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Abstract. Real-time simultaneous tracking of hands manipulating and
interacting with external objects has many potential applications in aug-
mented reality, tangible computing, and wearable computing. However,
due to difficult occlusions, fast motions, and uniform hand appearance,
jointly tracking hand and object pose is more challenging than tracking
either of the two separately. Many previous approaches resort to complex
multi-camera setups to remedy the occlusion problem and often employ
expensive segmentation and optimization steps which makes real-time
tracking impossible. In this paper, we propose a real-time solution that
uses a single commodity RGB-D camera. The core of our approach is
a 3D articulated Gaussian mixture alignment strategy tailored to hand-
object tracking that allows fast pose optimization. The alignment energy
uses novel regularizers to address occlusions and hand-object contacts.
For added robustness, we guide the optimization with discriminative part
classification of the hand and segmentation of the object. We conducted
extensive experiments on several existing datasets and introduce a new
annotated hand-object dataset. Quantitative and qualitative results show
the key advantages of our method: speed, accuracy, and robustness.

1 Introduction

The human hand exhibits incredible capacity for manipulating external objects
via gripping, grasping, touching, pointing, caging, and throwing. We can use
our hands with apparent ease, even for subtle and complex motions, and with
remarkable speed and accuracy. However, this dexterity also makes it hard to
track a hand in close interaction with objects. While a lot of research has explored
real-time tracking of hands or objects in isolation, real-time hand-object tracking
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Fig. 1. Proposed real-time hand-object tracking approach: we use a single commodity
depth camera (left) to classify (top) and track the articulation of a hand and the rigid
body motion of a manipulated object (bottom)

remains unsolved. It is inherently more challenging due to the higher dimension-
ality of the problem, additional occlusions, and difficulty in disambiguating hand
from object. A fast, accurate, and robust solution based on a minimal camera
setup is a precondition for many new and important applications in vision-based
input to computers, including virtual and augmented reality, teleoperation, tan-
gible computing, and wearable computing. In this paper, we present a real-time
method to simultaneously track a hand and the manipulated object. We sup-
port tracking objects of different shapes, sizes, and colors. Previous work
has employed setups with multiple cameras [5,17] to limit the influence of occlu-
sions which restricts use to highly controlled setups. Many methods that exploit
dense depth and color measurements from commodity RGB-D cameras [8,13,14]
have been proposed. However, these methods use expensive segmentation and
optimization steps that make interactive performance hard to attain. At the
other end of the spectrum, discriminative one-shot methods (for tracking only
hands) often suffer from temporal instability [11,33,43]. Such approaches have
also been applied to estimate hand pose under object occlusion [24], but the
object is not tracked simultaneously. In contrast, the approach proposed here is
the first to track hand and object motion simultaneously at real-time rates using
only a single commodity RGB-D camera (see Fig. 1). Building on recent work in
single hand tracking and 3D pointset registration, we propose a 3D articulated
Gaussian mixture alignment strategy tailored to hand-object tracking. Gaussian
mixture alignment aligns two Gaussian mixtures and has been successfully used
in 3D pointset registration [10]. It can be interpreted as a generalization of ICP
and does not require explicit, error-prone, and computationally expensive cor-
respondence search [7]. Previous methods have used articulated 2.5D Gaussian
mixture alignment formulations [27] that are discontinuous. This leads to track-
ing instabilities because 3D spatial proximity is not considered. We also introduce
additional novel regularizers that consider occlusions and enforce contact points
between fingers and objects analytically. Our combined energy has a closed form
gradient and allows for fast and accurate tracking. For an overview of our app-
roach see Fig.2. To further increase robustness and allow for recovery of the
generative tracker, we guide the optimization using a multi-layer random forest
hand part classifier. We use a variational optimization strategy that optimizes
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Fig. 2. We perform classification of the input into object and hand parts. The hand
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two different hand-object tracking energies simultaneously (multiple proposals)
and then selects the better solution. The main contributions are:

— A 3D articulated Gaussian mixture alignment approach for jointly tracking
hand and object accurately.

— Novel contact point and occlusion objective terms that were motivated by the
physics of grasps, and can handle difficult hand-object interactions.

— A multi-layered classification architecture to segment hand and object, and
classify hand parts in RGB-D sequences.

— An extensive evaluation on public datasets as well as a new, fully annotated
dataset consisting of diverse hand-object interactions.

