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Abstract. A cooperative detection and model-free tracking algorithm,
referred to as CDT, for multiple object tracking is proposed in this work.
The proposed CDT algorithm has three components: object detector,
forward tracker, and backward tracker. First, the object detector detects
targets with high confidence levels only to reduce spurious detection and
achieve a high precision rate. Then, each detected target is traced by the
forward tracker and then by the backward tracker to restore undetected
states. In the tracking processes, the object detector cooperates with
the trackers to handle appearing or disappearing targets and to refine
inaccurate state estimates. With this detection guidance, the model-free
tracking can trace multiple objects reliably and accurately. Experimental
results show that the proposed CDT algorithm provides excellent per-
formance on a recent benchmark. Furthermore, an online version of the
proposed algorithm also excels in the benchmark.

Keywords: Joint detection and tracking · Multiple object tracking ·
Object detection · Model-free tracking · Online multi-object tracking

1 Introduction

The objective of multiple object tracking (MOT) is to estimate the states (or
bounding boxes) of as many objects as possible in a video sequence and trace
them temporally. Especially, tracking specific objects, such as pedestrians and
cars, has drawn attention for its various applications, including surveillance sys-
tems and self-driving cars. For this purpose, many tracking-by-detection algo-
rithms [1–19] have been proposed to yield promising performance. The tracking-
by-detection approach decomposes MOT into two subproblems: object detection
and data association. It first detects objects in each frame and then links the
detection results to form trajectories across frames. With the recent success of
object detection techniques [20–23], this approach has several advantages over
model-free tracking, which does not assume a specific object and instead traces
the bounding box of an arbitrary object, manually annotated in the first frame.
Specifically, the tracking-by-detection approach is more robust against object
appearance variation and model drift, and it can identify emerging or disap-
pearing objects in a video sequence more easily.
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MOT, however, still remains a challenging problem in case of crowded or
cluttered scenes. A complicated scene causes more detection failures, which are
either undetected objects (false negatives) or spurious detection (false positives).
The poor detection, in turn, decreases the accuracy of data association. To com-
pensate for detection failures, many MOT algorithms [1–12,14] focus on the
global data association. Given detection results in all frames, they design a cost
function to formulate the data association as an optimization problem and then
determine optimal trajectories by minimizing the cost function. By considering
detection results in all frames simultaneously, they can alleviate adverse effects
of detection failures. Notice that an alternative approach for achieving accurate
MOT is to improve the quality of object detection directly. But, contrary to the
data association that has been investigated intensively, relatively little efforts
have been made for this straightforward approach in the MOT community.

In this work, we attempt to improve the detection quality, by combining
an object detector with a model-free tracker. We first collect detection results
with high confidence levels only to decrease the number of false positives. How-
ever, there is a trade-off between precision and recall, and reducing false pos-
itives increases undetected objects. To restore the undetected objects, we con-
duct model-free tracking in the forward and backward directions sequentially.
In general, a model-free tracker and an object detector have different strengths
and weaknesses. For instance, a model-free tracker can temporally trace miss-
ing states of a target object from its initial state, but it is vulnerable to model
drift and may fail to identify the appearance or disappearance of a target reli-
ably, which can be easily handled by an object detector. Therefore, we propose
the cooperative detection and tracking (CDT) algorithm, in which an object
detector and a model-free tracker cooperate to complement each other. Specif-
ically, the detector initiates the tracker, by providing initial states of targets,
and informs of the termination conditions for the tracking. Also, the detector is
utilized to refine the tracking results. Experimental results demonstrate that the
proposed CDT algorithm improves the quality of object detection and excels on
a recent MOT benchmark [24]. Moreover, by omitting the backward tracking,
the proposed algorithm can operate online.

The rest of this paper is organized as follows: Sect. 2 reviews related work.
Section 3 presents the proposed CDT algorithm. Section 4 analyzes the perfor-
mance of the proposed algorithm. Finally, Sect. 5 draws conclusions.

