
RNN Fisher Vectors for Action Recognition
and Image Annotation

Guy Lev1,2, Gil Sadeh1, Benjamin Klein1(B), and Lior Wolf1

1 The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
beni.klein@gmail.com

2 IBM Research, Haifa, Israel

Abstract. Recurrent Neural Networks (RNNs) have had considerable
success in classifying and predicting sequences. We demonstrate that
RNNs can be effectively used in order to encode sequences and provide
effective representations. The methodology we use is based on Fisher
Vectors, where the RNNs are the generative probabilistic models and
the partial derivatives are computed using backpropagation. State of the
art results are obtained in two central but distant tasks, which both
rely on sequences: video action recognition and image annotation. We
also show a surprising transfer learning result from the task of image
annotation to the task of video action recognition.

Keywords: Action recognition · Image annotation · Fisher vectors ·
Recurrent Neural Networks

1 Introduction

Fisher Vectors have been shown to provide a significant performance gain on
many different applications in the domain of computer vision [1–4]. In the
domain of video action recognition, Fisher Vectors and Stacked Fisher Vectors [2]
have recently outperformed state-of-the-art methods on multiple datasets [2,5].
Fisher Vectors (FV) have also recently been applied to word embedding (e.g.
word2vec [6]) and have been shown to provide state of the art results on a variety
of NLP tasks [7], as well as on image annotation and image search tasks [8].

In all of these contributions, the FV of a set of local descriptors is obtained
as a sum of gradients of the log-likelihood of the descriptors in the set, with
respect to the parameters of a probabilistic mixture model that was fitted on
a training set in an unsupervised manner. Despite being richer than the mean
vector pooling method, Fisher Vectors based on a probabilistic mixture model are
invariant to order. This makes them less appealing for annotating, for example,
video, in which the sequence of events determines much of the meaning.

This work presents a novel approach for FV representation of sequences using
a Recurrent Neural Network (RNN). The RNN is trained to predict the next

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-46466-4 50) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing AG 2016
B. Leibe et al. (Eds.): ECCV 2016, Part VI, LNCS 9910, pp. 833–850, 2016.
DOI: 10.1007/978-3-319-46466-4 50

http://dx.doi.org/10.1007/978-3-319-46466-4_50
http://dx.doi.org/10.1007/978-3-319-46466-4_50


834 G. Lev et al.

element of a sequence given the previous elements. Conveniently, the gradients
needed for the computation of the FV are extracted using the available back-
propagation infrastructure.

The new representation is sensitive to ordering and, therefore, mitigates the
disadvantage of using the standard Fisher Vector representation. It is applied to
two different and challenging tasks: video action recognition and image annota-
tion by sentences.

Several recent works have proposed to use an RNN for sentence represen-
tation [9–12]. The Recurrent Neural Network Fisher Vector (RNN-FV) method
differs from these works in that a sequence is represented by using derived gra-
dient from the RNN as a vector representation, instead of using a hidden or an
output layer of the RNN.

The paper explores training an RNN regressor to predict the vector repre-
sentation of the next element of a sequence given the previous ones (i.e. treating
it as a regression task). In the image annotation and image search tasks, word
embeddings are used for representing words. In the video action recognition task,
the VGG [13] Convolutional Neural Network (CNN) is used to extract features
from the frames of the video and the RNN is trained to predict the embedding of
the next frame given the previous ones. Similarly, C3D [14] features of sequential
video sub-volumes are used with the same training technique.

Although the image annotation and video action recognition tasks are quite
different, a surprising boost in performance in the video action recognition task
was achieved by using a transfer learning approach from the image annotation
task. Specifically, the VGG image embedding of a frame is projected using a
linear transformation which was learned on matching images and sentences by
the Canonical Correlation Analysis (CCA) algorithm [15].

The proposed RNN-FV method achieves state-of-the-art results in action
recognition on the HMDB51 [16] and UCF101 [17] datasets. In the image annota-
tion and image search tasks, the RNN-FV method is used for the representation
of sentences and achieves state-of-the-art results on the Flickr8K dataset [18]
and competitive results on other benchmarks.

2 Previous Work

Action Recognition. As in other object recognition problems, the standard
pipeline in action recognition is comprised of three main steps: feature extraction,
pooling and classification. Many works [19–21] have focused on the first step of
extracting local descriptors. Laptev et al. [22] extend the notion of spatial inter-
est points into the spatio-temporal domain and show how the resulting features
can be used for a compact representation of video data. Wang et al. [23,24] used
low-level hand-crafted features such as histogram of oriented gradients (HOG),
histogram of optical flow (HOF) and motion boundary histogram (MBH).

Recent works have attempted to replace these hand-crafted features by deep-
learned features for video action recognition due to its wide success in the image
domain. Early attempts [25–27] achieved lower results in comparison to hand-
crafted features, proving that it is challenging to apply deep-learning techniques on



RNN Fisher Vectors for Action Recognition and Image Annotation 835

videos due to the relatively small number of available datasets and complex motion
patterns. More recent attempts managed to overcome these challenges and achieve
state of the art results with deep-learned features. Simonyan et al. [28] designed
two-stream ConvNets for learning both the appearance of the video frame and the
motion as reflected by the estimated optical flow. Du Tran et al. [14] designed an
effective approach for spatiotemporal feature learning using 3-dimensional Con-
vNets.

In the second step of the pipeline, the pooling, Wang et al. [29] compared
different pooling techniques for the application of action recognition and showed
empirically that the Fisher Vector encoding has the best performance. Recently,
more complex pooling methods were demonstrated by Peng et al. [2] who pro-
posed Stacked Fisher Vectors (SFV), a multi-layer nested Fisher Vector encod-
ing and Wang et al. [5] who proposed a trajectory-pooled deep-convolutional
descriptor (TDD). TDD uses both a motion CNN, trained on UCF101, and
an appearance CNN, originally trained on ImageNet [30], and fine-tuned on
UCF101. Fernando et al. [31] suggested to capture the temporal ordering of a
particular video by training a linear ranking machine on the frames of that video.
The parameters of the ranking machine are used as the video representation for
action recognition. In parallel to our work, Nagel et al. [32] proposed using event
Fisher Vectors for encoding a visual stream. They considered two different gen-
erative models beyond the Gaussian Mixture Model. The first is the Student’s-t
mixture model which has heavy tails but is not sensitive to the order of the
elements in the sequence. The second is the Hidden Markov Model which can
capture the temporal ordering of the elements in the sequence. Our work is using
a Fisher Vector which is defined on a Recurrent Neural Network model.