2 Related Work

Single Hand Tracking. Single hand tracking has received a lot of attention
in recent years with discriminative and generative methods being the two main
classes of methods. Discriminative methods for monocular RGB tracking index
into a large database of poses or learn a mapping from image to pose space [3,42].
However, accuracy and temporal stability of these methods are limited. Monoc-
ular generative methods optimize pose of more sophisticated 3D or 2.5D hand
models by optimizing an alignment energy [6,9,15]. Occlusions and appearance
ambiguities are less problematic with multi-camera setups [5]. [41] use a physics-
based approach to optimize the pose of a hand using silhouette and color con-
straints at slow non-interactive frame rates. [28] use multiple RGB cameras and
a single depth camera to track single hand poses in near real-time by combin-
ing generative tracking and finger tip detection. More lightweight setups with a
single depth camera are preferred for many interactive applications. Among sin-
gle camera methods, examples of discriminative methods are based on decision
forests for hand part labeling [11], on a latent regression forest in combination
with a coarse-to-fine search [33], fast hierarchical pose regression [31], or Hough
voting [43]. Real-time performance is feasible, but temporal instability remains
an issue. [19] generatively track a hand by optimizing a depth and appearance-
based alignment metric with particle swarm optimization (PSO). A real-time
generative tracking method with a physics-based solver was proposed in [16].
The stabilization of real-time articulated ICP based on a learned subspace prior
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on hand poses was used in [32]. Template-based non-rigid deformation track-
ing of arbitrary objects in real-time from RGB-D was shown in [45], very simple
unoccluded hand poses can be tracked. Combining generative and discriminative
tracking enables recovery from some tracking failures [25,28,39]. [27] showed real-
time single hand tracking from depth using generative pose optimization under
detection constraints. Similarly, reinitialization of generative estimates via fin-
ger tip detection [23], multi-layer discriminative reinitialization [25], or joints
detected with convolutional networks is feasible [36]. [34] employ hierarchical
sampling from partial pose distributions and a final hypothesis selection based
on a generative energy. None of the above methods is able to track interacting
hands and objects simultaneously and in non-trivial poses in real-time.

Tracking Hands in Interaction. Tracking two interacting hands, or a hand
and a manipulated object, is a much harder problem. The straightforward com-
bination of methods for object tracking, e.g. [4,35], and hand tracking does
not lead to satisfactory solutions, as only a combined formulation can method-
ically exploit mutual constraints between object and hand. [40] track two well-
separated hands from stereo by efficient pose retrieval and IK refinement. In [18]
two hands in interaction are tracked at 4 Hz with an RGB-D camera by opti-
mizing a generative depth and image alignment measure. Tracking of interacting
hands from multi-view video at slow non-interactive runtimes was shown in [5].
They use generative pose optimization supported by salient point detection. The
method in [32] can track very simple two hand interactions with little occlusion.
Commercial solutions, e.g. Leap Motion [1] and NimbleVR [2], fail if two hands
interact closely or interact with an object. In [17], a marker-less method based
on a generative pose optimization of a combined hand-object model is proposed.
They explicitly model collisions, but need multiple RGB cameras. In [8] the most
likely pose is found through belief propagation using part-based trackers. This
method is robust under occlusions, but does not explicitly track the object. A
temporally coherent nearest neighbor search tracks the hand manipulating an
object in [24], but not the object, in real time. Results are prone to temporal jit-
ter. [13] perform frame-to-frame tracking of hand and objects from RGB-D using
physics-based optimization. This approach has a slow non-interactive runtime.
An ensemble of Collaborative Trackers (ECT) for RGB-D based multi-object
and multiple hand tracking is used in [14]. Their accuracy is high, but runtime
is far from real-time. [21] infer contact forces from a tracked hand interacting
with an object at slow non-interactive runtimes. [20,38] propose methods for
in-hand RGB-D object scanning. Both methods use known generative methods
to track finger contact points to support ICP-like shape scanning. Recently, [37]
introduced a method for tracking hand-only, hand-hand, and hand-object (we
include a comparison with this method). None of the above methods can track
the hand and the manipulated object in real-time in non-trivial poses from a
single depth camera view, which is what our approach achieves.

Model-Based Tracking Approaches. A common representation for model
tracking are meshes [5,32]. Other approaches use primitives [14,23], quadrics [29],
2.5D Gaussians [27], or Gaussian mixtures [10]. Gaussian mixture alignment has
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been successfully used in rigid pointset registration [10]. In contrast, we propose
a 3D articulated Gaussian mixture alignment strategy. [44] relate template and
data via a probabilistic formulation and use EM to compute the best fit. Different
from our approach, they only model the template as a Gaussian mixture.

3 Discriminative Hand Part Classification

As a preprocessing step, we classify depth pixels as hand or object, and further
into hand parts. The obtained labeling is later used to guide the generative pose
optimization. Our part classification strategy is based on a two-layer random
forest that takes occlusions into account. Classification is based on a three step
pipeline (see Fig. 3). Input is the color C; and depth D; frames captured by the
RGB-D sensor. We first perform hand-object segmentation based on color cues
to remove the object from the depth map. Afterwards, we select a suitable two-
layer random forest to obtain the classification. The final output per pixel is a
part probability histogram that encodes the class likelihoods. Note, object pixel
histograms are set to an object class probability of 1. The forests are trained
based on a set of training images that consists of real hand motions re-targeted
to a virtual hand model to generate synthetic data from multiple viewpoints. A
virtual object is automatically inserted in the scene to simulate occlusions. To
this end, we randomly sample uniform object positions between the thumb and
one other finger and prune implausible poses based on intersection tests.

Viewpoint Selection. We trained two-layer forests for hand part classification
from different viewpoints. Four cases are distinguished: observing the hand from
the front, back, thumb and little finger sides. We select the forest that best
matches the hand orientation computed in the last frame. The selected two-
layer forest is then used for hand part classification.

