Typical values for K are 50 or 100.

2.4 Weighted Average

Our aim is to use the shape descriptors mentioned above and the learned distance
metric to classify shapes. However, for a given shape so far we only have a number
of point descriptors, but for classification we would prefer to have one descriptor
for the whole shape. To achieve this, we compute a weighted average over all
point descriptors d(x) computed from the points x of a given shape S. Thus, our
shape descriptor is defined as

yf (S) =
∑
x∈S

wxd(x) with wx =
ax∑

y∈S ay
, (18)

where ax is the area element associated with vertex x ∈ S. This weighted aver-
aging is inspired by the pooling step proposed by Litman et al. [1], however with
the difference that we do not use sparse coding.

In the case of WKS we normalize the point descriptors by the L2-norm. Both
averaged shape descriptors are also normalized by the L2-norm. We compared
3 different shape descriptors, the averaged WKS, the averaged siHKS and a
combination of them we refer to as Combined Spectral Descriptor (CSD):
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yCSD(S) =
(

yWKS(S)
ysiHKS(S)

)
. (19)

2.5 Large Margin Nearest Neighbor

Large Margin Nearest Neighbor (LMNN) is a machine learning algorithm that
was first introduced in 2005 [14]. The authors keep updating the algorithm
and their implementation is very efficient even for applications with very large
datasets [15]. As of the latest version that we used, the L-BFGS algorithm is
used for optimization by default.

Algorithm 1. Shape descriptors
procedure Get–Averaged –Descriptors

for each shape S ∈ D do
for each point x ∈ S do

d̃(x) ← siHKS(x) |WKS(x)
if WKS then

d(x) ← d̃(x)

||d̃(x)||2
else

d(x) ← d̃(x)
end for

ỹf (S) ←∑x∈S wxd(x) (see Eq. (18))

yf (S) ← ỹf (S)

||ỹf (S)||2
end for

LMNN utilizes both the concept of SVMs of margin maximization and the
well known k-NN algorithm. It is specifically conceived to learn a Mahalanobis
(semi-)metric DM that improves the accuracy of k-NN classification. This metric
is represented by the positive semi-definite matrix M ∈ R

n×n, such that

DM (x,y) = 〈M(x − y), (x − y)〉 1
2 . (20)

Equivalently DM (x,y) can be seen as the Euclidean distance between the points
x,y transformed by the linear transformation L ∈ R

m×n, i.e.

DL(x,y) = ‖Lx − Ly‖, (21)

as the positive semi-definiteness of M allows a decomposition M = L�L.
The main idea of the algorithm is to find a mapping L so that for each input xi

there are at least k neighbors that share its label yi (see Fig. 4). This is facilitated
by choosing target neighbors of xi, i.e. samples that are desired to be closest to xi.
The target neighbors for every input are fixed during the whole learning process.
Note that target neighbors are not symmetric. For instance if xj is a target neigh-
bor of xi it is not necessary that xi is also a target neighbor of xj .
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margin

local neighborhood

Euclidean Metric Mahalanobis Metric

xi
xi

xj
xj

Fig. 4. Large Margin Nearest Neighbor (LMNN) finds the best positive semi-
definite matrix M , such that the induced Mahalanobis (semi-)norm DM (xi,xj) =

〈Mxi − xj ,xi − xj〉 1
2 separates the different classes as good as possible.

Furthermore, LMNN tries to ensure that differently labeled inputs are farther
away from the target neighbors so that they do not get selected by k-NN. Samples
that violate this rule are called impostors. Ideally we would like to create a large
margin between the perimeter around each input and its target neighbors, and
all differently labeled inputs as illustrated in Fig. 4 on the right. This goal also
explains the name of the algorithm.