Image Annotation and Image Search. In the past few years, the state-of-the-art
results in image annotation and image search have been provided by deep learning
approaches [8,33–41]. A typical system is composed of three important compo-
nents: (i) Image Representation, (ii) Sentence Representation, and (iii) Matching
Images and Sentences. The image is usually represented by applying a pre-trained
CNN on the image and taking the activations from the last hidden layer.

There are several different approaches for the sentence representation; Socher
et al. [33] used a dependency tree Recursive Neural Network. Yan et al. [34] used
a TF-IDF histogram over the vocabulary. Klein et al. [8] used word2vec [6] as the
word embedding and then applied Fisher Vector based on a Hybrid Gaussian-
Laplacian Mixture Model (HGLMM) in order to pool the word2vec embeddings
of the words in a given sentence into a single representation. Ma et al. [41]
proposed a matching CNN (m-CNN) that composes words to different seman-
tic fragments and learns the inter-modal relations between the image and the
composed fragments at different levels.

Since a sentence can be seen as a sequence of words, many works have used a
Recurrent Neural Network (RNN) in order to represent sentences [12,35–37,40].
To address the need for capturing long term semantics in the sentence, these
works mainly use Long Short-Term Memory (LSTM) [42] or Gated Recurrent Unit
(GRU) [43] cells. Generally, the RNN treats a sentence as an ordered sequence of



836 G. Lev et al.

words, and incrementally encodes a semantic vector of the sentence, word-by-word.
At each time step, a new word is encoded into the semantic vector, until the end
of the sentence is reached. All of the words and their dependencies will then have
been embedded into the semantic vector, which can be used as a feature vector
representation of the entire sentence. Our work also uses an RNN in order to rep-
resent sentences, but takes the derived gradient from the RNN as features, instead
of using a hidden or an output layer of the RNN. In parallel to our work, Gordo
et al. [44] proposed using the gradient representation of CNNs for images.

A number of techniques have been proposed for the task of matching images
and sentences. Klein et al. [8] used CCA [15] and Yan et al. [34] introduced a
Deep CCA in order to project the images and sentences into a common space and
then performed a nearest neighbor search between the images and the sentences
in the common space. Kiros et al. [37], Karpathy et al. [35], Socher et al. [33] and
Ma et al. [41] used a contrastive loss function trained on matching and unmatch-
ing pairs of (image, sentence) in order to learn a score function for a given pair.
Mao et al. [36] and Vinyals et al. [40] learned a probabilistic model for inferring a
sentence given an image and, therefore, are able to compute the probability that
a given sentence will be created by a given image and used it as the score.

Related Work. [45,46] have also proposed methods incorporating advanced pool-
ing techniques within the CNN and backpropagation infrastructure.

2.1 Baseline Pooling Methods

In this section, we describe two baseline pooling methods that can represent
a multiset of vectors as a single vector. The notation of a multiset is used to
clarify that the order of the vectors does not affect the representation, and that
a vector can appear more than once. Both methods can be applied to sequences.
However, the resulting representation will be insensitive to ordering.

Mean Vector. This pooling method takes a multiset of vectors,
X = {x1..xN} ∈ R

D, and computes its mean: v = 1
N

∑N
i=1 xi. Clearly, the vector

v that results from the pooling is in R
D.

Fisher Vector of a GMM. Given a multiset of vectors, X = {x1..xN} ∈ R
D,

the standard FV [47] is defined as the gradient of the log-likelihood of X with
respect to the parameters of a pre-trained Diagonal-Covariance Gaussian Mix-
ture Model (GMM). In [4], Perronnin et al. introduced two normalizations of the
FV which improved its performance. It is worth noting that the linear structure
of the GMM FV pooling would not be preserved in the RNN model, where the
probability of an element in the sequence depends on all the previous elements.

3 RNN-Based Fisher Vector

The pooling methods described above share a common disadvantage: insensitivity
to the order of the elements in the sequence. A way to tackle this, while keeping the



RNN Fisher Vectors for Action Recognition and Image Annotation 837

power of gradient-based representation, would be to replace the Gaussian model
by a generative sequence model that takes into account the order of elements in
the sequence. A desirable property of the sequence model would be the ability to
calculate the gradient (with respect to the model’s parameters) of the likelihood
estimate by this model to an input sequence.

In this section, we show that such a model can be obtained by training an
RNN regressor to predict the embedding of the next element in a sequence, given
the previous elements. Having this, we propose, for the first time, the RNN-FV:
A Fisher Vector that is based on such an RNN sequence model.

Fig. 1. RNN structure and loss function (in red), as was trained for the action recog-
nition task. The RNN is trained to predict the next element of the sequence, given the
previous ones. The gradient of the loss function (which can be seen as likelihood), with
respect to the RNN’s weights, constitutes the unnormalized RNN-FV. (Color figure
online)

Given a sequence of vectors S with N vector elements x1, ..., xN ∈ R
D, we

convert it to the input sequence X = (x0, x1, ..., xN−1), where x0 = xstart. This
special element is used to denote the beginning of the input sequence, and we
use xstart = 0 throughout this paper. The RNN is trained to predict, at each
time step i, the next element xi+1 of the sequence, given the previous elements
x0, ..., xi. Therefore, given the input sequence, the target sequence would be:
Y = (x1, x2, ...xN ). The training data and the training process are application
dependent, as described in Sect. 4 for action recognition and in Sect. 5 for image
annotation. There are several regression loss functions that can be used. Here,
we consider the following loss function:

Loss(y, v) =
1
2
‖y − v‖2 (1)

where y is the target vector and v is the predicted vector.
After the RNN training is done, and given a new sequence S, the derived

sequence X is fed to the RNN. Denote the output of the RNN at time step i



838 G. Lev et al.

(i = 0, ..., N − 1) by RNN(x0, ..., xi) = vi ∈ R
D. The target at time step i is

xi+1 (the next element in the sequence), and the loss is:

Loss(xi+1, vi) =
1
2
‖xi+1 − vi‖2 (2)

The RNN can be seen as a generative model, and the likelihood of any vector
x being the next element of the sequence, given x0, ..., xi, can be defined as:

p (x|x0, ..., xi) = (2π)−D/2 exp
(

−1
2
‖x − vi‖2

)

(3)

Here, we are interested in the likelihood of the correct prediction, i.e., in the
likelihood of the vector xi+1 given x0, ..., xi: p (xi+1|x0, ..., xi).