Color-Based Object Segmentation. As a first step, we segment out the object
from the captured depth map D;. Similar to many previous hand-object tracking
approaches [19], we use the color image C; in combination with an HSV color
segmentation strategy. As we show in the results, we are able to support objects
with different colors. Object pixels are removed to obtain a new depth map Dy,
which we then feed to the next processing stage.

depth o
. little w.d
color
- e EEE s, —
d humb front

a) Viewpoint selection b) Color-based object ¢) Two-layer hand part classification d) Final hand part
segmentation classification

Fig. 3. Three stage hand part classification: Stage 1: Viewpoint selection, stage 2:
color-based object segmentation, and stage 3: two-layer hand part classification (Color
figure online)
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Two-Layer Hand Part Classification. We use a two-layer random forest
for hand part classification. The first layer classifies hand and arm pixels while
the second layer uses the hand pixels and further classifies them into one of
several distinct hand parts. Both layers are per-pixel classification forests [26].
The hand-arm classification forest is trained on N = 100k images with diverse
hand-object poses. For each of the four viewpoints a random forest is trained
on N = 38k images. The random forests are based on three trees, each trained
on a random distinct subset. In each image, 2000 example foreground pixels
are chosen. Split decisions at nodes are based on 100 random feature offsets
and 40 thresholds. Candidate features are a uniform mix of unary and binary
depth difference features [26]. Nodes are split as long as the information gain is
sufficient and the maximum tree depth of 19 (21 for hand-arm forest) has not
been reached. On the first layer, we use 3 part labels: 1 for hand, 1 for arm and
1 to represent the background. On the second layer, classification is based on 7
part labels: 6 for the hand parts, and 1 for the background. We use one label for
each finger and one for the palm, see Fig. 3c. We use a cross-validation procedure
to find the best hyperparameters. On the disjoint test set, the hand-arm forest
has a classification accuracy of 65.2 %. The forests for the four camera views had
accuracies of 59.8% (front), 64.7 % (back), 60.9 % (little), and 53.5 % (thumb).

4 Gaussian Mixture Model Representation

Joint hand-object tracking requires a representation that allows for accurate
tracking, is robust to outliers, and enables fast pose optimization. Gaussian mix-
ture alignment, initially proposed for rigid pointset alignment (e.g. [10]), satisfies
all these requirements. It features the advantages of ICP-like methods, without
requiring a costly, error-prone correspondence search. We extend this approach
to 3D articulated Gaussian mixture alignment tailored to hand-object tracking.
Compared to our 3D formulation, 2.5D [27] approaches are discontinuous. This
causes instabilities, since the spatial proximity between model and data is not
fully considered. We quantitatively show this for hand-only tracking (Sect. 8).

5 Unified Density Representation

We parameterize the articulated motion of the human hand using a kinematic
skeleton with |A%| = 26 degrees of freedom (DOF). Non-rigid hand motion is
expressed based on 20 joint angles in twist representation. The remaining 6 DOF's
specify the global rigid transform of the hand with respect to the root joint.
The manipulated object is assumed to be rigid and its motion is parameterized
using |X,| = 6 DOFs. In the following, we deal with the hand and object in a
unified way. To this end, we refer to the vector of all unknowns as X. For pose
optimization, both the input depth as well as the scene (hand and object) are
expressed as 3D Gaussian Mixture Models (GMMs). This allows for fast and
analytical pose optimization. We first define the following generic probability
density distribution M(x) = Zfil w;Gi(x|p;, ;) at each point x € R3 in space.
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This mixture contains K unnormalized, isotropic Gaussian functions G; with
mean p; € R? and variance o7 € R. In the case of the model distribution, the
positions of the Gaussians are parameterized by the unknowns X. For the hand,
this means each Gaussian is being rigidly rigged to one bone of the hand. The
probability density is defined and non-vanishing over the whole domain R3.

Hand and Object Model. The three-dimensional shape of the hand and object
is represented in a similar fashion as probability density distributions M and
M., respectively. We manually attach Nj, = 30 Gaussian functions to the kine-
matic chain of the hand to model its volumetric extent. Standard deviations are
set such that they roughly correspond to the distance to the actual surface. The
object is represented by automatically fitting a predefined number N, of Gaus-
sians to its spatial extent, such that the one standard deviation spheres model
the objects volumetric extent. N, is a user defined parameter which can be used
to control the trade-off between tracking accuracy and runtime performance. We
found that N, € [12,64] provides a good trade-off between speed and accuracy
for the objects used in our experiments. We refer to the combined hand-object
distribution as M, with Ny = N;, + N, Gaussians. Each Gaussian is assigned
to a class label I; based on its semantic location in the scene. Note, the input
GMM is only a model of the visible surface of the hand/object. Therefore, we
incorporate a visibility factor f; € [0,1] (0 completely occluded, 1 completely
visible) per Gaussian. This factor is approximated by rendering an occlusion
map with each Gaussian as a circle (radius equal to its standard deviation). The
GMM is restricted to the visible surface by setting w; = f; in the mixture. These
operations are performed based on the solution of the previous frame X,4.