2 Related Work

2.1 Multiple Object Tracking

Many MOT algorithms, including [1–12], adopt global (or batch) data asso-
ciation techniques. Specifically, a batch of frames are taken as input, objects
are detected in these frames, and the association among the detected results is
formulated as the minimization of a cost function. Then, the optimal trajecto-
ries are determined to minimize the cost function. Some algorithms formulate
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the data association as a relatively simple problem, such as linear program-
ming relaxation [1,7] and minimum-cost flow [3–5,11], for which the global min-
imum can be computed plausibly. Other algorithms consider more complicated
problems to represent real world scenarios more faithfully, which are however
too complex to find the global optimum. Thus, they instead find locally opti-
mal solutions, by employing quadratic boolean programming [2], continuous or
discrete-continuous energy minimization [9,12], generalized clique graph [8,10],
and maximum weight-independent set [6].

Recently, Bae and Yoon [13] proposed the notion of tracklet confidence to
handle fragmented trajectories and adopted online learning to discriminate tar-
get appearance during the data association. To reduce the dependency on erro-
neous detection results, Leal-Taixé et al. [14] proposed interaction feature strings,
which encode pedestrians’ interactions. Milan et al. [15] developed a unified
framework of tracking and segmentation to exploit low-level image features more
effectively. Xiang et al. [16] formulated the online MOT problem as decision mak-
ing in a Markov decision process. Rezatofighi et al. [17] reformulated the joint
probabilistic data association (JPDA) [25] technique to make it computationally
tractable. Similarly, Kim et al. [18] revisited another classic solution, multiple
hypothesis tracker (MHT) [26], and adopted an online discriminative appear-
ance model using a deep convolutional neural network. Choi [19] introduced the
aggregated local flow descriptor to encode the relative motion pattern between
two objects and proposed a near-online MOT algorithm. Also, Wang et al. [27]
proposed the target-specific metric learning to represent target appearance faith-
fully. Moreover, their algorithm utilizes a motion cue for accurate tracking and
shows excellent results in the MOT benchmark [24].

2.2 Object Detection

Recently, deep convolutional neural networks have made impressive progress in
object detection. Girshick et al. [20] proposed the R-CNN detector using a deep
convolutional neural network to classify object proposals. To prevent the overfit
due to a small dataset, they introduced a domain-specific fine-tuning method,
improving the detection performance dramatically. To accelerate the processing
speed of R-CNN, He et al. [21] presented the architecture to compute a con-
volutional feature map of an entire image prior to the spatial pyramid pooling.
However, it cannot fine-tune the convolutional layers. Girshick [22] proposed the
Fast R-CNN, which is an end-to-end trainable system with shared convolutional
layers. In these detectors [20–22], separate region proposal methods [28–30] are
required, which cause computational bottlenecks. To overcome this issue, Shao-
qing [23] introduced the region proposal network to extract proposals from a
convolutional feature map directly.

2.3 Model Free Tracking

For model-free tracking, we adopt a discriminative approach that uses a classifier
to estimate targets states. Thus, we briefly review discriminative trackers only.
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Avidan [31] used an offline-trained classifier to track a target, but the classifier
may provide wrong results when an object changes its appearance. In [32,33],
online learning techniques have been developed to adjust to variations in object
appearance. These techniques, however, may update appearance models unreli-
ably with falsely labeled samples. Grabner et al. [34] attempted to reduce the
impacts of false labels, by training a classifier with labeled samples in the first
frame and unlabeled samples in subsequent frames. Babenko et al. [35] adopted
the multiple instance learning to deal with the ambiguity in the foreground label-
ing. Hare et al. [36] employed the structured support vector machine [37] to avoid
a heuristic for assigning binary labels to samples. Henriques et al. [38] introduced
a correlation filter to track an object and performed the filtering efficiently in
the Fourier domain.