The RNN-based likelihood of the entire sequence X is:

p(X) =
N−1∏

i=0

p (xi+1|x0, ..., xi) (4)

The negative log likelihood of X is:

L(X) = − log (p(X)) = −
N−1∑

i=0

log (p (xi+1|x0, ..., xi))

=
ND

2
log(2π) +

1
2

N−1∑

i=0

‖xi+1 − vi‖2 (5)

In order to represent X using the Fisher Vector scheme, we have to compute
the gradient of L(X) with respect to our model’s parameters. With RNN being
our model, the parameters are the weights W of the network. By (2) and (5),
we get that L(X) equals the loss that would be obtained when X is fed as
input to the RNN, up to an additive constant. Therefore, the desired gradient
can be computed by backpropagation: we feed X to the network and perform
forward and backward passes. The obtained gradient ∇WL(X) would be the
(unnormalized) RNN-FV representation of X. Notice that this gradient is not
used to update the network’s weights as done in training - here we perform
backpropagation at inference time. Other loss functions may be used instead of
the one presented in this analysis. Given a sequence, the gradient of the RNN
loss may serve as the sequence representation, even if the loss is not interpretable
as a likelihood. Figure 1 illustrates the RNN structure and the loss function that
we used for the action recognition task.

3.1 Normalization of the RNN-FV

It was suggested by [47] that normalizing the FVs by the Fisher Information
Matrix is beneficial. We approximated the diagonal of the Fisher Information
Matrix (FIM), which is usually used for FV normalization. Note, however, that
we did not observe any empirical improvement due to this normalization, and
our experiments are reported without it.



RNN Fisher Vectors for Action Recognition and Image Annotation 839

4 Action Recognition Pipeline

The action recognition pipeline contains the underlying appearance features used
to encode the video, the sequence encoding using the RNN-FV, and an SVM
classifier on top. The entire pipeline is illustrated in Fig. 2. In this section, we
discuss each step of the pipeline.

4.1 Visual Features

The RNN-FV is capable of encoding the sequence properties, and as underlying
features, we rely on video encodings that are based on single frames or on fixed
length blocks of frames.

VGG. Using the pre-trained 19-layer VGG convolutional network [13], we
extract a 4096-dimensional representation of each video frame. The VGG
pipeline is used, namely, the original image is cropped in ten different ways
into 224 by 224 pixel images: the four corners, the center, and their x-axis mir-
ror image. The mean intensity is then subtracted in each color channel and the
resulting images are encoded by the network. The average of the 10 feature vec-
tors obtained is then used as the single image representation. In order to speed
up the method, the input video was sub-sampled, and one in every 10 frames was
encoded. Empirically, we noticed that recognition performance was not harmed
by this sub-sampling. To further reduce run-time, the data dimensionality was
reduced via PCA to 500D. In addition, L2 normalization was applied to each vec-
tor. All PCAs in this work were trained for each dataset and each training/test
split separately, using only the training data.

CCA. Using the same VGG representation of video frames as mentioned above
and the code of [8]1, we represented each frame by a vector as follows: we consid-
ered the common image-sentence vector space obtained by the CCA algorithm,
using the best model (GMM+HGLMM) of [8] trained on the COCO dataset [48].
We mapped each frame to that vector space, getting a 4096-dimensional image
representation. As the final frame representation, we used the first (i.e. the prin-
cipal) 500 dimensions. For our application, the projected VGG representations
were L2 normalized. The CCA was trained for an unrelated task of image to sen-
tence matching, and its success, therefore, suggests a new application of transfer
learning: from image annotation to action recognition.

C3D. While the representations above encode single frames, the C3D
method [14] splits the video into sub-volumes that are encoded one by one.
Following the recommended settings, we applied the C3D pre-trained 3D con-
volutional neural network in order to extract a 4096D representation of each
16-frame blocks. The blocks are sampled with an 8 frame stride. Following fea-
ture extraction, PCA dimensionality reduction (500D) and L2 normalization
were applied. Notice that while we used the available pretrained C3D network,
our results are not comparable to [14]’s highest reported performance which was
1 Available at www.cs.tau.ac.il/∼wolf/code/hglmm.

www.cs.tau.ac.il/~wolf/code/hglmm


840 G. Lev et al.

Fig. 2. Our general action recognition pipeline is composed of 6 steps: (a) Input Data
- we use subsampled video frames or frame blocks as input to our system. (b) Fea-
ture Extraction - we extract features from the frames/frame-blocks using VGG/C3D
pretrained CNN. (c) Post-Processing (PP1) - PCA/CCA dimension reduction and L2

normalization are performed. (d) Pooling - the extracted sequential features are fed
into the RNN, then backpropagation is performed to obtain the partial derivatives
with respect to the weights of the last fully-connected layer. (e) Post-Processing (PP2)
- PCA dimension reduction is performed, followed by power normalization and L2 nor-
malization. (f) Classification - the final representation is fed into a linear multi-class
SVM classifier which predicts the estimated action label.

reached using an ensemble of 3 C3D networks (to our knowledge, the other two
networks were not released) combined with idt [49].

4.2 Network Structure

Our RNN model (illustrated in Fig. 1) consists of three layers: a 200D fully-
connected layer with Leaky-Relu activation (α = 0.1), a 200D Long Short-Term
Memory (LSTM) [42] layer, and a 500D linear fully-connected layer. Our net-
work is trained as a regressor with the mean square error (MSE) loss function.
Weight decay and dropouts were also applied. An improvement in recognition
performance was noticed when the dropout rate was enlarged, up to a rate of
0.95, due to its ability to ensure the discriminative characteristics of each weight
and hence also of each partial derivative in the gradient.

4.3 Training and Classification

We train the RNN to predict the next element in our video representation
sequence, given the previous elements, as described in Sect. 3. In our experi-
ments, we use only the part of gradient corresponding to the weights of the last
fully-connected layer. Empirically, we saw no improvement when using the par-
tial derivatives with respect to the weights of other layers. In order to obtain
a fixed size representation, we average the gradients over all time steps. The
gradient representation dimension is 500× 201=100500, which is the number
of weights in the last fully-connected layer. We then apply PCA to reduce the
representation size to 1000D, followed by power and L2 normalization.

Video classification is performed using a linear SVM with a parameter C =
1. Empirically, we noticed that the best recognition performance is obtained



RNN Fisher Vectors for Action Recognition and Image Annotation 841

very quickly and hence early stopping is necessary. In order to choose an early
stopping point, we use a validation set. Some of the videos in the dataset are
actually segments of the same original video, and are included in the dataset as
different samples. Care was taken to ensure that no such similar videos are in
both the training and validation sets, in order to guarantee that high validation
accuracy will ensure good generalization and not merely over-fitting.