Input Depth Data. We first perform bottom-up hierarchical quadtree cluster-
ing of adjacent pixels with similar depth to convert the input to the density based
representation. We cluster at most (2(4_1))2 = 64 pixels, which corresponds to a
maximum tree depth of 4. Clustering is performed as long as the depth variance
in the corresponding subdomain is smaller than €., st = 30 mm. Each leaf node
is represented as a Gaussian function G; with p, corresponding to the 3D center
of gravity of the quad and o? = (%)2, where a is the backprojected side length of
the quad. Note, the mean p; € R? is obtained by backprojecting the 2D center
of gravity of the quad based on the computed average depth and displacing by a
in camera viewing direction to obtain a representation that matches the model
of the scene. In addition, each G; stores the probability p; and index I; of the best
associated semantic label. We obtain the best label and its probability by sum-
ming over all corresponding per-pixel histograms obtained in the classification
stage. Based on this data, we define the input depth distribution My, (x) for
the hand and Mgy, (x) for the object. The combined input distribution M 4(x)
has Ng = Ny, + Ng, Gaussians. We set uniform weights w; = 1 based on the
assumption of equal contribution. Ny is much smaller than the number of pixels
leading to real-time hand-object tracking.
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6 Multiple Proposal Optimization

We optimize for the best pose X'* using two proposals X, i € {0,1} that are
computed by minimizing two distinct hand-object tracking energies:

Xy = argmin Egig,, (X), A7 = argmin Ejgper (X). (1)
X X

Eqlign leverages the depth observations and the second energy Fjqpe; incorporates
the discriminative hand part classification results. In contrast to the optimization
of the sum of the two objectives, this avoids failure due to bad classification and
ensures fast recovery. For optimization, we use analytical gradient descent (10
iterations per proposal, adaptive step length) [30]. We initialize based on the
solution of the previous frame X,;4. Finally, X* is selected as given below, where
we slightly favor (A = 1.003) the label proposal to facilitate fast pose recovery:
v {Xl* if (Buar(X7) < ABypa(X3)) @
Xy otherwise

The energy Eyqi(X) = E,(X) +w,E,(X) is designed to select the proposal that
best explains the input, while being anatomically correct. Therefore, it considers
spatial alignment to the input depth map E, and models anatomical joint angle
limits F,, see Sect. 7. In the following, we describe the used energies in detail.

7 Hand-Object Tracking Objectives

Given the input depth distribution My, we want to find the 3D model M,
that best explains the observations by varying the corresponding parameters X.
We take inspiration from methods with slow non-interactive runtimes that used
related 3D implicit shape models for full-body pose tracking [12,22], but propose
a new efficient tracking objective tailored for real-time hand-object tracking. In
contrast to previous methods, our objective operates in 3D (generalization of
ICP), features an improved way of incorporating the discriminative classifica-
tion results, and incorporates two novel regularization terms. Together, this pro-
vides for a better, yet compact, representation that allows for fast analytic pose
optimization on the CPU. To this end, we define the following two objective
functions. The first energy Fqi;9, measures the alignment with the input:

Eolign(X) = Eq, + wpEp + wi By + weEe + woE,. (3)
The second energy Ejqpe; incorporates the classification results:
Eiapel(X) = E, + wsEs + wpEp. (4)

The energy terms consider spatial alignment F,, semantic alignment F;, anatom-
ical plausibility F,, temporal smoothness E;, contact points E., and object-hand
occlusions F,, respectively. The priors in the energies are chosen such that they
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do not hinder the respective alignment objectives. All parameters w, = 0.1,
wy = 0.1, wy = 3-1077, w, = 5-1077 and w, = 1.0 have been empirically
determined and stay fixed for all experiments. We optimize both energies simul-
taneously using a multiple proposal based optimization strategy and employ
a winner-takes-all strategy (see Sect.6). We found empirically that using two
energy functions resulted in better pose estimation and recovery from failures
than using a single energy with all terms. In the following, we give more details
on the individual components.

Spatial Alignment. We measure the alignment of the input density function
My and our scene model M based on the following alignment energy:

E,(X) = /Q [(/\/ldh (x) — /\/lh(x))2 + (Ma, (x) — Mo(x))ﬂ dx. (5)

It measures the alignment between the two input and two model density distri-
butions at every point in space x € {2. Note, this 3D formulation leads to higher
accuracy results (see Sect.8) than a 2.5D [27] formulation.

Semantic Alignment. In addition to the alignment of the distributions, we
also incorporate semantic information in the label energy FEjgpe;- In contrast
to [27], we incorporate uncertainty based on the best class probability. We use
the following least-squares objective to enforce semantic alignment:

Ns Ng

Eo(X) =Y aij- |l — myll3: (6)

i=1 j=1

Here, p; and p; are the mean of the i'" model and the ;" image Gaussian,
respectively. The weights a; ; switch attraction forces between similar parts on
and between different parts off:

0 if (ll 75 lj) or (diﬂ' > ’I“maw)
i,j — di ; . (7)
(1 — m) * i else
Here, d; j = |[p; — p;l2 is the distance between the means. /; is the part label

of the most likely class, p; its probability and 7,4, a cutoff value. We set 7,44
to 30cm. /; can be one of 8 labels: 6 for the hand parts, 1 for object and 1 for
background. We consider all model Gaussians, independent of their occlusion
weight, to facilitate fast pose recovery of previously occluded regions.