3 Proposed Algorithm

The proposed CDT algorithm consists of three components: object detector,
forward tracker, and backward tracker. The first component detects targets in a
video using a conventional detector [22]. It selects only the detection results with
high scores to provide reliable information to the other components. The second
component traces the detection results forwardly in the time domain to restore
undetected states of the targets. To this end, we adopt a model-free tracker that
is guided by the object detector. The third component conducts the backward
tracking to recover more missing states and refine the target trajectories.

3.1 Object Detection

We adopt an end-to-end trainable object detector, called Fast R-CNN [22]. How-
ever, other detectors, e.g. [20,21,23], also can be used instead of Fast R-CNN.

Training: We employ the pre-trained Fast R-CNN detector with the VGG16
model [39], trained with the PASCAL VOC dataset. Since the MOT challenge
dataset [24] is for pedestrian detection, we replace the softmax layer to consider
only two classes (pedestrian or non-pedestrian). We use the selective search [29]
to generate region proposals. To fine-tune the detector on the MOT challenge
dataset, we adopt the mini-batch sampling in [22].

Detection: Given a video, we generate region proposals using [29]. Then, the
detector measures the score for each proposal and chooses only the proposals
whose scores are greater than a high threshold θhigh = 0.99. A lot of objects
remain undetected due to the high threshold θhigh. However, the impacts of
undetected objects are less severe than those of false positives, since our CDT
system includes a model-free tracker to trace temporally the states of a target
object from its initial state. When a target is detected, we regard it as an initial
state. Then, we can restore undetected target states by performing the model-
free tracking. To summarize, since precision is more important than recall, we
adopt the high threshold θhigh to provide reliable information to the tracker.
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Fig. 1. Illustration of the forward tracking process.

3.2 Forward Tracking

As mentioned above, many target states remain undetected. To restore these
missing states, we carry out model-free tracking forwardly in the time domain.
During the tracking, the object detector cooperates with the model-free tracker
to achieve accurate tracking. Figure 1 illustrates the forward tracking. Let At

be the active target list to record detected target states and their appearance
models in frame t. Given active targets in At−1 in the previous frame t − 1, the
forward tracker estimates their states in the current frame t. Then, guided by the
object detector, the tracker checks the visibility of each active target to remove
disappearing or occluded targets. The detector also helps to improve the initial
state estimation of the tracker. To this end, we perform the matching between
tracked target states and detection results, and update a target state when its
corresponding detection result is more reliable. Also, an unmatched detection
result is regarded as a new target and added to the active target list At. Finally,
the appearance model of each active target is updated.

State Estimation: Let xi,t−1 = (c, w, h) ∈ At−1 denote the state of the ith
active target in frame t−1, where c, w, and h are the location, width, and height
of the target. Given the previous state xi,t−1, we estimate its current state xi,t

using a discriminative tracker and put it into the active target list At. We set
a square search region with center c and side length

√
wh. Then, we sample

candidate states within the search region using the sliding window method. To
describe the contents in each candidate x, we encode it into a feature vector φ(x).
Similarly to [40], the candidate window is decomposed into 64 non-overlapping
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Fig. 2. Examples of the detection guidance. Target ‘A’ disappears from the view. Target
‘B’ is occluded by target ‘C.’ The initial state of target ‘D’ is refined into the cyan
box. Target ‘E’ newly appears. All these disappearance, occlusion, refinement, and
appearance cases are handled using the guidance information from the object detector.
(Color figure online)

patches and each patch is described by a 24-dimensional RGB histogram and a
31-dimensional HOG histogram [41]. We then concatenate all patch features to
construct φ(x). We determine the current state xi,t to yield the highest score,

xi,t = arg max
x

wT
i φ(x) (1)

where wi is the appearance model of the ith target.

