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Abstract. This paper considers person re-identification (re-id) in
videos. We introduce a new video re-id dataset, named Motion Analysis
and Re-identification Set (MARS), a video extension of the Market-
1501 dataset. To our knowledge, MARS is the largest video re-id dataset
to date. Containing 1,261 IDs and around 20,000 tracklets, it provides
rich visual information compared to image-based datasets. Meanwhile,
MARS reaches a step closer to practice. The tracklets are automatically
generated by the Deformable Part Model (DPM) as pedestrian detector
and the GMMCP tracker. A number of false detection/tracking results
are also included as distractors which would exist predominantly in prac-
tical video databases. Extensive evaluation of the state-of-the-art meth-
ods including the space-time descriptors and CNN is presented. We show
that CNN in classification mode can be trained from scratch using the
consecutive bounding boxes of each identity. The learned CNN embed-
ding outperforms other competing methods considerably and has good
generalization ability on other video re-id datasets upon fine-tuning.

Keywords: Video person re-identification · Motion features · CNN

1 Introduction

Person re-identification, as a promising way towards automatic VIDEO surveil-
lance, has been mostly studied in pre-defined IMAGE bounding boxes (bbox).
Impressive progress has been observed with image-based re-id. However, rich
information contained in video sequences (or tracklets) remains under-explored.
In the generation of video database, pedestrian detectors [11] and offline trackers
[7] are readily available. So it is natural to extract tracklets instead of single (or
multiple) bboxes. This paper, among a few contemporary works [25,29,36,38,41],
makes initial attempts on video-based re-identification.

The dataset and codes are available at http://www.liangzheng.com.cn.
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With respect to the “probe-to-gallery” pattern, there are four re-id strategies:
image-to-image, image-to-video, video-to-image, and video-to-video. Among
them, the first mode is mostly studied in literature, and previous methods in
image-based re-id [5,24,35] are developed in adaptation to the poor amount of
training data. The second mode can be viewed as a special case of “multi-shot”,
and the third one involves multiple queries. Intuitively, the video-to-video pat-
tern, which is our focus in this paper, is more favorable because both probe and
gallery units contain much richer visual information than single images. Empir-
ical evidences confirm that the video-to-video strategy is superior to the others
(Fig. 3).

Currently, a few video re-id datasets exist [4,15,28,36]. They are limited
in scale: typically several hundred identities are contained, and the number of
image sequences doubles (Table 1). Without large-scale data, the scalability of
algorithms is less-studied and methods that fully utilize data richness are less
likely to be exploited. In fact, the evaluation in [43] indicates that re-id perfor-
mance drops considerably in large-scale databases.

Moreover, image sequences in these video re-id datasets are generated by
hand-drawn bboxes. This process is extremely expensive, requiring intensive
human labor. And yet, in terms of bounding box quality, hand-drawn bboxes are
biased towards ideal situation, where pedestrians are well-aligned. But in reality,
pedestrian detectors will lead to part occlusion or misalignment which may have
a non-ignorable effect on re-id accuracy [43]. Another side-effect of hand-drawn
box sequences is that each identity has one box sequence under a camera. This
happens because there are no natural break points inside each sequence. But
in automatically generated data, a number of tracklets are available for each
identity due to miss detection or tracking. As a result, in practice one identity
will have multiple probes and multiple sequences as ground truths. It remains
unsolved how to make use of these visual cues.

Fig. 1. Sample tracklets in MARS. The first three rows each corresponds to an identity,
and tracklets in each column belong to different cameras. The last row presents four
examples of false detection and tracking results. Images are shown every 6 frames
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In light of the above discussions, it is of importance to (1) introduce large-
scale and real-life video re-id datasets and (2) design effective methods which
fully utilizes the rich visual data. To this end, this paper contributes in col-
lecting and annotating a new person re-identification dataset, named “Motion
Analysis and Re-identification Set” (MARS) (Fig. 1). Overall, MARS is featured
in several aspects. First, MARS has 1,261 identities and around 20,000 video
sequences, making it the largest video re-id dataset to date. Second, instead of
hand-drawn bboxes, we use the DPM detector [11] and GMMCP tracker [7] for
pedestrian detection and tracking, respectively. Third, MARS includes a number
of distractor tracklets produced by false detection or tracking result. Finally, the
multiple-query and multiple-ground truth mode will enable future research in
fields such as query re-formulation and search re-ranking [45].

Apart from the extensive tests of the state-of-the-art re-id methods, this
paper evaluates two important features: (1) motion features including HOG3D
[18] and the gait [13] feature, and (2) the ID-disciminative Embeddings (IDE)
[46], which learns a CNN descriptor in classification mode. Our results show
that although motion features achieve impressive results on small datasets, they
are less effective on MARS due to intensive changes in pedestrian activity. In
contrast, the IDE descriptor learned on the MARS training set significantly
outperforms the other competing features, and demonstrates good generalization
ability on the other two video datasets after fine-tuning.