After each RNN epoch, we extract the RNN-FV representation as described
above, train a linear SVM classifier on the training set and evaluate the perfor-
mance on the validation set. The early stopping point is chosen at the epoch
with the highest recognition accuracy on the validation set. After choosing our
model this way, we train an SVM classifier on all training samples (training +
validation samples) and report our performance on the test set.

5 Image-Sentence Retrieval

In the image-sentence retrieval tasks (image annotation and image search), vec-
tor representations are extracted separately for the sentences and the images.
These representations are then mapped into a common vector space, where the
two are being matched. [8] have presented a similar pipeline for GMM-FV. We
replace this representation with RNN-FV.

A sentence, being an ordered sequence of words, can be represented as a
vector using the RNN-FV scheme. Given a sentence with N words w1, ..., wN ,
(where wN is considered to be the period, namely a wend special token), we treat
the sentence as an ordered sequence S = (w0, w1, ..., wN−1), where w0 = wstart.
An RNN is trained to predict, at each time step i, the next word wi+1 of the
sentence, given the previous words w0, ..., wi. Therefore, given the input sequence
S, the target sequence would be: (w1, w2, ...wN ). The training data may be any
large set of sentences. These sentences may be extracted from the dataset of a
specific benchmark, or, in order to obtain a generic representation, any external
corpus, e.g., Wikipedia, may be used.

As observed in the action recognition case, we did not benefit from extracting
partial derivatives with respect to the weights of the hidden layers, and hence
we only use those of the output layer as our representation.

The input to the network is the word’s embedding, a 300D vector in our case,
followed by an LSTM layer of size 100. The output layer is a fully-connected one,
where the (300 dimensional) word embedding of the next word is predicted. We
use no activation function at the output layer.

For matching images and text, each image is represented as a 4096-
dimensional vector extracted using the 19-layer VGG, as described in Sect. 4.1.
The regularized CCA algorithm [50], where the regularization parameter is
selected based on the validation set, is used to match the the VGG representa-
tion with the sentence RNN-FV representation. In the shared CCA space, the
cosine similarity is used in order to score (image, sentence) pairs.

We explored several configurations for training the RNN. RNN training
data We employed either the training data of each split in the respective bench-
mark, or the 2010-English-Wikipedia-1M dataset made available by the Leipzig



842 G. Lev et al.

Table 1. Pooling technique comparison: mean-pooling (MP), GMM-FV, RNN-FV, and
their combinations with Temporal-Pyramid-Pooling (TPP), as evaluated on HMDB51
and UCF101 datasets. Three types of sequential features are used: VGG-PCA, VGG-
CCA, and C3D. Additionally, a combination of descriptors (C3D + VGG) is evaluated,
including a combination with idt GMM-FV [49]. All combinations are performed with
early fusion. The table reports recognition average accuracy (higher is better).

HMDB51

Method MP MP+TPP GMM-FV GMM-FV+TPP RNN-FV RNN-FV+TPP

VGG-PCA 42.16 46.14 36.8 38.54 45.62 47.38

VGG-CCA 43.05 47.19 39.61 41.5 46.14 46.01

C3D 51.2 54.01 45.82 48.54 52.88 53.51

C3D + VGG-CCA 37.1 56.23 50.19 52.16 54.33 55.77

C3D + VGG-CCA + idt 58.48 63.70 64.68 61.00 67.71 64.99

UCF101

Method MP MP+TPP GMM-FV GMM-FV+TPP RNN-FV RNN-FV+TPP

VGG-PCA 75.51 77.34 76.53 77.12 79.29 81.56

VGG-CCA 77.49 78.68 76.84 77.95 79.49 80.83

C3D 81.05 81.72 80.04 80.10 82.33 82.81

C3D + VGG-CCA 65.55 87.85 86.73 87.11 88.01 88.09

C3D + VGG-CCA + idt 89.02 92.16 93.22 91.80 94.08 93.67

Corpora Collection [51]. This dataset contains 1 million sentences randomly sam-
pled from English Wikipedia. Word embedding A word was represented either
by word2vec, or by a “CCA word embedding” obtained as follows: (1) Each word
was represented by the GMM+HGLMM FV representation of [8]. (2) These
word representations were projected to the common image-sentence CCA space
trained by [8] (on the respective dataset). (3) To reduce dimensionality, the
first (i.e. the principal) 300 dimensions (out of 4096) of the mapped word rep-
resentations were used. We made sure to match the training split according to
the benchmark tested. Sentence sequence direction We explored both the
conventional left-to-right sequence of words and the reverse direction.

We also explored using an RNN-FV which is based on a classifier RNN instead
of a regressor. This design creates two challenges. The first is dimensionality: the
size of the softmax layer equals the size of the dictionary, which is typically large.
As a result, ∇WL(X) has a high dimensionality. The second issue is with gen-
eralization capability: since the softmax layer is fixed, a network cannot handle
a sentence containing a word that does not appear in its training data. The
RNN-FV regressor outperformed the RNN-FV classifier, and our experiments
are reported without it.

6 Experiments

We evaluated the effectiveness of the various pooling methods on two important
yet distinct application domains: action recognition and image textual annota-
tion and search. As mentioned, applying the FIM normalization (Sect. 3.1) did



RNN Fisher Vectors for Action Recognition and Image Annotation 843

not seem to improve results. Another form of normalization we have tried, is to
normalize each dimension of the gradient by subtracting its mean and dividing
by its standard deviation. This also did not lead to an improved performance.
Two normalizations that were found to be useful are the Power Normalization
and the L2 Normalization, which were introduced in [52]. Both are employed,
using a constant α = 1/2. In addition to the experimental details provided in
this section, further technical details and comparisons with baselines are given
in the supplementary material.

6.1 Action Recognition

Our experiments were conducted on two large action recognition benchmarks.
The UCF101 [17] dataset consists of 13,320 realistic action videos, collected
from YouTube, and divided into 101 action categories. We use the three splits
provided with this dataset in order to evaluate our results and report the average
accuracy over these splits. The HMDB51 dataset [16] consists of 6766 action
videos, collected from various sources, and divided into 51 action categories.
Three splits are provided as an official benchmark and are used here. The average
accuracy over these splits is reported.