Detection Guidance: During the tracking, the tracker is guided by the object
detector. Let us consider target ‘A’ in Fig. 2, which is disappearing from the view.
Note that the goal of object detection is to identify the existence of an object.
Thus, we can easily handle the disappearing case by computing the detection
score. Specifically, we check the detection score for each active target in At and
remove targets, whose scores are lower than a threshold θlow, from At. The low
threshold θlow is fixed to 0.5, since we consider only two classes and a lower score
than 0.5 indicates that the estimated state contains no pedestrian.

In Fig. 2, targets ‘B’ and ‘C’ illustrate an occlusion case, which also causes an
invisible target. To find occlusion, we compute the intersection-over-union (IoU)
overlap ratio between each pair of active targets. We declare that an occlusion
case occurs, when the overlap ratio is larger than a threshold θiou = 0.3. Then,
we compare the detection scores of the two targets and determine that the target
with a lower score is occluded. We exclude the occluded target from At.

Another task of the detection guidance is to refine the initial estimation of
the tracker for each active target. An object may experience scale variation. In
this case, the tracker may provide an inaccurate result, since it does not consider
scale variation in this work. To correct such inaccuracy, we utilize the detection
results in Sect. 3.1. More specifically, we first determine which detection result
should be used for the target state refinement. The matching cost c(x, z) between
a target state x and a detection result z is defined as
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c(x, z) =
{‖φ(x) − φ(z)‖2 if Δ(x, z) ≥ θiou,

∞ otherwise, (2)

where Δ(x, z) denotes the IoU overlap ratio. We determine the optimal matching
between the initial tracking results and the detection results using the Hungarian
algorithm [42]. For instance, target ‘D’ becomes closer to the camera in Fig. 2, in
which the initial estimation of the tracker and the corresponding detection result
are depicted by blue and cyan boxes, respectively. In this example, the detection
result represents the target more faithfully. In general, given an initial target
state and the matching detection result, we compare their detection scores. If
the detection result yields a higher score, then it replaces the initial state. Finally,
when a detection result is unmatched, e.g. target ‘E’ in Fig. 2, we regard it as a
new target and insert it into the active target list At.

Appearance Model Update: After determining the state of each target in
At, we update its appearance model. We model the target appearance using the
structured support vector machine (SSVM) [36,37], which yields excellent perfor-
mance in a recent model-free tracking benchmark [43]. To update the appearance
model of the ith target, we sample 81 bounding boxes around the current object
location and extract their feature vectors. SSVM constrains that the bounding
box xi,t should yield a larger score than a nearby box x by a margin, which
decreases as the IoU overlap ratio between the two boxes increases. Specifically,
the appearance model wi is trained to minimize an objective function,

wi = arg min
w

1
2
‖w‖2 + β

∑
x

max{0, (1 − Δ(xi,t,x)) −wT (φ(xi,t) − φ(x))} (3)

where β is 10. We use the LaRank algorithm [36,44] for the minimization.

3.3 Backward Tracking

Figure 3 illustrates the entire process of the proposed CDT algorithm. First, the
object detector collects reliable detection results. Once an object is detected, it
becomes an active target and the forward tracker estimates its missing states
after the activation. Moreover, the detector cooperates with the tracker to
improve the estimation. For example, in Fig. 3, the estimated states are replaced
by the detection results at t5 and t7 to localize the target more accurately. The
forward tracking stops when the target disappears due to occlusion or out-of-
view. After the forward tracking, the states in t1 ∼ t2 still remain undetected
and should be estimated. Therefore, we further perform the backward tracking.

Suppose that the forward tracking starts at ts and ends at te+1. Then, the
backward tracking is activated at te. First, it refines the trajectory, obtained by
the forward tracking, backwardly from te to ts. Second, the backward tracking
restores missing states backwardly from ts until its termination.
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Fig. 3. Illustration of the target tracking. A pedestrian is first detected at t3 and
becomes an active target. From t4, the forward tracker estimates its states. At t5 and
t7, the tracker refines the estimated states using the detection results. The forward
tracking terminates at t8 due to the occlusion. Given the state at t7, the backward
tracker estimates new states at t6 and t5 to refine the trajectory. However, these states
are rejected since the original states yield higher detection scores. On the contrary, a
new state is accepted at t4. Moreover, the backward tracking restores undetected states
at t2 and t1, and then stops at t0.