2 Related Work

Re-id dataset review. Most previous studies of person re-id are based on
image datasets. The most commonly used one is VIPeR [12], which consists
of 632 identities and 1,264 images. Datasets with similar scale include RAiD
[6], i-LIDS [47], etc. Recently, two large-scale image datasets are released, i.e.,
CUHK03 [23] and Market1501 [43]. Both datasets contain over 10k bboxes that
are generated by DPM detector. The Market1501 dataset further adds 500k
distractor bboxes of false detection results. Results of the large-scale datasets
demonstrate that re-id accuracy drops considerably with the increase in database
size, thus calling for scalable re-id methods. In video re-id (Table 1), iLIDS-VID
[36] and PRID-2011 [15] contain several hundred identities and twice the number
of box sequences. 3DPES [3] and ETH [32] are of similar scales. On such small
datasets, the scalability of methods cannot be fully evaluated. Considering the
trend of large scale in vision, the re-id community is in need of scalable video
re-id datasets which reflect more practical problems.

Motion features in action recognition and person re-identification. In
action recognition, an image sequence is viewed as a 3-dim space-time volume.
Space-time features can be extracted based on the space-time interest points
[9,21,37]. These methods generate compact representation of an image sequence
using the sparse interest points, which are sensitive to variations such as view-
point, speed, scale, etc [17]. An improved version associates with space-time
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Table 1. Comparing MARS with datasets in videos [3,15,32,36] and images [12,23,43]

Datasets MARS iLIDS PRID 3DPES ETH CUHK03 VIPeR Market

#identities 1,261 300 200 200 146 1,360 632 1,501

#tracklets 20,715 600 400 1000 146 - - -

#BBoxes 1,067,516 43,800 40k 200k 8580 13,164 1,264 32k

#distractors 3,248 0 0 0 0 0 0 2,793

#cam./ID 6 2 2 8 1 2 2 6

Produced by DPM+GMMCP hand hand hand hand hand hand DPM

Evaluation mAP &CMC CMC CMC CMC CMC CMC CMC mAP

volume based representations [30]. Popular descriptors include HOG3D [18], 3D-
SIFT [33], etc, which can be viewed as extensions of their corresponding 2-dim
versions. In person re-id, few works focus on motion features because it is chal-
lenging to discriminate pedestrians solely by motion. Among the few, Wang et al.
[36] employ the HOG3D descriptor with dense sampling after identifying walking
periodicity. Nevertheless, [36] has only been tested on two small video datasets
without further validation on large-scale settings. In this paper, we mostly follow
[36] in the video description part, and show that this strategy has some flaws in
dealing with practical video data.

CNN in person re-id. In person re-id, the study of CNN [1,8,23,40] has only
recently launched due to the small scale of re-id datasets. These works formu-
late person re-id as a ranking problem. Image pairs [1,23,40] or triplets [8] are
defined as input to CNN, instead of single training images. Such design avoids the
shortage of training images per identity by generating quadratically/cubically
enlarged training sets. Then, with such input data, the network is designed to
have parallel convolutional layers, max pooling layers, as well as fully connected
layers to learn an optimized metric. In video-based re-id, McLaughlin et al. [29]
propose a variant of the recurrent neural network to incorporate time flows, an
idea that is later adopted by [38]. In this paper, since each pedestrian has a
number of training data (from image sequences), we are capable of training a
classification network [16]. In this scenario, each single image is represented by a
feature vector, which will greatly accelerate online process by nearest neighbor
search or ANN algorithms.

3 MARS Dataset

3.1 Dataset Description

In this paper, we introduce the MARS (Motion Analysis and Re-identification
Set) dataset for video-based person re-identification. It is an extension of the
Market-1501 dataset [43]. During collection, we placed six near-synchronized
cameras in the campus of Tsinghua university. There were five 1,080 × 1920
HD cameras and one 640 × 480 SD camera. MARS consists of 1,261 different
pedestrians whom are captured by at least 2 cameras.
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For tracklet generation, we first use the DPM detector [11] to detect pedestri-
ans. Then, the GMMCP tracker [7] is employed to group overlapping detection
results in consecutive frames and fill in missing detection results. As output, a
total of 20,715 image sequences are generated. Among them, 3,248 are distractor
tracklets produced due to false detection or tracking results, which is close to
practical usage. Overall, the following features are associated with MARS.

First, as shown in Table 1, compared with iLIDS-VID and PRID-2011, MARS
has a much larger scale: 4 times and 30 times larger in the number of identities
and total tracklets, respectively.

Second, the tracklets in MARS are generated automatically by DPM detec-
tor and GMMCP tracker, which differs substantially from existing datasets:
the image sequences have high quality guaranteed by human labor. The detec-
tion/tracking error enables MARS to be more realistic than previous datasets.
Moreover, in MARS, to produce “smooth” tracklets, we further apply average
filtering to the bbox coordinates to reduce localization errors. As we will show
in Sect. 5.3, tracklet smoothing improves the performance of motion features.
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Fig. 2. Statistics of the MARS dataset. (a): the number of identities captured by
1–6 cameras. (b): the numbers of tracklets in each camera. (c): the distribution of
the number of frames in the tracklets. (d): the distribution of the number of tracklets
belonging to the pedestrians

Third, in MARS, each identity has 13.2 tracklets on average. For each query,
an average number of 3.7 cross-camera ground truths exist; each query has 4.2
image sequences that are captured under the same camera, and can be used as
auxiliary information in addition to the query itself. As a result, MARS is an ideal
test bed for algorithms exploring multiple queries or re-ranking methods [45].
Figure 2 provides more detailed statistics. For example, most IDs are captured
by 2–4 cameras, and camera-2 produces the most tracklets. A large number of
tracklets contain 25–50 frames, and most IDs have 5–20 tracklets.
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3.2 Evaluation Protocol

