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Abstract. We describe the first method to automatically estimate the
3D pose of the human body as well as its 3D shape from a single uncon-
strained image. We estimate a full 3D mesh and show that 2D joints
alone carry a surprising amount of information about body shape. The
problem is challenging because of the complexity of the human body,
articulation, occlusion, clothing, lighting, and the inherent ambiguity
in inferring 3D from 2D. To solve this, we first use a recently published
CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint
locations. We then fit (top-down) a recently published statistical body
shape model, called SMPL, to the 2D joints. We do so by minimizing
an objective function that penalizes the error between the projected 3D
model joints and detected 2D joints. Because SMPL captures correla-
tions in human shape across the population, we are able to robustly fit it
to very little data. We further leverage the 3D model to prevent solutions
that cause interpenetration. We evaluate our method, SMPLify, on the
Leeds Sports, HumanEva, and Human3.6M datasets, showing superior
pose accuracy with respect to the state of the art.

Keywords: 3D body shape · Human pose · 2D to 3D · CNN

1 Introduction

The estimation of 3D human pose from a single image is a longstanding problem
with many applications. Most previous approaches focus only on pose and ignore
3D human shape. Here we provide a solution that is fully automatic and estimates
a 3D mesh capturing both pose and shape from a 2D image. We solve the problem
in two steps. First we estimate 2D joints using a recently proposed convolutional
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neural network (CNN) called DeepCut [36]. So far CNNs have been successful
at estimating 2D human pose [20,34–36,51] but not 3D pose and shape from
one image. Consequently we add a second step, which estimates 3D pose and
shape from the 2D joints using a 3D generative model called SMPL [30]. The
overall framework, which we call “SMPLify”, fits within a classical paradigm
of bottom up estimation (CNN) followed by top down verification (generative
model). A few examples are shown in Fig. 1.

Fig. 1. Example results. 3D pose and shape estimated by our method for two images
from the Leeds Sports Pose Dataset [22]. We show the original image (left), our fitted
model (middle), and the 3D model rendered from a different viewpoint (right).

There is a long literature on estimating 3D pose from 2D joints. Unlike pre-
vious methods, our approach exploits a high-quality 3D human body model that
is trained from thousands of 3D scans and hence captures the statistics of shape
variation in the population as well as how people deform with pose. Here we use
the SMPL body model [30]. The key insight is that such a model can be fit to
very little data because it captures so much information of human body shape.

We define an objective function and optimize pose and shape directly, so
that the projected joints of the 3D model are close to the 2D joints estimated by
the CNN. Remarkably, fitting only 2D joints produces plausible estimates of 3D
body shape. We perform a quantitative evaluation using synthetic data and find
that 2D joint locations contain a surprising amount of 3D shape information.

In addition to capturing shape statistics, there is a second advantage to
using a generative 3D model: it enables us to reason about interpenetration.
Most previous work in the area has estimated 3D stick figures from 2D joints.
With such models, it is easy to find poses that are impossible because the body
parts would intersect in 3D. Such solutions are very common when inferring 3D
from 2D because the loss of depth information makes the solution ambiguous.

Computing interpenetration of a complex, non-convex, articulated object like
the body, however, is expensive. Unlike previous work [14,15], we provide an
interpenetration term that is differentiable with respect to body shape and pose.
Given a 3D body shape we define a set of “capsules” that approximates the body
shape. Crucially, capsule dimensions are linearly regressed from model shape
parameters. This representation lets us compute interpenetration efficiently. We
show that this term helps to prevent incorrect poses.
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SMPL is gender-specific; i.e. it distinguishes the shape space of females and
males. To make our method fully automatic, we introduce a gender-neutral
model. If we do not know the gender, we fit this model to images. If we know
the gender, then we use a gender-specific model for better results.

To deal with pose ambiguity, it is important to have a good pose prior.
Many recent methods learn sparse, over-complete dictionaries from the CMU
dataset [3] or learn dataset-specific priors. We train a prior over pose from SMPL
models that have been fit to the CMU mocap marker data [3] using MoSh [29].
This factors shape from pose with pose represented as relative rotations of the
body parts. We then learn a generic multi-modal pose prior from this.