Existing State Refinement: Given the target state xi,t+1 in the subsequent
frame t + 1, the backward tracker traces its state xi,t in the current frame t.
It compares the detection score of xi,t with that of the forward tracking result.
Then, the state with a higher score is selected as the final tracking result. In
Fig. 3, the forward result is replaced by the backward result at t4.

Missing State Restoration: The backward tracking process from ts is iden-
tical with the forward tracking process in Sect. 3.2, but the temporal direction is
reversed. Moreover, we check the IoU overlap ratio of the estimated state with
the other active states, which are already estimated by the forward tracker, to
prevent duplicated estimation. Specifically, we only accept an estimated state
xi,t and update its appearance model wi, when the maximum IoU overlap ratio
between xi,t and the other active states is smaller than θiou. Otherwise, we regard
xi,t as duplication and terminate its backward tracking.

4 Experimental Results

We assess the proposed CDT algorithm on the MOT challenge benchmark [24],
which consists of 22 sequences with different view points, camera motions, and
weather conditions. They are divided into 11 training sequences and 11 test
sequences, and annotations are available for the training sequences only.
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We use the F1-score to quantify the detection performance of the proposed
algorithm, which is a harmonic mean between precision and recall. We also
employ various evaluation metrics in the benchmark [24] to compare the pro-
posed and conventional algorithms: the number of false positives (FP), the num-
ber of false negatives (FN), the number of ID switches (IDS), multiple object
tracking accuracy (MOTA), multiple object tracking precision (MOTP), mostly
tracked targets (MT), and mostly lost targets (ML).

4.1 Analysis on Validation Sequences

Unlike the training sequences, the annotations for the test sequences are not
released. Therefore, as done in [16], we partition the 11 training sequences into
two subsets ‘training’ and ‘validation’ to analyze the proposed algorithm. Table 1
lists the contents in each subset. We use the five ‘training’ sequences to fine-tune
the object detector and the six ‘validation’ ones for the evaluation.

Figure 4(a) is the precision-recall curve of the object detector. In the proposed
MOT system, the high detection threshold θhigh = 0.99 is used to detect reliable
objects only. Therefore, the operating point is selected from the high-precision,
low-recall part of the curve, resulting in the F1-score of 0.549. In the forward
tracking, the model-free tracker detects missing objects and increases the recall
rate, at the cost of a relatively small reduction in the precision rate. Thus,
after the forward tracking, the F1-score is increased to 0.623. Similarly, the
backward tracking further improves the detection performance and the final F1-
score becomes 0.646, which corresponds to 17.7 % improvement in comparison
with the original F1-score. Figure 4(b) presents the F1-scores on each sequence
after the object detection, the forward tracking, and the backward tracking. Each
component of the proposed algorithm leads to better results on all sequences with
no exception. As mentioned in Sect. 3.2, the tracker is guided by the detector in
our CDT system. It is worth pointing out that the cooperation in the opposite
direction is also carried out; the experimental results in Fig. 4 indicate that the
detection performance itself is improved with the assistance of the tracker.

Table 1. Training and validation sequences for performance analysis.