In the MARS dataset, we stick to the cross-camera search mode as in previous
datasets [12,23,43], i.e., query and gallery are captured by different cameras.
Each identity will have one probe under each camera. Since each identity may
have multiple tracklets under a camera, the representative probe image is ran-
domly selected from them, resulting in 2,009 probes. The MARS dataset is evenly
divided into train and test sets, containing 631 and 630 identities, respectively,
and this partition is fixed. The dataset is large, so we fix the train/test partition-
ing instead of repeating random partitioning for 10 or 20 times [12,23]. Then,
given a query image sequence, all gallery items are assigned a similarity score.
We then rank the gallery according to their similarity to the query. In our sys-
tem, since a query has multiple ground truths, regular CMC curve (Cumulative
Matching Characteristic, representing the expectation of the true match being
found within the first n ranks) does not fully reflect the true ranking results, so
we resort to both CMC and mAP as the evaluation metric [43]. The Average
Precision (AP) is calculated based on the ranking result, and the mean Average
Precision (mAP) is computed across all queries which is viewed as the final re-id
accuracy. CMC is a pragmatic measurement focusing on retrieval precision, while
mAP considers precision and recall and is useful for research purpose (Table 1).

Table 2. Three important features evaluated in the baseline

Features Dim Description

CNN 1,024 Using AlexNet [20], the three fully convolutional layers have
1,024, 1,024, and 631 blobs. Trained on MARS, fine-tuned
on PRID and iLIDS. Using FC7 (after RELU) for testing.

HOG3D [18] 2,000 Motion feature. Detecting walking cycles by FEP [36].
HOG3D feature extracted from 8 × 8 × 6 or 16 × 16 × 6
patches and quantized using a codebook of size 2,000.

GEI [13] 2,400 Gait feature. Detecting walking cycles by FEP [36].
Pedestrian segmentation using code from [26]. Resulting
maps within a cycle are resized to 80 × 30 and averaged to
obtain the feature

4 Important Features

4.1 Motion Features

The HOG3D [18] feature has been shown to have competitive performance in
action recognition [22]. In feature extraction, given a tracklet, we first identify
walking cycles using Flow Energy Profile (FEP) proposed in [36]. For bboxes
aligned in a cycle, we densely extract HOG3D feature in 8 × 8 × 6 (or 16 ×
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16 × 6) space-time patches, with 50% overlap between adjacent patches. The
feature dimension of each space-time patch is 96. Since videos with different
time duration have different numbers of the dense space-time tubes, we encode
the local features into a Bag-of-Words (BoW) model. Specifically, a codebook of
size 2,000 is trained by k-means on the training set. Then, each 96-dim descriptor
is quantized to a visual word defined in the codebook. So we obtain a 2,000-dim
BoW vector for an arbitrary-length video. We do not partition the image into
horizontal stripes [43] because this strategy incurs larger feature dimension and
in our preliminary experiment does not improve re-id accuracy.

The Gait Energy Image (GEI) [13] is widely applied in gait recognition.
In GEI extraction, we also first find walking cycles using FEP. Then, for bboxes
within a cycle, we segment each bbox into foreground (pedestrian) and back-
ground using the code released by Luo et al. [26]. The resulting binary images
within a cycle are averaged to yield the GEI of the tracklet. In our experiment,
the size of GEI is 80 × 30, which is reshaped into a column as the final vector.

After feature extraction, we learn a metric on the training set using sev-
eral metric learning schemes such as Kissme [19] and XQDA [24], due to their
efficiency and accuracy.

4.2 CNN Features

The Convolutional Neural Network (CNN) has achieved state-of-the-art accu-
racy in a number of vision tasks. In person re-identification, current CNN meth-
ods [1,8,23,40] take positive and negative image pairs (or triplets) as input to
the network due to the lack of training data per identity. In this paper, we
employ the ID-discriminative Embedding (IDE) [46] using CaffeNet [20] to train
the re-id model in classification mode. More sophisticated networks [14,34] may
yield higher re-id accuracy.

During training, images are resized to 227 × 227 pixels, and along with their
IDs (label) are fed into CNN in batches. Through five convolutional layers with
the same structure as the CaffeNet [20], we define two fully connected layers each
with 1,024 blobs. The number of blobs in the 8th layer is equal to the number
of training identities which in the case of MARS is 631. The total number of
training bboxes on MARS is 518k.

In testing, since re-id is different from image classification in that the train-
ing and testing identities do not overlap, we extract probe and gallery features
using the CNN model before metric learning steps. Specifically, we extract the
FC7 features for all bboxes in an input tracklet. Then, max/average pooling
is employed to generate a 1,024-dim vector for an tracklet of arbitrary length
(A comparison between the two pooling methods can be accessed in Sect. 5).
Finally, metric learning is leveraged as in image-based re-id. In Sect. 5.4, we will
demonstrate that IDE descrptors learned through person classification can be
effectively used in re-id.