We compare the performance of the RNN-FV to the baselines of mean-
pooling and GMM-FV when combined with Temporal-Pyramid-Pooling (TPP)
in order to validate that it is able to better capture temporal ordering infor-
mation, as shown in Table 1. Three sets of features, as described in Sect. 4.1,
are used: VGG coupled with PCA, VGG projected by the image to sentence
matching CCA, and C3D.

As can be seen in Table 1, the RNN-FV pooling outperformed the other pool-
ing methods by a sizable margin. Another interesting observation is that with
VGG frame representation, CCA outperformed PCA consistently in all pooling
methods. Not shown is the performance obtained when using the activations
of the RNN as a feature vector. These results are considerably worse than all
pooling methods. Notice that the representation dimension of Mean pooling is
500 (like the features we used), the GMM-FV dimension is 2 × k × 500, where k
is the number of clusters in the GMM (this parameter was chosen according to
performance on a validation set) and the RNN-FV dimension is 1000.

Table 2 compares our proposed RNN-FV method, combining multiple fea-
tures together, with recently published methods on both datasets. The combi-
nations were performed using early fusion, i.e., we concatenated the normalized
low-dimensional gradients of the models and train multi-class linear SVM on the
combined representation. We also tested the combination of our two best models
with idt [49] and got state of the art results on both benchmarks. Interestingly,
comparable results were obtained even when training the RNN on one dataset
and testing on the other, proving that our RNN-FV representation is generic
and not dataset specific.



844 G. Lev et al.

Table 2. comparison to the state of the art on UCF101 and HMDB51. In order to
obtain the best performance, we combine, similar to all other contributions, multiple
features. We also present a result where idt [49] is combined, similar to all other top
results (Multi-skip extends idt). This adds motion based information to our method.

Method HMDB51 UCF101

idt [49] 57.2 85.9

idt + high-D encodings [53] 61.1 87.9

Two-stream CNN (2 nets) [28] 59.4 88

Multi-skip Feature Stacking [54] 65.4 89.1

C3D (1 net) [14] – 82.3

C3D (3 nets) [14] – 85.2

C3D (3 nets) + idt [14] – 90.4

TDD (2 nets) [5] 63.2 90.3

TDD (2 nets) + idt [5] 65.9 91.5

stacked FV [2] 56.21 –

stacked FV + idt [2] 66.78 –

RNN-FV(C3D + VGG-CCA) 54.33 88.01

RNN-FV(C3D + VGG-CCA) + idt 67.71 94.08

6.2 Image-Sentence Retrieval

The effectiveness of RNN-FV as sentence representation is evaluated on the bidi-
rectional image and sentence retrieval task. We perform our experiments on three
benchmarks: Flickr8K [18], Flickr30K [58], and COCO [48]. The datasets contain
8, 000, 30, 000, and 123, 000 images respectively. Each image is accompanied by
5 sentences describing the image content, collected via crowdsourcing.

The Flickr8k dataset is provided with training, validation, and test splits. For
Flickr30K and COCO, no training splits are given, and the splits by [8] are used.
There are three tasks in this benchmark: image annotation, in which the goal is
to retrieve, given a query image, the five ground truth sentences; image search,
in which, given a query sentence, the goal is to retrieve the ground truth image;
and sentence similarity, in which the goal is, given a sentence, to retrieve the
other four sentences describing the same image. Evaluation is performed using
Recall@K, namely the fraction of times that the correct result was ranked within
the top K items. The median and mean rank of the first ground truth result are
also reported. For the sentence similarity task, only the mean rank is reported.

As mentioned in Sect. 5, we explored RNN-FV based on several RNNs. The
first RNN is a generic one: it was trained with the Wikipedia sentences as training
data and word2vec as word embedding. In addition, for each of the three datasets,
we trained three RNNs with the dataset’s training sentences as training data:
one with word2vec as word embedding; one with the “CCA word embedding”
derived from the semantic vector space of [8], as explained in Sect. 5; and one with



RNN Fisher Vectors for Action Recognition and Image Annotation 845

Table 3. Image annotation, image search and sentence similarity results on the
Flickr8k, Flickr30k and COCO datasets. Shown are the recall rates at 1, 5, and 10
retrieval results (higher is better). Also shown are the median and mean rank of the
first ground truth (lower is better). We compare the results of the previous work to
variants of our RNN-FV. The ‘wiki’ notation indicates that the RNN was trained
on Wikipedia and not on the sentences of the specific dataset. Models notated by
‘w2v’ employ word2vec, while the other models (‘cca’) use the CCA word embedding
(as explained in Sect. 5). ‘rvrs’ models were trained on reversed sentences. We also
report results of combinations: ‘cca’ and ‘reverse’ models; ‘cca’ and the best model
(GMM+HGLMM) of [8] (‘MM-ENS’); ‘cca’, ‘reverse’ and [8]; All RNN-FV models; All
RNN-FV models and [8]. The RTP method [57] utilizes additional information that
is not accessible to the other methods: manual annotations of bounding boxes in the
images, which were collected via crowdsourcing.

Image Annotation Image Search Sentence
r@1 r@5 r@10 median mean r@1 r@5 r@10 median mean mean

rank rank rank rank rank
SDT-RNN [33] 6.0 22.7 34.0 23.0 NA 6.6 21.6 31.7 25.0 NA NA
DFE [35] 12.6 32.9 44.0 14.0 NA 9.7 29.6 42.5 15.0 NA NA
RVP [38] 11.7 34.8 48.6 11.2 NA 11.4 32.0 46.2 11.0 NA NA
DVSA [39] 16.5 40.6 54.2 7.6 NA 11.8 32.1 44.7 12.4 NA NA
SC-NLM [37] 18.0 40.9 55.0 8.0 NA 12.5 37.0 51.5 10.0 NA NA

Flickr8k DCCA [34] 17.9 40.3 51.9 9.0 NA 12.7 31.2 44.1 13.0 NA NA
Previous NIC [40] 20.0 NA 61.0 6.0 NA 19.0 NA 64.0 5.0 NA NA

m-RNN [55] 14.5 37.2 48.5 11.0 NA 11.5 31.0 42.4 15.0 NA NA
m-CNN [41] 24.8 53.7 67.1 5.0 NA 20.3 47.6 61.7 5.0 NA NA
MeanVector [8] 22.6 48.8 61.2 6.0 28.7 19.1 45.3 60.4 7.0 27.0 12.5
GMM-FV [8] 28.4 57.7 70.1 4.0 20.1 20.6 48.6 64.2 6.0 21.8 10.8
MM-ENS [8] 31.0 59.3 73.7 4.0 18.4 21.3 50.1 64.8 5.0 21.0 10.5

wiki,w2v 29.3 57.8 70.8 4.0 21.4 19.8 48.5 62.9 6.0 25.2 10.0
w2v 27.4 57.9 70.5 4.0 22.7 20.4 49.1 63.4 6.0 25.5 10.4
cca 30.9 60.1 73.1 4.0 19.4 20.7 48.7 63.8 6.0 29.2 11.3
cca,rvrs 29.1 57.3 71.7 4.0 18.4 20.8 48.5 62.9 6.0 30.2 12.5