Training TUD-Stadtmitte, ETH-Bahnhof, ADL-Rundle-6, PETS09-S2L1,
KITTI-13

Validation TUD-Campus, ETH-Sunnyday, ETH-Pedcross2, ADL-Rundle-8,
KITTI-17, Venice-2

Next, to quantify the performance gain achieved by each algorithmic part,
Table 2 compares the MOT results using various settings. Settings ‘A’ and ‘B’
denote the results after the forward tracking: ‘A’ does not perform the state
refinement using the detection guidance, while ‘B’ does. Setting ‘C’ and ‘D’
denote the results after the backward tracking: ‘C’ does not conduct the state
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(a) (b)

Fig. 4. (a) The precision-recall curve of the object detection. The blue diamond point is
selected with the high threshold θhigh = 0.99 by the object detector. Then, the detection
performance is improved by the forward tracker and then by the backward tracker. A
number within brackets is the F1-score after each component. (b) The F1-scores on
each validation sequence after each component. (Color figure online)

Table 2. MOT results of the proposed CDT algorithm on the validation sequences with
various settings. Settings ‘A’ and ‘B’ denote the results after the forward tracking, and
settings ‘C’ and ‘D’ after the backward tracking. Settings ‘A’ and ‘C’ do not perform
the state refinement, while settings ‘B’ and ‘D’ do.

Setting MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
A: Forward w/o 26.8 67.1 12.8 28.2 3,160 13,457 293

B: Forward 40.8 72.5 22.2 27.8 1,516 11,964 180

C: Backward w/o 42.1 72.1 32.1 26.5 2,119 11,072 184

D: Backward 42.4 72.2 32.5 26.5 2,077 11,050 178

refinement, while ‘D’ does. Comparing ‘A’ with ‘B,’ we see that the state refine-
ment significantly increases the MOTA score by 14 points in the forward tracking.
Notice that a refined state also helps to estimate the target states in subsequent
frames. In other words, correcting a tracking error not only improves the state
in the current frame but also prevents model-drift. Thus, it contributes to the
extraction of a longer trajectory of a target, thereby increasing the MT score
from 12.8 to 22.2. The comparison between ‘C’ and ‘D’ shows that the state
refinement also improves the performance of the backward tracking. It improves
the MOTA, MOTP, MT scores and reduces false positives, false negatives, ID
switches. The comparison between ‘B’ and ‘C’ demonstrates the impacts of the
state estimation in the backward tracking. It restores a lot of missing target
states and improves the performance.
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(a) (b) (c)

Fig. 5. Comparison of active targets after (a) the object detection, (b) the for-
ward tracking, and (c) the backward tracking. From top to bottom, the sequences
“ADL-Rundle-8,” “ETH-Pedcross2,” “ETH-Sunnyday,” “KITTI-17,” and “Venice-2”
are used.

Figures 5(a), (b), and (c) compare active targets after the object detection,
the forward tracking, and the backward tracking, respectively. The number of
states, provided by the object detector, is relatively small, but it is increased by
the forward tracker and then by the backward tracker. For instance, the object
with ID 19 in“ADL-Rundle-8” is missing in the detection stage. However, it is
already active in the previous frame and its state is accurately estimated by the
forward tracker. Similarly, the object with ID 22 in“ADL-Rundle-8” is restored
by the backward tracker. The results on the other sequences also confirm that
the forward and backward trackers restore missing states effectively.
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4.2 Additional Tests on Validation Sequences

Table 3 shows the results of the proposed algorithm on the validation sequences
with different object proposal methods. SS denotes the default mode, in which
the detector uses the selective search [29] to generate proposals. On the other
hand, ACF indicates that it employs the published detection results in the bench-
mark [24] as proposals. It can be observed that, even when we use the published
detection results, the proposed algorithm provides similar performance. Com-
pared with SS, ACF [45] provides more reliable results for small scale objects
and improves the performance on the “Venice-2” sequence. In contrast, SS is
more effective on the “ETH-Pedcross2” sequence, where ACF fails to detect
objects that are very high and thus touch the top and bottom boundaries of
images.

Table 3. The results of the proposed algorithm on the validation sequences with
different object proposals. SS denotes that the selective search [29] is used for generating
object proposals, while ACF [45] means that the published detection results in the MOT
benchmark [24] are used as the proposals.