When transferring the CNN model trained on MARS to other video re-id
datasets, we fine-tune the MARS-learned CNN model on the target datasets. In
experiment, we find that fixing parameters in the convolutional layers typically
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Fig. 3. Comparison of four re-id strategies on three datasets. CNN features
trained/fine-tuned on the corresponding datasets are used. We adopt XQDA for metric
learning (Kissme yields very similar performance with XQDA). Numbers in the legend
of (c) MARS are mAP results. Clearly, the video-to-video mode is superior

results in compromised accuracy, so in practice, all the 7 CNN layers includ-
ing the convolutional and fully connected layers are fine tuned. The Last fully
connected layer (FC8) is trained from scratch.

5 Experiments

5.1 Datasets

We use three datasets, i.e., PRID-2011 [15], iLIDS-VID [36], and MARS. For
the former two, we use the Cumulative Match Characteristics (CMC) curve for
evaluation, which is averaged over ten train/test partitions. We use the same
partition rule as [36]. For MARS, a fixed partitioning is used (our preliminary
experiments show that different paritions yield stable and consistent results),
and mAP and CMC are both reported.

PRID-2011 dataset contains 400 image sequences of 200 pedestrians under
two cameras. Each image sequence has a length of 5 to 675 frames. Following
[36], sequences with more than 21 frames from 178 persons are used. So the
probe and gallery both have 89 identities.

iLIDS-VID dataset is a newly released dataset consisting of 300 identities
and each has 2 image sequences, totaling 600 sequences. The length of image
sequences varies from 23 to 192, with an average number of 73. This dataset is
more challenging due to environment variations. The test and training set both
have 150 identities.

5.2 Why Do We Prefer Video-Based Re-Identification?

This paper mentioned four re-id modes in the Sect. 1. In this section, we will
evaluate their performance and gain insights in the reason why video re-id should
be preferred. Among the four modes, “video->video” is what we have described
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in this paper; in “video->image”, the “image” is chosen as the first frame of a
video, and this mode corresponds to the multiple-query method in image retrieval
[2]; the “image->video” mode chooses the query image as the first frame as
well, and corresponds to the multi-shot scenario in person re-id; finally, “image-
>image” is the common re-id problem in which both query and gallery images
are the first frame of the tracklets. Note that we select the first frame as the
representative of a tracklet only to ease experiment, and all frames roughly
have similar quality ensured by the concatenation of DPM and GMMCP. For
MARS, we use the CNN feature learned on its training data, initialized with the
ImageNet model; for iLIDS and PRID, the fine-tuned CNN models are leveraged,
initialized by ImageNet and MARS, respectively. Max pooling is used for MARS
and PRID, and averge pooling for iLIDS, to aggregate bbox features. We use
XQDA [24] in metric learning.

We observe from Fig. 3 that the video-to-video re-id strategy significantly
outperforms the other three, while the image-to-image mode exhibits the worst
performance. On MARS, for example, video-based re-id exceeds image-based
re-id by +19.92 % in mAP. The video-to-image and image-to-video modes also
have considerable improvment over using single images only, but are inferior to
video re-id. On MARS, “image->video” outperforms “video->image” probably
because the former has richer visual cues and a finer distance metric can be
learned. Previous studies on person re-identification mostly focus on the image-
to-image mode, while this paper argues that the generation of tracklets instead
of single images will be both more natural and higher accuracy can be expected.
Our results lay a groundwork for the argument: other things being equal, video
re-id consistently improves re-id accuracy and should be paid more emphasis on.

5.3 Evaluation of Motion Features

As described in Sect. 4.1, we use HOG3D and Gait Energy Image (GEI) features
for motion representation. Results are presented in Fig. 4 and Table 4.
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Fig. 4. CMC curves of HOG3D and GEI features on three video re-id datasets. HOG3D
with 8 × 8 × 6 and 16 × 16 × 6 sampling strategies are presented. For MARS, “filter”
denotes average filtering to smoothen consecutive bboxes
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Performance of HOG3D and GEI. In Fig. 4 and Table 4, we observe that
HOG3D and GEI feature both yield decent accuracy on iLIDS-VID and PRID-
2011 datasets. Specifically, for HOG3D, the rank-1 accuracy is 21.68 % and
16.13 % on PRID-2011 and iLIDS-VID datasets, respectively; for GEI, the rank-1
accuracy is 19.00 % and 10.27 %, respectively. Our implementation is competi-
tive with [36]: matching rate is relatively lower in low ranks, but higher in larger
ranks (see Fig. 6 for clear comparison). Therefore, on the two small datasets,
both features have competitive performance, and HOG3D is slightly superior.

On the MARS dataset, however, the performance of HOG3D and GEI both
drops considerably. The rank-1 accuracy of HOG3D is 2.61 % with Kissme, and
mAP is 0.81 %; for GEI, rank-1 accuracy and mAP are 1.18 % and 0.40 %, respec-
tively. For the two features, both precision (rank-1) and recall (mAP) are low
on MARS. The reason why motion features have poor performance on
MARS is two-fold. On one hand, a larger dataset will inevitably contain many
pedestrians sharing similar motion feature with the probe, and it is challenging
to discriminate different persons based on motions. On the other hand, since
MARS is captured by six cameras, motion of the same identity may undergo
significant variations due to pedestrian pose change (see Fig. 7 for visual results),
so the motion-based system may miss the same pedestrian under motion varia-
tions. For example, a walking person with frontal and side views will have large
intra-class variability, let alone considering persons standing still with hardly
any motion at all.