We compare the method to recently published methods [4,39,58] using
the exact same 2D joints as input. We show the robustness of the app-
roach qualitatively on images from the challenging Leeds Sports Pose Dataset
(LSP) [22] (Fig. 1). We quantitatively compare the method on HumanEva-I [41]
and Human3.6M [18], finding that our method is more accurate than previous
methods.

In summary our contributions are: (1) the first fully automatic method of
estimating 3D body shape and pose from 2D joints; (2) an interpenetration
term that is differentiable with respect to shape and pose; (3) a novel objective
function that matches a 3D body model to 2D joints; (4) for research purposes,
we provide the code, 2D joints, and 3D models for all examples in the paper [1].

2 Related Work

The recovery of 3D human pose from 2D is fundamentally ambiguous and all
methods deal with this ambiguity in different ways. These include user interven-
tion, using rich image features, improving the optimization methods, and, most
commonly, introducing prior knowledge. This prior knowledge typically includes
both a “shape” prior that enforces anthropometric constraints on bone lengths
and a “pose” prior that favors plausible poses and rules out impossible ones.
While there is a large literature on estimating body pose and shape from multi-
camera images or video sequences [6,13,19,45], here we focus on static image
methods. We also focus on methods that do not require a background image for
background subtraction, but rather infer 3D pose from 2D joints.

Most methods formulate the problem as finding a 3D skeleton such that its
3D joints project to known or estimated 2D joints. Note that the previous work
often refers to this skeleton in a particular posture as a “shape”. In this work
we take shape to mean the pose-invariant surface of the human body in 3D and
distinguish this from pose, which is the articulated posture of the limbs.

3D pose from 2D joints. These methods all assume known correspondence
between 2D joints and a 3D skeleton. Methods make different assumptions about
the statistics of limb-length variation. Lee and Chen [26] assume known limb
lengths of a stick figure while Taylor [48] assumes the ratios of limb lengths are
known. Parameswaran and Chellappa [33] assume that limb lengths are isomet-
ric across people, varying only in global scaling. Barron and Kakadiaris [7] build
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a statistical model of limb-length variation from extremes taken from anthropo-
metric tables. Jiang [21] takes a non-parametric approach, treating poses in the
CMU dataset [3] as exemplars.

Recent methods typically use the CMU dataset and learn a statistical model
of limb lengths and poses from it. For example, both [11,39] learn a dictionary
of poses but use a fairly weak anthropometric model on limb lengths. Akhter
and Black [4] take a similar approach but add a novel pose prior that captures
pose-dependent joint angle limits. Zhou et al. [58] also learn a shape dictionary
but they create a sparse basis that also captures how these poses appear from
different camera views. They show that the resulting optimization problem is
easier to solve. Pons-Moll et al. [37] take a different approach: they estimate
qualitative “posebits” from mocap and relate these to 3D pose.

The above approaches have weak, or non-existent, models of human shape. In
contrast, we argue that a stronger model of body shape, learned from thousands
of people, captures the anthropometric constraints of the population. Such a
model helps reduce ambiguity, making the problem easier. Also, because we
have 3D shape, we can model interpenetration, avoiding impossible poses.

3D pose and shape. There is also work on estimating 3D body shape from
single images. This work often assumes good silhouettes are available. Sigal et
al. [42] assume that silhouettes are given, compute shape features from them,
and then use a mixture of experts to predict 3D body pose and shape from
the features. Like us they view the problem as a combination of a bottom-up
discriminative method and a top-down generative method. In their case the
generative model (SCAPE [5]) is fit to the image silhouettes. Their claim that
the method is fully automatic is only true if silhouettes are available, which is
often not the case. They show a limited set of results using perfect silhouettes
and do not evaluate pose accuracy.

Guan et al. [14,15] take manually marked 2D joints and first estimate the
3D pose of a stick figure using classical methods [26,48]. They use the pose
of this stick figure to pose a SCAPE model, project the model into the image
and use this to segment the image with GrabCut [40]. They then fit the SCAPE
shape and pose to a variety of features including the silhouette, image edges, and
shading cues. They assume the camera focal length is known or approximated,
the lighting is roughly initialized, and that the height of the person is known.
They use an interpenetration term that models each body part by its convex hull.
They then check each of the extremities to see how many other body points fall
inside it and define a penalty function that penalizes interpenetration. This does
not admit easy optimization.