Flickr8K cca + rvrs 30.8 59.8 72.9 4.0 18.2 21.8 49.6 64.4 6.0 27.3 11.2
Ours cca + [8] 32.9 61.7 74.9 3.0 16.8 22.0 51.5 66.5 5.0 20.7 9.4

cca + rvrs + [8] 32.1 60.7 74.8 3.0 16.5 22.1 51.4 66.5 5.0 21.4 9.5
all rnn-fv models 29.9 60.7 73.4 4.0 17.9 22.4 52.7 67.2 5.0 20.9 8.7
all rnn-fv models + [8] 31.6 61.2 74.3 3.0 17.4 23.2 53.3 67.8 5.0 19.4 8.5

SDT-RNN [33] 9.6 29.8 41.1 16.0 NA 8.9 29.8 41.1 16.0 NA NA
DFE [35] 14.2 37.7 51.3 10.0 NA 10.2 30.8 44.2 14.0 NA NA
RVP [38] 12.1 27.8 47.8 11.0 NA 12.7 33.1 44.9 12.5 NA NA
DVSA [39] 22.2 48.2 61.4 4.8 NA 15.2 37.7 50.5 9.2 NA NA
SC-NLM [37] 23.0 50.7 62.9 5.0 NA 16.8 42.0 56.5 8.0 NA NA
DCCA [34] 16.7 39.3 52.9 8.0 NA 12.6 31.0 43.0 15.0 NA NA

Flickr30k NIC [40] 17.0 NA 56.0 7.0 NA 17.0 NA 57.0 7.0 NA NA
Previous LRCN [56] NA NA NA NA NA 17.5 40.3 50.8 9.0 NA NA

RTP [57](manual annotations) 37.4 63.1 74.3 NA NA 26.0 56.0 69.3 NA NA NA
m-RNN [55] 35.4 63.8 73.7 3.0 NA 22.8 50.7 63.1 5.0 NA NA
m-CNN [41] 33.6 64.1 74.9 3.0 NA 26.2 56.3 69.6 4.0 NA NA
MeanVector [8] 24.9 52.5 64.4 5.0 27.3 20.5 46.4 59.3 6.8 32.3 16.2
GMM-FV [8] 33.0 60.8 72.0 3.0 19.0 23.9 51.7 64.9 5.0 24.8 15.0
MM-ENS [8] 35.0 62.1 73.8 3.0 17.4 25.1 52.8 66.1 5.0 23.7 14.1

wiki,w2v 32.9 59.6 72.1 3.0 18.5 23.9 52.0 65.2 5.0 26.0 15.2
w2v 32.0 59.5 71.4 3.0 17.2 23.4 51.7 65.2 5.0 24.5 14.1
cca 33.6 60.5 73.0 3.0 15.7 24.5 52.5 66.3 5.0 27.7 16.9
cca,rvrs 32.8 61.9 72.7 3.0 17.4 24.4 51.2 64.6 5.0 28.9 16.1

Flickr30k cca + rvrs 33.6 62.4 73.4 3.0 15.5 25.0 53.6 66.9 5.0 26.2 15.5
Ours cca + [8] 35.1 63.3 74.2 3.0 15.3 26.4 54.9 68.6 4.0 21.7 13.4

cca + rvrs + [8] 35.1 63.5 74.5 3.0 15.0 26.5 55.2 68.5 4.0 22.0 13.5
all rnn-fv models 34.7 62.7 72.6 3.0 15.6 26.2 55.1 69.2 4.0 21.2 12.8
all rnn-fv models + [8] 35.6 62.5 74.2 3.0 15.0 27.4 55.9 70.0 4.0 20.0 12.2

DVSA [39] 38.4 69.9 80.5 1.0 NA 27.4 60.2 74.8 3.0 NA NA
m-RNN [55] 41.0 73.0 83.5 2.0 NA 29.0 42.2 77.0 3.0 NA NA
m-CNN [41] 42.8 73.1 84.1 2.0 NA 32.6 68.6 82.8 3.0 NA NA

COCO STV [12] 33.8 67.7 82.1 3.0 NA 25.9 60.0 74.6 4.0 NA NA
Previous MeanVector [8] 33.2 61.8 75.1 3.0 14.5 24.2 56.4 72.4 4.0 14.7 14.3

GMM-FV [8] 39.0 67.0 80.3 3.0 11.2 24.2 59.3 76.0 4.0 11.3 12.4
MM-ENS [8] 39.4 67.9 80.9 2.0 10.4 25.2 59.9 76.7 4.0 11.0 12.9

wiki,w2v 37.7 70.5 81.0 2.0 9.9 26.6 61.1 76.9 4.0 10.9 11.9
w2v 39.9 71.5 81.3 2.0 10.5 26.9 61.8 77.4 4.0 11.4 12.1
cca 40.9 75.0 84.9 2.0 8.2 30.2 65.0 80.4 3.0 11.1 13.2
cca,rvrs 41.3 71.5 83.7 2.0 8.1 28.9 64.5 79.9 3.0 11.3 12.6

COCO cca + rvrs 40.8 73.4 84.1 2.0 8.2 30.4 65.5 80.9 3.0 10.7 12.3
Ours cca + [8] 40.7 72.3 83.5 2.0 9.1 28.1 64.1 79.8 3.0 10.2 11.5

cca + rvrs + [8] 40.2 72.7 84.2 2.0 8.6 29.0 64.8 80.2 3.0 10.1 11.5
all rnn-fv models 40.8 71.9 83.2 2.0 8.9 29.6 64.8 80.5 3.0 9.7 10.6
all rnn-fv models + [8] 41.5 72.0 82.9 2.0 9.0 29.2 64.7 80.4 3.0 9.5 10.2



846 G. Lev et al.

the CCA word embedding, and with feeding the sentences in reverse order. The
RNN is using an LSTM layer of size 100. We did not observe a benefit in using
more LSTM units. We used the part of the gradient corresponding to all 30,300
weights of the output layer (including one bias per word-embedding dimension).
In the case of the larger COCO dataset, due to the computational burden of the
CCA calculation, we used PCA to reduce the gradient dimension from 30,300 to
20,000. PCA was calculated on a random subset of 300,000 sentences (around
50 %) of the training set. We also tried PCA dimension reduction to a lower
dimension of 4,096, for all three datasets. We observed no change in performance
(Flickr8K) or slightly worse results (Flickr30K and COCO).