Impact of tracklet smoothing. In MARS, consecutive bboxes in the tracklets
may not be smooth due to detection errors. To correct this, we employ the
average filtering to smoothen bboxes within each tracklet. In our experiment, we
use a window of size 5, and across the 5 bboxes, compute the average coordinates
of the upper left point as well as the frame width and height, which is taken as
the smoothed bbox of the frame in the middle. Features are then extracted using
the smoothed tracklets. In Fig. 4(c), we find that, the smoothing strategy yields
some marginal improvement for HOG3D feature (mAP increases from 0.47 % to
0.81 %). For GEI, the segmentation method [26] already corrects this artifact,
so the improvement is limited (not shown, because it overlaps with other lines).

In summary, on PRID-2011 and iLIDS-VID datasets, motion features such as
HOG3D and GEI are effective for two reasons: both datasets have relatively small
scales; image sequences in both datasets do not undergo significant variances.
On the MARS dataset, our observation goes that motion features have much
lower accuracy. In comparison with PRID-2011 and iLIDS-VID datasets, MARS
has much more tracklets, and the tracklets have more intensive variations in
viewpoint, pose, etc. Intra-class variance is large, while inter-class variance can
be small, making it challenging for effective usage of motion features. Figure 7
presents re-id examples in which motion feature fails.



878 L. Zheng et al.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

rank

m
at

ch
in

g 
ra

te
 (

%
)

CNN(mars−>PRID)+XQDA
CNN(mars−>PRID)+Eucl.
CNN(imgnet−>PRID)+XQDA
CNN(imgnet−>PRID)+Eucl.
CNN_sc+XQDA
CNN_sc+Eucl.
CNN(mars)+XQDA
CNN(mars)+Eucl.

(a) PRID-2011

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

rank
m

at
ch

in
g 

ra
te

 (
%

)

CNN(imgnet−>iLIDS)+XQDA
CNN(imgnet−>iLIDS)+Eucl.
CNN(mars−>iLIDS)+XQDA
CNN(mars−>iLIDS)+Eucl.
CNN_sc+XQDA
CNN_sc+Eucl.
CNN(mars)+XQDA
CNN(mars)+Eucl.

(b) iLIDS-VID

0 5 10 15 20 25 30 35 40 45 50
30

40

50

60

70

80

90

100

rank

m
at

ch
in

g 
ra

te
 (

%
)

48.9 CNN+kiss+MQ
45.5 CNN+kiss
47.6 CNN+XQDA
40.4 CNN+Eucl.
35.3 CNN_sc+kiss
37.4 CNN_sc+XQDA
30.9 CNN_sc+Eucl.
13.7 CNN(iLIDS)+kiss

(c) MARS

Fig. 5. CMC curves on three video re-id datasets with the IDE feature. “(mars-
>PRID)” represents CNN model pre-trained on MARS and fine-tuned on PRID.
“sc” means training from scratch. “(mars)” and “(iLIDS)” indicate that the model
is trained on MARS or iLIDS and then directly transferred to the target set. Kissme
and XQDA are used as distance metric; otherwise, Euclidean (Eucl.) distance is used.
“MQ” denotes multiple queries

Table 3. Method comparisons on three datasets. “Self” means training IDE on the
target dataset set. “MARS” denotes directly transferring MARS-learned model to the
target dataset. “Self pretrained on MARS” stands for fine-tuning IDE on a MARS-
initialized model. “avg” means using average pooling, or otherwise, max pooling. All
models are first initialized with the ImageNet model. Red and blue numbers indicate
average pooling compromises and improves accuracy, respectively

Train. Set Metric
PRID-2011 iLIDS-VID MARS

1 5 10 20 1 5 10 20 1 5 20 mAP

Self

Eucl. 58.2 82.7 90.6 98.2 40.5 70.0 78.9 84.7 58.7 77.1 86.8 40.4
avg. -1.1 -0.7 -0.4 -0.2 +3.1 +1.9 +2.5 +2.7 +1.3 +0.8 +1.1 +2.0
Kiss. 66.3 88.5 93.9 98.2 47.6 76.1 86.1 92.5 65.0 81.1 88.9 45.6
avg. +0.2 -1.6 -1.1 -0.4 +1.2 -0.5 +1.1 +0.1 -0.2 -0.1 -0.5 +1.6
XQDA 74.8 92.1 95.7 99.1 51.3 79.1 87.2 94.3 65.3 82.0 89.0 47.6
avg. -2.0 -1.8 -0.2 -0.4 +1.7 +2.3 +2.5 +0.8 -0.7 -0.6 +0.1 -0.1

MARS

Eucl. 7.6 24.6 39.0 51.8 2.9 9.9 14.7 23.0 - - - -
avg. -0.3 -1.1 -1.2 -1.1 +1.0 +3.1 +2.8 +3.9
XQDA 55.5 83.6 89.3 95.4 24.3 56.3 66.9 79.3 - - - -
avg. -2.1 -3.3 -0.2 -0.2 +5.7 +4.1 +2.0 +0.4
Eucl. 58.9 93.5 95.7 99.3 25.9 44.4 57.2 71.5 - - - -

Self avg. +2.2 +2.5 +2.5 +0.4 -0.9 -1.9 +0.9 -0.3
pretrained XQDA 77.3 93.5 95.7 99.3 47.1 76.7 85.6 93.3 - - - -
on MARS avg. -3.6 -0.9 -1.1 -0.9 +1.1 -0.4 -1.2 -1.1