Loss Function. The loss function consists of two competing terms. The first
one pulls target neighbors together:

εpull(L) =
∑

i,j�i

||L(xi − xj)||2. (22)

The notation in Eq. (22) implies that xj are target neighbors of xi. The pull
loss penalizes large distances between inputs and their target neighbors. This
is an important difference of LMNN compared to other algorithms where large
distances to all other similarly labeled samples are penalized. The second term
pushes impostors away:

εpush(L) =
∑

i,j�i

∑
l

(1 − yil)[1 + ||L(xi − xj)||2 − ||L(xi − xl)||2]+, (23)

where [x]+ = max(x, 0) denotes the standard hinge loss and yil is 1 only when
yi = yl and 0 otherwise. Note that the choice of the unit margin is an arbitrary
convention that sets the scale for the linear transformation L. If a different
margin c > 0 was enforced, the loss function would be minimized by the same
linear transformation up to an overall scale factor

√
c. Combining both terms

we get the LMNN loss function:

ε(L) = μεpull(L) + (1 − μ)εpush(L), (24)
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where μ ∈ [0, 1] is a trade-off parameter between small intra-class and large inter-
class distances. Although μ can be estimated with cross validation, in practice
setting μ = 0.5 works well. There are several similarities with the SVM’s loss
function:

– One term penalizes the norm of the parameter vector (i.e., w in SVMs, L in
LMNN)

– The hinge loss is only triggered by samples near the decision boundary
– Both loss functions can be rewritten to utilize the kernel trick
– Both problems can be reformulated as convex optimization problems.

Convex Optimization. While ε(L) is quadratic in L, Eqs. (20) and (21) allow
us to restate the loss of ε of Eq. (24) in terms of M . Minimizing this loss becomes a
semi-definite program (SDP) which is a convex problem that can be solved glob-
ally in polynomial time. For the SDP formulation the authors of [10] introduced
slack variables {ξijl} for all triplets of target neighbors xi,xj and impostors xl.
The slack variables measure the level of margin violation. Therefore the SDP
can be defined as:

min. μ
∑

i,j�i(xi − xj)T M(xi − xj) + (1 − μ)
∑

i,j�i,l(1 − yil)ξijl

s.t. (xi − xl)T M(xi − xl) − (xi − xj)T M(xi − xj) ≥ 1 − ξijl

ξijl ≥ 0 ∀i, j, l
M � 0 .

where the last constraint implies that the matrix M must be positive semi-
definite. The authors created their own solver for the SDP in order to take
advantage of the sparsity of the slack variables. This leads to much faster solu-
tions.

Optimal Training Parameters. The LMNN optimization process requires
three parameters to be specified beforehand: the dimension m of the lower-
dimensional space into which the samples are mapped by L, the number of
neighbors k to consider, and the number of iterations r of the L-BFGS opti-
mizer. To find good values for these parameters, a validation set is used, which
is a part of the original training data. Then, the LMNN optimization is run
on the remaining data with different parameter settings, that are chosen using
Bayesian optimization, and evaluated on the validation set. After a given num-
ber of iterations, the parameter set that achieved the highest performance on
the validation set is used to run LMNN training on the entire training set.

Classification. For classification, we use the k nearest-neighbor classifier in
the m-dimensional target space. Thus, for a given test shape we compute its
descriptor, map it into R

m using the mapping L found in the training step, and
assign to it the most frequent label of the k closest, by the Euclidean distance,
mapped training samples.
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3 Experiments

Datasets. We evaluated our approaches on 2 datasets from SHREC’14 - Shape
Retrieval of Non-Rigid 3D Human Models [11]. Of the two main datasets, one
consists of synthetic and one of real (scanned) 3D human models. Each class
represents a human model and each instance of a class is a different pose of
that model. This is a different setting than most classification problems where
distinct classes correspond to naturally separate categories (like humans, dogs,
cats, etc.). This property along with the fact that some models contain self-
intersections makes these datasets particularly challenging.

We used the provided evaluation code from [11] that computes several accu-
racy metrics: nearest neighbor, first tier, second tier, discounted cumulative gain,
e-measure, f-measure, precision and recall.

All meshes were down-sampled to 20.000 faces with Meshlab [16].