Table 3 shows the results of the different RNN-FV variants compared to the
baselines and to the current state of the art methods. The baselines, Mean Vector
and GMM-FV, appear in the table as previous work of [8]. We also report results
of combinations of models. Combining was done by averaging the image-sentence
(or sentence-sentence) cosine similarities obtained by each model.

First, we notice the competitive performance of the model trained on
Wikipedia sentences, which demonstrates the generalization power of the RNN-
FV, being able to perform well on data different than the one which the RNN
was trained on. Training using the dataset’s sentences only slightly improves
results, and not always. Improved results are obtained when using the CCA
word embedding instead of word2vec. It is interesting to see the result of the
“reverse” model, which is on a par with the other models. It is somewhat comple-
mentary to the “left-to-right” model, as the combination of the two yields some-
what improved results. Finally, the combination of RNN-FV with the best model
(GMM+HGLMM) of [8] outperforms the current state of the art on Flickr8k,
and is competitive on the other datasets.

7 Conclusions

This paper introduces a novel FV representation for sequences that is derived
from RNNs. The proposed representation is sensitive to the element ordering in
the sequence and provides a richer model than the additive “bag” model typically
used for conventional FVs.

The RNN-FV representation surpasses the state-of-the-art results for video
action recognition on two challenging datasets. When used for representing
sentences, the RNN-FV representation achieves state-of-the-art or competitive
results on image annotation and image search tasks. Since the length of the sen-
tences in these tasks is usually short and, therefore, the ordering is less crucial,
we believe that using the RNN-FV representation for tasks that use longer text
will provide an even larger gap between the conventional FV and the RNN-FV.

A transfer learning result from the image annotation task to the video
action recognition task was shown. The conceptual distance between these two
tasks makes this result both interesting and surprising. It supports a human
development-like way of training, in which visual labeling is learned through
natural language, as opposed to, e.g., associating bounding boxes with nouns.



RNN Fisher Vectors for Action Recognition and Image Annotation 847

While such training was used in computer vision to learn related image to text
tasks, and while recently zero-shot action recognition was shown [59,60], NLP to
video action recognition transfer was never shown to be as general as presented
here.

Acknowledgments. This research is supported by the Intel Collaborative Research
Institute for Computational Intelligence (ICRI-CI).

References

1. Simonyan, K., Parkhi, O.M., Vedaldi, A., Zisserman, A.: Fisher vector faces in the
wild. In: Proceedings BMVC, vol. 1. 7 (2013)

2. Peng, X., Zou, C., Qiao, Y., Peng, Q.: Action recognition with stacked fisher
vectors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8693, pp. 581–595. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-10602-1 38

3. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details:
an evaluation of recent feature encoding methods. In: British Machine Vision Con-
ference (2011)

4. Perronnin, F., Liu, Y., Sánchez, J., Poirier, H.: Large-scale image retrieval with
compressed fisher vectors. In: 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3384–3391. IEEE (2010)

5. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-
convolutional descriptors. arXiv preprint (2015). arXiv:1505.04868

6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. Adv. Neural Inf. Process.
Syst. 28, 3111–3119 (2013)

7. Lev, G., Klein, B., Wolf, L.: In defense of word embedding for generic text represen-
tation. In: Biemann, C., Handschuh, S., Freitas, A., Meziane, F., Métais, E. (eds.)
NLDB 2015. LNCS, vol. 9103, pp. 35–50. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-19581-0 3

8. Klein, B., Lev, G., Sadeh, G., Wolf, L.: Associating neural word embeddings with
deep image representations using fisher vectors. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 4437–4446 (2015)

9. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112
(2014)

10. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint (2014). arXiv:1409.0473

11. Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R.: Deep
sentence embedding using the long short term memory network: Analysis and appli-
cation to information retrieval. arXiv preprint (2015). arXiv:1502.06922

12. Kiros, R., Zhu, Y., Salakhutdinov, R., Zemel, R.S., Torralba, A., Urtasun, R.,
Fidler, S.: Skip-thought vectors. arXiv preprint (2015). arXiv:1506.06726

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

14. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotempo-
ral features with 3d convolutional networks. arXiv preprint (2014). arXiv:1412.0767

http://dx.doi.org/10.1007/978-3-319-10602-1_38
http://dx.doi.org/10.1007/978-3-319-10602-1_38
http://arxiv.org/abs/1505.04868
http://dx.doi.org/10.1007/978-3-319-19581-0_3
http://dx.doi.org/10.1007/978-3-319-19581-0_3
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1502.06922
http://arxiv.org/abs/1506.06726
http://arxiv.org/abs/1412.0767


848 G. Lev et al.

15. Hotelling, H.: Relations between two sets of variates. Biometrika 17, 321–377
(1936)

16. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video
database for human motion recognition. In: Proceedings IEEE International Con-
ference on Computer Vision (2011)

17. Soomro, K., Zamir, A.R., Shah, M.: UCF101: A dataset of 101 human action classes
from videos in the wild. In: CRCV-TR-12-01, November 2012

18. Hodosh, M., Young, P., Hockenmaier, J.: Framing image description as a ranking
task: Data, models and evaluation metrics. J. Artif. Intell. Res. (JAIR) 47, 853–899
(2013)

19. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human
actions from movies. In: Proceedings IEEE Conference on Computer Vision Pattern
Recognition, pp. 1–8 (2008)

20. Wang, H., Klaser, A., Schmid, C., Liu, C.: Action recognition by dense trajectories.
In: Proceedings IEEE Conference on Computer Vision Pattern Recognition, pp.
3169–3176 (2011)

21. Kliper-Gross, O., Gurovich, Y., Hassner, T., Wolf, L.: Motion interchange patterns
for action recognition in unconstrained videos. In: Fitzgibbon, A., Lazebnik, S.,
Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 256–269.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3 19

22. Laptev, I.: On space-time interest points. Int. J. Comput. Vis. 64(2), 107–123
(2005)

23. Wang, H., Schmid, C.: Action Recognition with improved trajectories. In: Inter-
national Conference on Computer Vision, October 2013

24. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion bound-
ary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)

25. Taylor, G.W., Fergus, R., LeCun, Y., Bregler, C.: Convolutional learning of spatio-
temporal features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6316, pp. 140–153. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15567-3 11

26. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human
action recognition. Pattern Anal. Mach. Intell. IEEE Trans. 35(1), 221–231 (2013)

27. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1725–1732.
IEEE (2014)

28. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. Adv. Neural Inf. Process. Syst. 25, 568–576 (2014)

29. Wang, X., Wang, L.M., Qiao, Y.: A comparative study of encoding, pooling and
normalization methods for action recognition. In: Lee, K.M., Matsushita, Y., Rehg,
J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 572–585. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-37431-9 44

30. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil
in the details: Delving deep into convolutional nets. arXiv preprint (2014).
arXiv:1405.3531

31. Fernando, B., Gavves, E., Oramas, J.M., Ghodrati, A., Tuytelaars, T.: Modeling
video evolution for action recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5378–5387 (2015)

32. Nagel, M., Mensink, T., Snoek, C.G.: Event fisher vectors: robust encoding visual
diversity of visual streams. Identity 27(27.2), 22–28 (2015)

http://dx.doi.org/10.1007/978-3-642-33783-3_19
http://dx.doi.org/10.1007/978-3-642-15567-3_11
http://dx.doi.org/10.1007/978-3-642-15567-3_11
http://dx.doi.org/10.1007/978-3-642-37431-9_44
http://arxiv.org/abs/1405.3531


RNN Fisher Vectors for Action Recognition and Image Annotation 849

33. Socher, R., Le, Q., Manning, C., Ng, A.: Grounded compositional semantics for
finding and describing images with sentences. In: NIPS Deep Learning Workshop
(2013)

34. Mikolajczyk, F.Y.K.: Deep correlation for matching images and text (2015)
35. Karpathy, A., Joulin, A., Fei-Fei, L.: Deep fragment embeddings for bidirectional

image sentence mapping. arXiv preprint (2014). arXiv:1406.5679
36. Mao, J., Xu, W., Yang, Y., Wang, J., Yuille, A.: Deep captioning with multimodal

recurrent neural networks (m-rnn). arXiv preprint (2014). arXiv:1412.6632
37. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings

with multimodal neural language models. Trans. Assoc. Comput. Linguist. 2(10),
351–362 (2015)

38. Chen, X., Zitnick, C.L.: Learning a recurrent visual representation for image cap-
tion generation. arXiv preprint (2014). arXiv:1411.5654

39. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. Technical report, Computer Science Department, Stanford University
(2014)

40. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: A neural image
caption generator. arXiv preprint (2014). arXiv:1411.4555

41. Ma, L., Lu, Z., Shang, L., Li, H.: Multimodal convolutional neural networks for
matching image and sentence. arXiv preprint (2015). arXiv:1504.06063

42. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

43. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling. arXiv preprint (2014). arXiv:1412.3555

44. Gordo, A., Gaidon, A., Perronnin, F.: Deep fishing: Gradient features from deep
nets. In: Proceedings of the British Machine Vision Conference 2015, BMVC 2015,
Swansea, UK, September 7–10, 2015, pp. 111.1–111.12 (2015)

45. Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: Cnn archi-
tecture for weakly supervised place recognition. In: The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2016

46. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual
recognition. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 1449–1457 (2015)

47. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image cate-
gorization. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2007. pp. 1–8. IEEE (2007)

48. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1 48

49. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: 2013
IEEE International Conference on Computer Vision (ICCV), pp. 3551–3558. IEEE
(2013)

50. Vinod, H.: Canonical ridge and econometrics of joint production. J. Econometrics
4(2), 147–166 (1976)

51. Quasthoff, U., Richter, M., Biemann, C.: Corpus portal for search in monolin-
gual corpora. In: Proceedings of the Fifth International Conference on Language
Resources and Evaluation, vol. 17991802 (2006)

http://arxiv.org/abs/1406.5679
http://arxiv.org/abs/1412.6632
http://arxiv.org/abs/1411.5654
http://arxiv.org/abs/1411.4555
http://arxiv.org/abs/1504.06063
http://arxiv.org/abs/1412.3555
http://dx.doi.org/10.1007/978-3-319-10602-1_48


850 G. Lev et al.

52. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV
2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15561-1 11

53. Peng, X., Wang, L., Wang, X., Qiao, Y.: Bag of visual words and fusion methods
for action recognition: Comprehensive study and good practice. arXiv preprint
(2014). arXiv:1405.4506

54. Lan, Z., Lin, M., Li, X., Hauptmann, A.G., Raj, B.: Beyond gaussian pyra-
mid: Multi-skip feature stacking for action recognition. arXiv preprint (2014).
arXiv:1411.6660

55. Mao, J., Xu, W., Yang, Y., Wang, J., Yuille, A.L.: Explain images with multimodal
recurrent neural networks. arXiv preprint (2014). arXiv:1410.1090

56. Donahue, J., Hendricks, L.A., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Saenko, K., Darrell, T.: Long-term recurrent convolutional networks for visual
recognition and description. arXiv preprint (2014). arXiv:1411.4389

57. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J.,
Lazebnik, S.: Flickr30k entities: Collecting region-to-phrase correspondences for
richer image-to-sentence models. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 2641–2649 (2015)

58. Hodosh, P., Hockenmaier, J.: From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descriptions. Trans. Assoc.
Comput. Linguist. 2, 67–78 (2014)

59. Jain, M., van Gemert, J.C., Mensink, T., Snoek, C.G.M.: Objects2action: classify-
ing and localizing actions without any video example. In: Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, December 2015

60. Xu, X., Hospedales, T.M., Gong, S.: Semantic embedding space for zero-shot action
recognition. CoRR abs/1502.01540 (2015)

http://dx.doi.org/10.1007/978-3-642-15561-1_11
http://dx.doi.org/10.1007/978-3-642-15561-1_11
http://arxiv.org/abs/1405.4506
http://arxiv.org/abs/1411.6660
http://arxiv.org/abs/1410.1090
http://arxiv.org/abs/1411.4389

	RNN Fisher Vectors for Action Recognition and Image Annotation
	1 Introduction
	2 Previous Work
	2.1 Baseline Pooling Methods

	3 RNN-Based Fisher Vector
	3.1 Normalization of the RNN-FV

	4 Action Recognition Pipeline
	4.1 Visual Features
	4.2 Network Structure
	4.3 Training and Classification

	5 Image-Sentence Retrieval
	6 Experiments
	6.1 Action Recognition
	6.2 Image-Sentence Retrieval

	7 Conclusions
	References