5.4 Evaluation of the CNN Feature

Training from scratch vs. fine-tuning on ImageNet. For the three
datasets, CNN modesl are either trained from scratch or fine-tuned on ImageNet-
pretrained models. In Fig. 5, we observe that fine-tuning on the ImageNet model
consistently outperforms training from scratch. On MARS, fine-tuning brins
about +9.5 % and 10.2 % improvement when Euclidean or XQDA distances are
used, respectively. Situation on iLIDS and PRID is simila. In the following exper-
iments, we always employ ImageNet-initilized models, if not specified.
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Comparison with motion features. In Fig. 6 and Table 4, direct compar-
isons are made available between the two feature types. On PRID and iLIDS,
“CNN+XQDA” exceeds “HOG3D+XQDA” by 55.6 % and 46.9 % in rank-1
accuracy, respectively. On MARS, the performance gap is 65.7 % and 48.5 %
in rank-1 and mAP, respectively. On all the three datasets, CNN outperforms
the motion features by a large margin, validating the effectiveness of appearance
models.

Generalization ability of MARS. We conduct two experiments to study
the relationship between MARS and the two small datasets. First, we directly
transfer the CNN model trained on MARS to iLIDS and PRID. In Figs. 5(a) and
(b), and Table 3, we directly extract features with the MARS-trained model for
iLIDS and PRID. We find that re-id accuracy with Euclidean distance is pretty
low. This is expected because the data distribution of MARS is different from
that of iLIDS and PRID. Metric learning then improves accuracy to a large
extent. Our second experiment is fine-tuning a CNN model on the target set
using MARS-pretrained models (Self pretrained on MARS). On both dataset,
fine-tuning yields improvement over direct model transfer. On PRID, we achieve
rank-1 accuracy = 77.3, which is higher than fine-tuning from ImageNet. On
iLIDS, fine-tuning from MARS is lower than ImageNet by ∼4 % in rank-1 accu-
racy. This demonstrates that data distribution of PRID is close to MARS, while
iLIDS seems to be more different. We note that MARS was captured in summer
while the other two depicts scenes in colder seasons, and that PRID and MARS
are both outdoor datasets, while iLIDS is an indoor one.
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Fig. 6. Comparison with state-of-the-art methods on three video re-id datasets. Num-
bers before each method name in (c) denote the mAP(%). “(ours)” and “ECCV14”
denote result implemented by ourselves and borrowed from [36], respectively

Max pooling vs. avg pooling. In this paper, bbox features within a tracklet
are combined into a fixed-length vector using max/average pooling. Now we
compare the performance of the two pooling methods. Results are summarized
in Table 3, in which max pooling is used if not specified. We observe that max
pooling is generally better on PRID and MARS, while for iLIDS, average pooling
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seems to be superior. One possible explanation is that max pooling helps to find
local salient features, which is desirable under large illuminations changes like in
iLIDS. Other pooling options are worth exploiting, such as the Lp−norm pooling
[44], the fisher vector encoding [31], etc.

Multiple queries (MultiQ). In MARS, multiple tracklets for the same ID exist
within the same camera as mentioned in Sect. 3.1. They contain rich information
as the pedestrian may have varying poses within each tracklet. Following [46], we
re-formulate each probe by max-pooling the tracklets within the same camera.
Results are presented in Fig. 6(c) and Table 4. With multiple queries, we improve
the rank-1 accuracy from 65.0 % to 68.3 % (+3.3 %).

5.5 Comparison with State-of-the-arts

In Table 4 and Fig. 6, we compare our results with the state-of-the-art methods.
On PRID-2011 and iLIDS-VID datasets, five descriptors are compared, i.e.,
HOG3D [18], color, color+LBP, SDALF [10], Salience [42], and BoW [43]. Three
metric learning methods, i.e., DVR [36], XQDA [24], and Kissme [19] are evalu-
ated. We observe that the CNN descriptor is superior to these methods, obtaining
rank-1 accuracy = 77.3 % and 53.0 % on PRID and iLIDS, respectively. Com-
paring with recent video re-id works, the best known rank-1 accuracy is 70 %
and 58 % on PRID and iLIDS, respectively, both reported in [29]. So this
paper sets a new state of the art on PRID, and is 5 % lower on iLIDS.
On the MARS dataset, results of another set of features are presented, i.e.,
HistLBP [39], gBiCov [27], LOMO [24], BoW [43], and SDALF [10]. We report
rank-1 accuracy = 68.3 % and mAP = 49.3 % on MARS.

Table 4. Results of the state-of-the-art methods on the 3 datasets. Accuracy is pre-
sented by mAP and precision in rank 1, 5, and 20. We use average pooling for iLIDS,
and max pooling for PRID and MARS. Except for iLIDS, we use the MARS-pretrained
CNN model. ImageNet initialization is always employed. Best results are in blue

Methods PRID-2011 iLIDS-VID
Rank R 1 5 20 1 5 20

HOG3D+DVR 28.9 55.3 82.8 23.3 42.4 68.4
Color+DVR 41.8 63.8 88.3 32.7 56.5 77.4
ColorLBP+DVR 37.6 63.9 89.4 34.5 56.7 77.5
SDALF+DVR 31.6 58.0 85.3 26.7 49.3 71.6
Salience+DVR 41.7 64.5 88.8 30.9 54.4 77.1
BoW+XQDA 31.8 58.5 81.9 14.0 32.2 59.5