Anatomical Plausibility. The articulated motion of the hand is subject to
anatomical constraints. We account for this by enforcing soft-constraints on the
joint angles A} of the hand:

0 ifxﬁ»gxiga:;‘
By(X)= Y Sllws—all?  ifa; < al . (8)

i
T €EXp ||gj:L — le2 if z; > ¥
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Here, X}, are the DOFs corresponding to the hand, and ! and z¥ are the lower
and upper joint limit that corresponds to the i** DOF of the kinematic chain.

Temporal Smoothness. We further improve the smoothness of our tracking
results by incorporating a temporal prior into the energy. To this end, we include
a soft constraint on parameter change to enforce constant speed:

E\(X) =[|VX - VXD, 9)

Here, VX1 is the gradient of parameter change at the previous time step.

Contact Points. We propose a novel contact point objective, specific to the
hand-object tracking scenario:

gy = Y (i ml? - 82) (10)

(k,l,ta)eT

Here, (k,l,tq) € T is a detected touch constraint. It encodes that the fingertip
Gaussian with index k should have a distance of ¢4 to the object Gaussian with
index [. We detect the set of all touch constraints 7 based on the last pose X,4.
A new touch constraint is added if a fingertip Gaussian is closer to an object
Gaussian than the sum of their standard deviations. We then set ¢4 to this sum.
This couples hand pose and object tracking leading to more stable results. A
contact point is active until the distance between the two Gaussians exceeds the
release threshold dg. Usually g > tg4 to avoid flickering.

Occlusion Handling. No measurements are available in occluded hand regions.
We stabilize the hand movement in such regions using a novel occlusion prior:

Ny
Eo(X) =" > (1= fi)-llz; —=5"|[5. (11)

=0 jeH,

Here, H; is the set of all DOFs that are influenced by the i-th Gaussian. The
global rotation and translation is not included. The occlusion weights f; € [0,1]
are computed similar to f; (0 occluded, 1 visible). This prior is based on the
assumption that occuded regions move consistently with the rest of the hand.

8 Experiments and Results

We evaluate and compare our method on more than 15 sequences spanning
3 public datasets, which have been recorded with 3 different RBG-D cameras
(see Fig. 7). Additional live sequences (see Fig.8 and supplementary materials)
show that our method handles fast object and finger motion, difficult occlusions
and fares well even if two hands are present in the scene. Our method supports
commodity RGB-D sensors like the Creative Senz3D, Intel RealSense F200, and
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Primesense Carmine. We rescale depth and color to resolutions of 320 x 240 and
640 x 480 respectively, and capture at 30 Hz. Furthermore, we introduce a new
hand-object tracking benchmark dataset with ground truth fingertip and object
annotations.

Comparison to the State-of-the-Art. We quantitatively and qualitatively
evaluate on two publicly available hand-object datasets [37,38] (see Fig.8 and
also supplementary material). Only one dataset (IJCV [37]) contains ground
truth joint annotations. We test on 5 rigid object sequences from IJCV. We
track the right hand only, but our method works even when multiple hands are
present. Ground truth annotations are provided for 2D joint positions, but not
object pose. Our method achieves a fingertip pixel error of 8.6 px, which is
comparable (difference of only 2px) to that reported for the slower method of
[37]. This small difference is well within the uncertainty of manual annotation
and sensor noise. Note, our approach runs over 60 times faster, while producing
visual results that are on par (see Fig.8). We also track the dataset of [38] (see
also Fig.8). While they solve a different problem (offline in-hand scanning), it
shows that our real-time method copes well with different shaped objects (e.g.
bowling pin, bottle, etc.) under occlusion.

New Benchmark Dataset. With the aforementioned datasets, evaluation of
object pose is impossible due to missing object annotations. We therefore intro-
duce, to our knowledge, the first dataset! that contains ground truth for both
fingertip positions and object pose. It contains 6 sequences of a hand manipulat-
ing a cuboid (2 different sizes) in different hand-object configurations and grasps.
We manually annotated pixels on the depth image to mark 5 fingertip positions,
and 3 cuboid corners. In total, we provide 3014 frames with ground truth anno-
tations. As is common in the literature [23,25,27,32,33], we use the average
3D Euclidean distance E between estimated and ground truth positions as the
error measure (see supplementary document for details). Occluded fingertips are
excluded on a per-frame basis from the error computation. If one of the anno-
tated corners of the cuboid is occluded, we exclude it from that frame. In Fig. 4a
we plot the average error over all frames of the 6 sequences. Our method has an
average error (for both hand and object) of 15.7 mm. Over all sequences, the
average error is always lower than 20 mm with standard deviations under 12 mm.
Average error is an indicator of overall performance, but does not indicate how
consistent the tracker performs. Figure 4b shows that our method tracks almost
all frames with less than 30 mm error. Rotate has the highest error, while Pinch
performs best with almost all frames below 20 mm. Table 1 shows the errors for
hand and object separately. Both are in the same order of magnitude.