Evaluation Setting. We scaled the shapes as indicated in the available code
that accompanies [1]. We truncated the bases of the LBO to the first 100 eigen-
functions. Based on them we computed 50-dimensional siHKS descriptors with
the same settings as in [1] and 100-dimensional WKS descriptors, setting the
variance to 6. We used 40 % of the shape descriptors to train the LMNN classi-
fier and tested on the rest. We used 25 % of the training set as a validation set
to find the optimal parameters for LMNN.1

Table 1. CSD and CSD+LMNN
evaluation on the SHREC’14 real
dataset.

Metric CSD CSD+LMNN

nn 0.5075 0.9792

ft/fm 0.3692 0.9278

st 0.5669 0.9868

em 0.3135 0.2703

dcg 0.6407 0.9760

Table 2. CSD and CSD+LMNN evalua-
tion on the SHREC’14 synthetic dataset.

Metric CSD CSD+LMNN

nn 0.8267 0.9967

ft/fm 0.6789 0.9802

st 0.9147 0.9986

em 0.6358 0.5114

dcg 0.9066 0.9963

Our CSD approach gives remarkable results, when combined with LMNN
(Tables 1 and 2). Even though the SHREC’14 datasets are considered extremely
challenging, our algorithm performed better than the methods that participated
in the SHREC’14 contest (see Table 3) and the most recent learning approach
proposed in [9]. This is a significant result since our approach is comparatively
simpler and the computation time very low.

1 Our code is available at https://github.com/tum-vision/csd lmnn.

https://github.com/tum-vision/csd_lmnn
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Table 3. Comparison of retrieval methods in terms of mean average precision (mAP,
in %) on the SHREC’14 3D Human Models datasets. In the upper part of the table,
results of methods that participated in the SHREC’14 contest are documented as in [11]
and the most recent learning approach proposed in [9]. In the lower part, we report the
results of our approaches, averaged over 5 runs (different training/testing sets splits).

Method Synthetic Real (Scanned)

ISPM 90.2 25.8

DBN 84.2 30.4

R-BiHDM 64.2 64.0

HAPT 81.7 63.7

ShapeGoogle(VQ) [18] 81.3 51.4

Unsupervised DL [1] 84.2 52.3

Supervised DL [1] 95.4 79.1

RMVM [9] 96.3 79.5

siHKS 84.33 62.00

siHKS+LMNN 97.11 92.58

WKS 91.33 33.75

WKS+LMNN 98.11 76.92

CSD 82.67 50.75

CSD+LMNN 99.67 97.92

Figure 5 shows the result of the LMNN learning step. As one can see, LMNN is
able to capture the discriminative features of the classes despite the information
loss from the projection onto three dimensions, which is done to facilitate the
visualization.

We noticed that using both the siHKS and the WKS performed worse than
using each descriptor separately. Nevertheless, when used as input to a metric
learning algorithm, the performance of the combined descriptor improved consid-
erably. The CSD with LMNN performs better than either individual descriptor
with LMNN (see Table 3). In particular, we observe that even if we add a seem-
ingly harmful descriptor, as in the case of the WKS for the real dataset, LMNN
is able to select the most useful - in terms of k -NN classification - dimensions of
both descriptors, thereby achieving a better accuracy than the siHKS+LMNN
approach. This confirms our hypothesis that metric learning can utilize the addi-
tional information contained in the combined descriptor. Adding other descrip-
tors to the CSD such as the GPS [17] led to no improvement.

Note that in our CSD+LMNN-approach the most time-consuming part is
finding the optimal parameters for LMNN. Still the total time needed for the
algorithm - excluding the computation of point descriptors - is approximately
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Fig. 5. Visualization of the shape descriptors before and after learning: Each
circle corresponds to the descriptor of one shape. The colors correspond to the 40 classes
of the SHREC’14 Real dataset (top row) or the 15 classes of the SHREC’14 Synthetic
dataset (bottom row). It can be seen by even visualizing only two dimensions that the
transformation L, learned by LMNN, results in a much better clustering of the shapes.
This is in line with the quantitative evaluation on the datasets. (Color figure online)

2 min. In the worst case it never exceeded 4 min on a machine with a 2.0 GHz
CPU. This is an extremely small amount of time compared to the supervised dic-
tionary learning approach proposed in [1] which needs nearly 4 hours to converge
on a machine with a 3.2 GHz CPU.