GEI+Kiss. 19.0 36.8 63.9 10.3 30.5 61.5
HOG3D+XQDA 21.7 51.7 87.0 16.1 41.6 74.5

CNN+Kiss 69.9 90.6 98.2 48.8 75.6 92.6
CNN+XQDA 77.3 93.5 99.3 53.0 81.4 95.1

Methods MARS
Rank R 1 5 20 mAP

HistLBP+XQ. 18.6 33.0 45.9 8.0
gBiCov+XQ. 9.2 19.8 33.5 3.7
LOMO+XQ. 30.7 46.6 60.9 16.4
BoW+Kissme 30.6 46.2 59.2 15.5
SDALF+DVR 4.1 12.3 25.1 1.8

HOG3D+Kiss. 2.6 6.4 12.4 0.8
GEI+Kiss. 1.2 2.8 7.4 0.4

CNN+XQDA 65.3 82.0 89.0 47.6
CNN+Kiss. 65.0 81.1 88.9 45.6

+MQ 68.3 82.6 89.4 49.3
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Fig. 7. Sample re-id results of three probes. For each probe, the first and the second
row display ranking results obtained by HOG3D and CNN features, respectively. Green
and red discs denote the same and different person with the probe, respectively

In Fig. 7, three sample re-id results are shown. Our observation is that a
large number of pedestrians share similar motion, a phenomenon that is less-
studied on small datasets. The usage of motion features therefore tends to find
pedestrians with similar activities. In contrast, by replacing motion features with
the CNN feature, We find the CNN embedding is effective in dealing with image
variances and yields superior results to motion features.

6 Conclusions

This paper advocates using video tracklets in person re-identification. Attempts
are made in constructing a realistic video re-id dataset, named “MARS”. This
dataset is four times larger than previous video re-id datasets, and is collected
with automatic detector and tracker. Moreover, MARS dataset is featured by
multi-query, multi-ground truth, and over 3,000 distractor tracklets produced
by false detection and tracking results. These characteristics make MARS an
ideal test bed for practical re-id algorithms. We employ two motion features
as well as the Convolutional Neural Networks to learn a discriminative embed-
ding in the person subspace. Our experiments reveal that motion features that
were previously proved successful on small datasets turn out to be less effective
under realistic settings with complex background, occlusion, and various poses.
Instead, given the large amount of training data in video datasets, the learned
CNN feature outperforms motion features and a number of state-of-the-art image
descriptors to a large margin, and has good generalization ability on other video
datasets.

Multiple research directions are made possible with MARS. For example, it
is important to design view-invariant motion features that can deal with view
changes in real-life datasets. Since each tracklet has multiple frames, another
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feasible topic is video pooling which aims to find discriminative information
within video frames. Moreover, when classic CNNs can be trained on the rich
visual data, a number of CNN variants can be explored such as those utilizing
human parts. While this paper finds it less effective to use motion features, it is
interesting to exploit the temporal cues in addition to appearance models [29,38].
Our preliminary results have revealed some moderate improvement using LSTM,
and further experiment is needed to extend the temporal models. Finally, since
there exists a number of tracking datasets, it remains unknown how to transfer
these data to the target domains.

Acknowledgement. We thank Zhun Zhong and Linghui Li for providing some bench-
marking results. This work was supported by Initiative Scientific Research Program of
Ministry of Education under Grant No. 20141081253. This work was supported in part
to Dr. Qi Tian by ARO grants W911NF-15-1-0290, Faculty Research Gift Awards by
NEC Laboratories of America and Blippar, and National Science Foundation of China
(NSFC) 61429201.

References

1. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for
person re-identification. In: CVPR (2015)

2. Arandjelovic, R., Zisserman, A.: Multiple queries for large scale specific object
retrieval. In: BMVC (2012)

3. Baltieri, D., Vezzani, R., Cucchiara, R.: 3dpes: 3d people dataset for surveillance
and forensics. In: ACM Workshop on Human Gesture and Behavior Understanding
(2011)

4. Bialkowski, A., Denman, S., Sridharan, S., Fookes, C., Lucey, P.: A database for
person re-identification in multi-camera surveillance networks. In: DICTA (2012)

5. Chen, D., Yuan, Z., Hua, G., Zheng, N., Wang, J.: Similarity learning on an explicit
polynomial kernel feature map for person re-identification. In: CVPR (2015)

6. Das, A., Chakraborty, A., Roy-Chowdhury, A.K.: Consistent re-identification in a
camera network. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8690, pp. 330–345. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10605-2 22

7. Dehghan, A., Assari, S.M., Shah, M.: Gmmcp tracker: Globally optimal generalized
maximum multi clique problem for multiple object tracking. In: CVPR (2015)

8. Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance
comparison for person re-identification. Pattern Recogn. 48(10), 2993–3003 (2015)

9. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse
spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance (2005)

10. Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-
identification by symmetry-driven accumulation of local features. In: CVPR (2010)

11. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection
with discriminatively trained part-based models. Pattern Anal. Mach. Intell. IEEE
Trans. 32(9), 1627–1645 (2010)

12. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition,
reacquisition, and tracking. In: Proceedings IEEE International Workshop on Per-
formance Evaluation for Tracking and Surveillance, vol. 3 (2007)

http://dx.doi.org/10.1007/978-3-319-10605-2_22
http://dx.doi.org/10.1007/978-3-319-10605-2_22