Sequences Proposal MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
TUD-Campus SS 67.1 73.8 62.5 0.0 27 87 4

ACF 71.0 74.2 62.5 0.0 13 87 4

ETH-Sunnyday SS 72.1 74.4 70.0 3.3 297 202 20

ACF 66.0 77.6 40.0 23.3 129 494 9

ETH-Pedcross2 SS 53.6 74.3 25.5 32.3 402 2,435 69

ACF 28.4 74.4 10.5 63.9 162 4,302 23

ADL-Rundle-8 SS 34.9 69.7 32.1 25.0 683 3,695 41

ACF 38.2 74.0 28.5 28.5 449 3,714 30

KITTI-17 SS 58.3 70.8 11.1 0.0 64 211 10

ACF 60.8 71.5 11.1 0.0 45 217 6

Venice-2 SS 29.2 70.8 23.1 42.3 604 4,420 34

ACF 41.5 75.1 34.6 42.3 116 4,042 23

Average SS 42.4 72.2 32.5 26.5 2,077 11,050 178

ACF 39.9 74.8 20.9 47.4 914 12,856 95

The performance of an MOT algorithm depends strongly on its object detec-
tor. Therefore, Table 4 compares the proposed algorithm with the conventional
algorithms in [17,18], by employing an identical detector. In this test, all algo-
rithms employ the detector in Sect. 3.1. We obtain the results of the conventional
algorithms using their published codes and default parameters. Overall, the pro-
posed algorithm provides the best performance. JPDA [17] yields relatively poor
performance, since it does not consider the appearance of targets. Thus, it can-
not handle complex scenes, in which it is difficult to identify objects from the
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Table 4. Performance comparison with the same detector.

Algorithm MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
MHT [18] 39.9 74.7 18.8 38.9 616 13,180 70

JPDA [17] 27.2 72.2 14.1 42.3 2,970 13,625 220

Proposed 42.4 72.2 32.5 26.5 2,077 11,050 178

Table 5. Performance improvements when we use the MHT [18] algorithm for the
post-processing.

Algorithm MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
Proposed 42.4 72.2 32.5 26.5 2,077 11,050 178

Proposed+MHT 44.6 73.2 36.3 27.0 2,045 10,639 112

Table 6. MOT results on each test sequence.

Sequences MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
TUD-Crossing 70.0 73.3 61.5 0.0 73 229 29

PETS09-S2L2 47.7 70.4 21.4 19.0 502 4,429 113

ETH-Jelmoli 48.2 75.0 60.0 11.1 758 529 26

ETH-Linthescher 60.5 76.4 43.7 24.4 1,425 1,963 138

ETH-Crossing 59.0 81.5 30.8 30.8 169 221 21

AVG-TownCentre 45.5 68.5 28.3 27.4 653 3,127 117

ADL-Rundle-1 26.0 70.1 21.9 28.1 1,697 5,146 47

ADL-Rundle-3 43.3 75.4 29.5 13.6 1,168 4,517 84

KITTI-16 44.7 69.3 23.5 0.0 232 690 19

KITTI-19 45.7 72.8 30.6 9.7 884 1,946 72

Venice-1 32.3 70.9 29.4 41.2 527 2,538 18

Average 44.5 72.9 34.7 22.1 8,088 25,335 684

motion information only. The recent state-of-the-art MHT [18] uses the convo-
lutional neural network (CNN) features to exploit the appearance information
and outperforms JPDA. However, it suffers from missing states in the detection
stage and produces a lot of false negatives. In contrast, the proposed algorithm
restores undetected states effectively, reducing the false negatives.

As mentioned previously, the tracking-by-detection approach decomposes the
MOT problem into two subproblems: object detection and data association. The
proposed algorithm focuses on improving the detection quality, but its perfor-
mance can be also improved by adopting a sophisticated data association tech-
nique. Table 5 shows the improvements on the validation sequences when we
use MHT [18] for the data association. In this test, using the results of the pro-
posed algorithm as initial detection results, we employ MHT as a post-processing
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Table 7. Comparison of the proposed CDT algorithm with conventional algorithms on
the test sequences. The best and the second best scores are boldfaced and underlined,
respectively.