Non-rigid 3D Shape Retrieval via LMNN Embedding 341

Recall
0 0.2 0.4 0.6 0.8 1

P
re
ci
si
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SHREC'14 HUMAN/REAL

CSD
CSD+LMNN
SIHKS
SIHKS+LMNN
VQ
WKS
WKS+LMNN
supDL
unsupDL

Fig. 6. Precision-Recall comparison on
the SHREC’14 real dataset.
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Fig. 7. Precision-Recall comparison on
SHREC’14 synthetic dataset.

4 Conclusion

In this paper we showed that metric learning can significantly improve the clas-
sification accuracy of well known descriptors. Given a large number of features,
a learning algorithm such as LMNN can select the most informative ones and
weight them appropriately for the problem that we aim to solve, in this case
shape retrieval. Our approach is both considerably faster and more accurate
than the state of the art. The comparison in Fig. 1 demonstrates that our app-
roach is more robust, as it is able to find the true inherent similarities between
objects and does not get confused by different classes, even if they are very
similar by human standards.
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6. Windheuser, T., Vestner, M., Rodolà, E., Triebel, R., Cremers, D.: Optimal intrin-
sic descriptors for non-rigid shape analysis. In: Proceedings of the British Machine
Vision Conference. BMVA Press (2014)

7. Rodola, E., Bulo, S.R., Windheuser, T., Vestner, M., Cremers, D.: Dense non-
rigid shape correspondence using random forests. In: Computer Vision and Pattern
Recognition (CVPR) (2014)

8. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional
neural networks on Riemannian manifolds. In: ICCV Workshops (2015)

9. Gasparetto, A., Torsello, A.: A statistical model of Riemannian metric variation for
deformable shape analysis. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015

10. Weinberger, K., Saul, L.: Distance metric learning for large margin nearest neighbor
classification. J. Mach. Learn. Res. 10, 207–244 (2009)

11. Pickup, D., Sun, X., Rosin, P.L., Martin, R.R., Cheng, Z., Lian, Z., Aono, M.,
Ben Hamza, A., Bronstein, A., Bronstein, M., Bu, S., Castellani, U., Cheng, S.,
Garro, V., Giachetti, A., Godil, A., Han, J., Johan, H., Lai, L., Li, B., Li, C., Li, H.,
Litman, R., Liu, X., Liu, Z., Lu, Y., Tatsuma, A., Ye, J.: SHREC’14 track: shape
retrieval of non-rigid 3D human models. In: Proceedings of the 7th Eurograph-
ics Workshop on 3D Object Retrieval, EG 3DOR 2014, Eurographics Association
(2014)

12. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates.
Exp. Math. 2(1), 15–36 (1993)

13. Reuter, M., Biasotti, S., Giorgi, D., Patan, G., Spagnuolo, M.: Discrete Laplace-
Beltrami operators for shape analysis and segmentation. In: IEEE International
Conference on Shape Modelling and Applications (2009)

14. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large mar-
gin nearest neighbor classification. In: Advances in Neural Information Processing
Systems, pp. 1473–1480 (2005)

15. Weinberger, K.: Kilian Weinberger’s website, code (2015). http://www.cs.cornell.
edu/kilian/code/code.html

16. CNR, V.C.L.I.: Meshlab. http://meshlab.sourceforge.net/
17. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape

representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry
Processing, Eurographics Association, pp. 225–233 (2007)

18. Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape Google:
geometric words and expressions for invariant shape retrieval. ACM Trans. Graph.
(TOG) 30(1), 1 (2011)

http://arxiv.org/abs/1110.5015
http://www.cs.cornell.edu/kilian/code/code.html
http://www.cs.cornell.edu/kilian/code/code.html
http://meshlab.sourceforge.net/

	Non-rigid 3D Shape Retrieval via Large Margin Nearest Neighbor Embedding
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Approach
	2.1 Overview
	2.2 The Laplace-Beltrami Operator
	2.3 Point Descriptors
	2.4 Weighted Average
	2.5 Large Margin Nearest Neighbor

	3 Experiments
	4 Conclusion
	References