Ablative Analysis. Firstly, we show that the articulated 3D Gaussian mixture
alignment formulation is superior (even for tracking only hand) to the 2.5D for-
mulation of [27]. On the Dexter dataset [28], [27] report an average fingertip
error of 19.6 mm. In contrast, our method (without any hand-object specific

! http://handtracker.mpi-inf.mpg.de/projects/RealtimeHO,/ .
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Fig. 4. Quantitative hand-object tracking evaluation on ground truth data. The object
contributes a higher error

Table 1. Average error (mm) for hand and object tracking in our dataset

Rigid | Rotate | Occlusion | Graspl | Grasp2 | Pinch | Overall (mm)
Fingertips 14.2 16.3 17.5 18.1 17.5 10.3 | 15.6
Object 13.5 |26.8 11.9 15.3 15.7 139 |16.2
Combined (F) |14.1 |18.0 16.4 17.6 17.2 109 |15.7

Ours Depth

Sridhar et al. 2015

R

Fig.5. Top row: Input depth, an object occludes the hand. Middle row: Result of our
approach (different viewpoint). Our approach succesfully tracks the hand under heavy
occlusion. Bottom row: Result of [27] shows catastrophic failure (object pixels were
removed for fairness)
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terms) is consistently better with an average of 17.2 mm (maximum improve-
ment is 5 mm on 2 sequences). This is a result of the continuous articulated 3D
Gaussian mixture alignment energy, a generalization of ICP, which considers 3D
spatial proximity between Gaussians.

Secondly, we show that the average error
on our hand-object dataset is worse with-
out viewpoint selection, semantic alignment,
occlusion handling, and contact points term.
Figure 6 shows a consistency plot with differ-
’ ‘ ent components of the energy disabled. Using
0 A‘Semge e (mﬁ) 40  only the data term often results in large

errors. The errors are even larger without
viewpoint selection. The semantic alignment,
occlusion handling, and contact points help
improve robustness of tracking results and recovery from failures. Figure 5
shows that [27] clearly fails when fingers are occluded. Our hand-object specific
terms are more robust to these difficult occlusion cases while achieving real-time
performance.

=——Only Depth
——w/o Viewpoint Selection|

~w/0 Object Terms
—===All Terms

No. of Frames (%)

Fig. 6. Ablative analysis

Runtime Performance. All experiments were performed on an Intel Xeon E5-
1620 CPU with 16 GB memory and an NVIDIA GTX 980 Ti. The stages of our
approach take on average: 4 ms for preprocessing, 4 ms for part classification, 2 ms
for depth clustering, and 20-30 ms for pose optimization using two proposals.
We achieve real-time performance of 25-30 Hz. Multi-layer random forests ran
on the GPU while all other algorithm parts ran multithreaded on a CPU.

Limitations. Although we demonstrated _
robustness against reasonable occlusions, e \

situations where a high fraction of the w *J/ w
hand is occluded for a long period are
still challenging. This is mostly due to
degraded classification performance under
such occlusions. Misalignments can appear
if the underlying assumption of the occlusion heuristic is violated, i.e. occluded
parts do not move rigidly. Fortunately, our discriminative classification strat-
egy enables the pose optimization to recover once previously occluded regions
become visible again as shown in Fig.9. Further research has to focus on bet-
ter priors for occluded regions, for example grasp and interaction priors learned
from data. Also improvements to hand part classification using different learning
approaches or the regression of dense correspondences are interesting topics for
future work. Another source of error are very fast motions. While the current
implementation achieves 30 Hz, higher frame rate sensors in combination with a
faster pose optimization will lead to higher robustness due to improved tempo-
ral coherence. We show diverse object shapes being tracked. However, increasing
object complexity (shape and color) affects runtime performance. We would like
to further explore how multiple complex objects and hands can be tracked.

Fig. 9. Occlusion error and recovery
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(a) Rotate sequence from our dataset (b) Grasp2 sequence from our dataset
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(¢) Real-time tracking results with various object shapes and different users

(d) Results on the IJCV dataset [37]. Notice how our method tracks the hand even if
multiple hands are in view. Tracked skeleton in green and object in light blue

Fig. 7. (a, b) show tracking results on our dataset. (¢) Shows real-time results with
different object shapes and colors. (d) Shows results on a public dataset (Color figure
online)

Fig. 8. Subset of tracked frames on the dataset of [38]. Our method can handle objects
with varying sizes, colors, and different hand dimensions. Here we show how
even a complex shape like a bowling pin can be approximated using only a few tens of
Gaussians (Color figure online)
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9 Conclusion

We have presented the first real-time approach for simultaneous hand-object
tracking based on a single commodity depth sensor. Our approach combines
the strengths of discriminative classification and generative pose optimization.
Classification is based on a multi-layer forest architecture with viewpoint selec-
tion. We use 3D articulated Gaussian mixture alignment tailored for hand-object
tracking along with novel analytic occlusion and contact handling constraints
that enable successful tracking of challenging hand-object interactions based on
multiple proposals. Our qualitative and quantitative results demonstrate that
our approach is both accurate and robust. Additionally, we have captured a new
benchmark dataset (with hand and object annotations) and make it publicly
available. We believe that future research will significantly benefit from this.