Algorithm MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
TSML-CDE [27] 49.1 74.3 30.4 26.4 5,204 25,460 637

NOMT [19] 33.7 71.9 12.2 44.0 7,762 32,547 442

MHT [18] 32.4 71.8 16.0 43.8 9,064 32,060 435

MDP [16] 30.3 71.3 13.0 38.4 9,717 32,422 680

JPDA [17] 23.8 68.2 5.0 58.1 6,373 40,084 365

MotiCon [14] 23.1 70.9 4.7 52.0 10,404 35,844 1,018

SegTrack [15] 22.5 71.7 5.8 63.9 7,890 39,020 697

DCO [12] 19.6 71.4 5.1 54.9 10,652 38,232 521

CEM [9] 19.3 70.7 8.5 46.5 14,180 34,591 813

RMOT [46] 18.6 69.6 5.3 53.3 12,473 36,835 684

SMOT [47] 18.2 71.2 2.8 54.8 8,780 40,310 1,148

TC-ODAL [13] 15.1 70.5 3.2 55.8 12,970 38,538 637

DP-NMS [5] 14.5 70.8 6.0 40.8 13,171 34,814 4,537

Proposed 44.5 72.9 34.7 22.1 8,088 25,335 684

Proposed-online 42.8 73.3 23.8 25.1 5,494 28,997 668

scheme for the data association. Notice that the post-processing improves the
MOTA score by 2.2 points, by reducing the number of tracking failures (FP,
FN, and IDS). From a different point of view, we see in Tables 4 and 5 that the
proposed algorithm increases the MOTA score of the MHT algorithm [18] by 4.7
points, by providing more reliable detection results.

4.3 Comparative Evaluation on Test Sequences

For the evaluation on test sequences, we fine-tuned the object detector using all
11 training and validation sequences in Table 1, and submitted our results to the
MOT challenge website [24]. Note that the post-processing in Sect. 4.2 was not
employed. Table 6 lists the results of the proposed CDT algorithm on each test
sequence.

Table 7 compares the proposed algorithm with conventional trackers. In terms
of MOTA, the proposed algorithm outperforms the recent trackers in [16–19]
significantly, while providing a comparable score to the state-of-the-art tracker
TSML-CDE [27]. Furthermore, the proposed algorithm provides the best perfor-
mance in terms of MT, ML, and FN scores. Note that a lot of target states remain
undetected in the detection stage, since the object detector focus on decreasing
the number of false positives. Nevertheless, the proposed algorithm successfully
restores these missing states and reduces the FN score considerably. Also, the
proposed algorithm yields the outstanding performance in the trajectory quality
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metrics (MT, ML). These results indicate the effectiveness of the detection guid-
ance in the model-free tracking. Even though the proposed CDT algorithm does
not perform explicit global data association, the cooperation between the object
detector and the model-free tracker enables to build long reliable trajectories.

By removing the backward tracker, the proposed algorithm can operate as
an online tracker, since the object detector and the forward tracker are causal
components. Thus, we consider it as the online version of the proposed algorithm.
Table 7 presents the performance of the online version as well. The online version
still outperforms the recent trackers [16–19] by considerable margins.

5 Conclusions

We proposed a novel MOT algorithm, called CDT. The proposed CDT algorithm
first collects detection results with high confidence levels only to reduce spurious
detection. Then, the proposed algorithm conducts model-free tracking in the for-
ward direction and then in the backward direction to restore undetected states.
For accurate tracking, the model-free trackers are guided by the object detector,
in order to identify emerging or disappearing objects in a video and refine inac-
curate state estimates. Experimental results demonstrated that the proposed
CDT algorithm provides excellent performance on the MOT benchmark [24].
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