MARS: A Video Benchmark for Large-Scale Person Re-Identification 883

13. Han, J., Bhanu, B.: Individual recognition using gait energy image. Pattern Anal.
Mach. Intell. IEEE Trans. 28(2), 316–322 (2006)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

15. Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by
descriptive and discriminative classification. In: Image Analysis, pp. 91–102 (2011)

16. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: ACM Multimedia, pp. 675–678 (2014)

17. Ke, Y., Sukthankar, R., Hebert, M.: Volumetric features for video event detection.
Int. J. Comput. Vis. 88(3), 339–362 (2010)

18. Klaser, A., Marsza�lek, M., Schmid, C.: A spatio-temporal descriptor based on 3d-
gradients. In: BMVC (2008)

19. Kostinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale metric
learning from equivalence constraints. In: CVPR, pp. 2288–2295 (2012)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012)

21. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2–3), 107–123
(2005)

22. Li, W., Wang, X.: Locally aligned feature transforms across views. In: CVPR (2013)
23. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: Deep filter pairing neural network

for person re-identification. In: CVPR, pp. 152–159 (2014)
24. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occur-

rence representation and metric learning. In: CVPR (2015)
25. Liu, K., Ma, B., Zhang, W., Huang, R.: A spatio-temporal appearance representa-

tion for video-based pedestrian re-identification. In: CVPR, pp. 3810–3818 (2015)
26. Luo, P., Wang, X., Tang, X.: Pedestrian parsing via deep decompositional network.

In: ICCV (2013)
27. Ma, B., Su, Y., Jurie, F.: Covariance descriptor based on bio-inspired features for

person re-identification and face verification. IVC 32(6), 379–390 (2014)
28. Martinel, N., Micheloni, C., Piciarelli, C.: Distributed signature fusion for person

re-identification. In: ICDSC (2012)
29. McLaughlin, N., Martinez del Rincon, J., Miller, P.: Recurrent convolutional net-

work for video-based person re-identification. In: CVPR (2016)
30. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput.

28(6), 976–990 (2010)
31. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.: Image classification with the

fisher vector: Theory and practice. IJCV 105(3), 222–245 (2013)
32. Schwartz, W.R., Davis, L.S.: Learning discriminative appearance-based models

using partial least squares. In: SIBGRAPI (2009)
33. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application

to action recognition. In: ACM Multimedia (2007)
34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint (2014). arXiv:1409.1556
35. Su, C., Yang, F., Zhang, S., Tian, Q., Davis, L.S., Gao, W.: Multi-task learning

with low rank attribute embedding for person re-identification. In: CVPR (2015)
36. Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by video ranking.

In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol.
8692, pp. 688–703. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10593-2 45

http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1007/978-3-319-10593-2_45


884 L. Zheng et al.

37. Willems, G., Tuytelaars, T., Gool, L.: An efficient dense and scale-invariant spatio-
temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-88688-4 48

38. Wu, L., Shen, C., Hengel, A.V.D.: Deep recurrent convolutional networks for video-
based person re-identification: An end-to-end approach. arXiv preprint (2016).
arXiv:1606.01609

39. Xiong, F., Gou, M., Camps, O., Sznaier, M.: Person re-identification using kernel-
based metric learning methods. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8695, pp. 1–16. Springer, Heidelberg (2014). doi:10.
1007/978-3-319-10584-0 1

40. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Deep metric learning for person re-identification.
In: ICPR, pp. 34–39 (2014)

41. You, J., Wu, A., Li, X., Zheng, W.S.: Top-push video-based person re-identification.
In: CVPR (2016)

42. Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-
identification. In: CVPR (2013)

43. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-
identification: a benchmark. In: CVPR (2015)

44. Zheng, L., Wang, S., Liu, Z., Tian, Q.: Lp-norm idf for large scale image search.
In: CVPR (2013)

45. Zheng, L., Wang, S., Tian, L., He, F., Liu, Z., Tian, Q.: Query-adaptive late fusion
for image search and person re-identification. In: CVPR (2015)

46. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Tian, Q.: Person re-identification
in the wild. arXiv preprint (2016). arXiv:1604.02531

47. Zheng, W.S., Gong, S., Xiang, T.: Associating groups of people. In: BMVC, vol.
2, p. 6 (2009)

http://dx.doi.org/10.1007/978-3-540-88688-4_48
http://dx.doi.org/10.1007/978-3-540-88688-4_48
http://arxiv.org/abs/1606.01609
http://dx.doi.org/10.1007/978-3-319-10584-0_1
http://dx.doi.org/10.1007/978-3-319-10584-0_1
http://arxiv.org/abs/1604.02531

	MARS: A Video Benchmark for Large-Scale Person Re-Identification
	1 Introduction
	2 Related Work
	3 MARS Dataset
	3.1 Dataset Description
	3.2 Evaluation Protocol

	4 Important Features
	4.1 Motion Features
	4.2 CNN Features

	5 Experiments
	5.1 Datasets
	5.2 Why Do We Prefer Video-Based Re-Identification?
	5.3 Evaluation of Motion Features
	5.4 Evaluation of the CNN Feature
	5.5 Comparison with State-of-the-arts

	6 Conclusions
	References