Acknowledgments. This research was funded by the ERC Starting Grant projects
CapReal (335545) and COMPUTED (637991), and the Academy of Finland. We would
like to thank Christian Richardt.

References

1. Leap Motion. https://www.leapmotion.com/

2. NimbleVR. http://nimblevr.com/

3. Athitsos, V., Sclaroff, S.: Estimating 3D hand pose from a cluttered image. In:
Proceedings of IEEE CVPR, pp. 432-442 (2003)

4. Badami, I., Stckler, J., Behnke, S.: Depth-enhanced hough forests for object-class
detection and continuous pose estimation. In: Workshop on Semantic Perception,
Mapping and Exploration (SPME) (2013)

5. Ballan, L., Taneja, A., Gall, J., Gool, L., Pollefeys, M.: Motion capture of hands in
action using discriminative salient points. In: Fitzgibbon, A., Lazebnik, S., Perona,
P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 640-653. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33783-3_46

6. Bray, M., Koller-Meier, E., Van Gool, L.: Smart particle filtering for 3D hand
tracking. In: Proceedings of the International Conference on Automatic Face and
Gesture Recognition, pp. 675-680 (2004)

7. Campbell, D., Petersson, L.: Gogma: globally-optimal Gaussian mixture alignment
(2016). arXiv preprint arXiv:1603.00150

8. Hamer, H., Schindler, K., Koller-Meier, E., Van Gool, L.: Tracking a hand manip-
ulating an object. In: Proceedings of IEEE ICCV, pp. 1475-1482 (2009)

9. Heap, T., Hogg, D.: Towards 3D hand tracking using a deformable model. In: Pro-
ceedings of the International Conference on Automatic Face and Gesture Recog-
nition, pp. 140-145, October 1996

10. Jian, B., Vemuri, B.C.: Robust point set registration using Gaussian mixture mod-
els. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633-1645 (2011)

11. Keskin, C., Kira, F.,; Kara, Y.E., Akarun, L.: Real time hand pose estimation
using depth sensors. In: ICCV Workshops, pp. 1228-1234. IEEE (2011). http://
dblp.uni-trier.de/db/conf/iccvw /iccvw2011.html#KeskinKKA11


https://www.leapmotion.com/
http://nimblevr.com/
http://dx.doi.org/10.1007/978-3-642-33783-3_46
http://arxiv.org/abs/1603.00150
http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#KeskinKKA11
http://dblp.uni-trier.de/db/conf/iccvw/iccvw2011.html#KeskinKKA11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Real-Time Joint Hand and Object Tracking from RGB-D Input 309

Kurmankhojayev, D., Hasler, N., Theobalt, C.: Monocular pose capture with a
depth camera using a sums-of-Gaussians body model. In: Weickert, J., Hein, M.,
Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 415-424. Springer, Heidelberg
(2013)

Kyriazis, N., Argyros, A.: Physically plausible 3D scene tracking: the single actor
hypothesis. In: Proceedings of IEEE CVPR, pp. 9-16 (2013)

Kyriazis, N., Argyros, A.: Scalable 3D tracking of multiple interacting objects. In:
Proceedings of IEEE CVPR, pp. 3430-3437, June 2014

de La Gorce, M., Fleet, D., Paragios, N.: Model-based 3D hand pose estimation
from monocular video. IEEE TPAMI 33(9), 17931805 (2011)

Melax, S., Keselman, L., Orsten, S.: Dynamics based 3D skeletal hand tracking.
In: Proceedings of GI, pp. 63—70 (2013)

Oikonomidis, I., Kyriazis, N., Argyros, A.: Full DOF tracking of a hand interacting
with an object by modeling occlusions and physical constraints. In: Proceedings of
IEEE ICCV, pp. 2088-2095 (2011)

Oikonomidis, I., Kyriazis, N., Argyros, A.: Tracking the articulated motion of two
strongly interacting hands. In: Proceedings of IEEE CVPR, pp. 1862-1869 (2012)
Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3D tracking of
hand articulations using kinect. In: Proceedings of BMVC, pp. 1-11 (2011)
Panteleris, P., Kyriazis, N., Argyros, A.A.: 3D tracking of human hands in interac-
tion with unknown objects. In: Proceedings of BMVC (2015). https://dx.doi.org/
10.5244/C.29.123

Pham, T.H., Kheddar, A., Qammaz, A., Argyros, A.A.: Towards force sensing
from vision: observing hand-object interactions to infer manipulation forces. In:
Proceedings of IEEE CVPR (2015)

Plankers, R., Fua, P.. Articulated soft objects for multiview shape
and motion capture. IEEE TPAMI  25(9), 1182-1187  (2003).
http://dx.doi.org/10.1109/ TPAMI.2003.1227995

Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking
from depth. In: Proceedings of IEEE CVPR (2014)

Romero, J., Kjellstrom, H., Kragic, D.: Hands in action: real-time 3D reconstruc-
tion of hands in interaction with objects. In: Proceedings of ICRA, pp. 458-463
(2010)

Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Kim, D., Rhemann,
C., Leichter, I., Vinnikov, A., Wei, Y., Freedman, D., Kohli, P., Krupka, E., Fitzgib-
bon, A., Izadi, S.: Accurate, robust, and flexible real-time hand tracking. In: Pro-
ceedings of ACM CHI (2015)

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kip-
man, A., Blake, A.: Real-time human pose recognition in parts from single depth
images. In: Proceedings of IEEE CVPR, pp. 1297-1304 (2011). http://dx.doi.org/
10.1109/CVPR.2011.5995316

Sridhar, S., Mueller, F., Oulasvirta, A., Theobalt, C.: Fast and robust hand track-
ing using detection-guided optimization. In: Proceedings IEEE CVPR (2015).
http://handtracker.mpi-inf.mpg.de/projects/FastHand Tracker/

Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand
motion tracking using RGB and depth data. In: Proceedings of IEEE ICCV (2013)
Stenger, B., Mendonca, P.R., Cipolla, R.: Model-based 3D tracking of an articu-
lated hand. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. 1I-310. IEEE
(2001)


https://dx.doi.org/10.5244/C.29.123
https://dx.doi.org/10.5244/C.29.123
http://dx.doi.org/10.1109/TPAMI.2003.1227995
http://dx.doi.org/10.1109/CVPR.2011.5995316
http://dx.doi.org/10.1109/CVPR.2011.5995316
http://handtracker.mpi-inf.mpg.de/projects/FastHandTracker/

310

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

S. Sridhar et al.

Stoll, C., Hasler, N., Gall, J., Seidel, H., Theobalt, C.: Fast articulated motion
tracking using a sums of Gaussians body model. In: Proceedings of IEEE ICCV,
pp. 951-958 (2011)

Sun, X., Wei, Y., Liang, S., Tang, X., Sun, J.: Cascaded hand pose regression. In:
Proceedings of IEEE CVPR (2015)

Tagliasacchi, A., Schroder, M., Tkach, A., Bouaziz, S., Botsch, M., Pauly, M.:
Robust articulated-ICP for real-time hand tracking. In: Computer Graphics Forum
(Proceedings of SGP), vol. 34, no. 5 (2015)

Tang, D., Chang, H.J., Tejani, A., Kim, T.: Latent regression forest: structured
estimation of 3D articulated hand posture. In: Proceedings of IEEE CVPR, pp.
3786-3793 (2014). http://dx.doi.org/10.1109/CVPR.2014.490

Tang, D., Taylor, J., Kim, T.K.: Opening the black box: hierarchical sampling
optimization for estimating human hand pose. In: Proceedings of IEEE ICCV
(2015)

Tejani, A., Tang, D., Kouskouridas, R., Kim, T.-K.: Latent-class hough forests
for 3D object detection and pose estimation. In: Fleet, D., Pajdla, T., Schiele,
B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 462-477. Springer,
Heidelberg (2014). doi:10.1007/978-3-319-10599-4_30

Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery
of human hands using convolutional networks. ACM TOG 33(5), 169:1-169:10
(2014)

Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing
hands in action using discriminative salient points and physics simulation. IJCV
118, 172-193 (2016)

Tzionas, D., Gall, J.: 3D object reconstruction from hand-object interactions. In:
Proceedings of IEEE ICCV (2015)

Tzionas, D., Srikantha, A., Aponte, P., Gall, J.: Capturing hand motion with an
RGB-D sensor, fusing a generative model with salient points. In: Jiang, X., Horneg-
ger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 277-289. Springer, Hei-
delberg (2014). doi:10.1007/978-3-319-11752-2_22

Wang, R., Paris, S., Popovié, J.: 6D hands: markerless hand-tracking for computer
aided design. In: Proceedings of ACM UIST, pp. 549-558 (2011)

Wang, Y., Min, J., Zhang, J., Liu, Y., Xu, F., Dai, Q., Chai, J.: Video-based
hand manipulation capture through composite motion control. ACM TOG 32(4),
43:1-43:14 (2013)

Wu, Y., Huang, T.: View-independent recognition of hand postures. In: Proceed-
ings of IEEE CVPR, pp. 88-94 (2000)

Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In:
Proceedings of IEEE ICCV (2013)

Ye, M., Yang, R.: Real-time simultaneous pose and shape estimation for articulated
objects using a single depth camera. In: 2014 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2353-2360, June 2014

Zollhofer, M., NieBner, M., Izadi, S., Rehmann, C., Zach, C., Fisher, M., Wu,
C., Fitzgibbon, A., Loop, C., Theobalt, C., Stamminger, M.: Real-time non-rigid
reconstruction using an RGB-D camera. ACM TOG 33(4), 156 (2014)


http://dx.doi.org/10.1109/CVPR.2014.490
http://dx.doi.org/10.1007/978-3-319-10599-4_30
http://dx.doi.org/10.1007/978-3-319-11752-2_22

	Real-Time Joint Tracking of a Hand Manipulating an Object from RGB-D Input
	1 Introduction
	2 Related Work
	3 Discriminative Hand Part Classification
	4 Gaussian Mixture Model Representation
	5 Unified Density Representation
	6 Multiple Proposal Optimization
	7 Hand-Object Tracking Objectives
	8 Experiments and Results
	9 Conclusion
	References