In similar work, Hasler et al. [16] fit a parametric body model to silhouettes.
Typically, they require a known segmentation and a few manually provided cor-
respondences. In cases with simple backgrounds, they use four clicked points
on the hands and feet to establish a rough fit and then use GrabCut to seg-
ment the person. They demonstrate this on one image. Zhou et al. [57] also fit
a parametric model of body shape and pose to a cleanly segmented silhouette
using significant manual intervention. Chen et al. [9] fit a parametric model of
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body shape and pose to manually extracted silhouettes; they do not evaluate
quantitative accuracy.

To our knowledge, no previous method estimates 3D body shape and pose
directly from only 2D joints. A priori, it may seem impossible, but given a good
statistical model, our approach works surprisingly well. This is enabled by our use
of SMPL [30], which unlike SCAPE, has explicit 3D joints; we fit their projection
directly to 2D joints. SMPL defines how joint locations are related to the 3D
surface of the body, enabling inference of shape from joints. Of course this will
not be perfect as a person can have the exact same limb lengths with varying
weight. SMPL, however, does not represent anatomical joints, rather it represents
them as a function of the surface vertices. This couples joints and shape during
model training and means that solving for them together is important.

Making it automatic. None of the methods above are automatic, most assume
known correspondences, and some involve significant manual intervention. There
are, however, a few methods that try to solve the entire problem of inferring 3D
pose from a single image.

Simo-Serra et al. [43,44] take into account that 2D part detections are unre-
liable and formulate a probabilistic model that estimates the 3D pose and the
matches to the 2D image features together. Wang et al. [52] use a weak model
of limb lengths [26] but exploit automatically detected joints in the image and
match to them robustly using an L1 distance. They use a sparse basis to repre-
sent poses as in other methods.

Zhou et al. [56] run a 2D pose detector [54] and then optimize 3D pose,
automatically rejecting outliers. Akhter and Black [4] run a different 2D detector
[23] and show results for their method on a few images. Both methods are only
evaluated qualitatively. Yasin et al. [55] take a non-parametric approach in which
the detected 2D joints are used to look up the nearest 3D poses in a mocap
dataset. Kostrikov and Gall [24] combine regression forests and a 3D pictorial
model to regress 3D joints. Ionescu et al. [17] train a method to predict 3D pose
from images by first predicting body part labels; their results on Human3.6M are
good but they do not test on complex images where background segmentation is
not available. Kulkarni et al. [25] use a generative model of body shape and pose,
together with a probabilistic programming framework to estimate body pose
from single images. They deal with visually simple images, where the person is
well centered and cropped, and do not evaluate 3D pose accuracy.

Recent advances in deep learning are producing methods for estimating 2D
joint positions accurately [36,53]. We use the recent DeepCut method [36], which
gives remarkably good 2D detections. Recent work [59] uses a CNN to esti-
mate 2D joint locations and then fit 3D pose to these using a monocular video
sequence. They do not show results for single images.

None of these automated methods estimate 3D body shape. Here we demon-
strate a complete system that uses 2D joint detections and fits pose and shape
to them from a single image.
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3 Method

Figure 2 shows an overview of our system. We take a single input image, and use
the DeepCut CNN [36] to predict 2D body joints, Jest. For each 2D joint i the
CNN provides a confidence value, wi. We then fit a 3D body model such that
the projected joints of the model minimize a robust weighted error term. In this
work we use a skinned vertex-based model, SMPL [30], and call the system that
takes a 2D image and produces a posed 3D mesh, SMPLify.

Fig. 2. System overview. Left to right: Given a single image, we use a CNN-based
method to predict 2D joint locations (hot colors denote high confidence). We then fit
a 3D body model to this, to estimate 3D body shape and pose. Here we show a fit on
HumanEva [41], projected into the image and shown from different viewpoints. (Color
figure online)

The body model is defined as a function M(β,θ,γ), parameterized by
shape β, pose θ, and translation γ. The output of the function is a triangulated
surface, M, with 6890 vertices. Shape parameters β are coefficients of a low-
dimensional shape space, learned from a training set of thousands of registered
scans. Here we use one of three shape models: male, female, and gender-neutral.
SMPL defines only male and female models. For a fully automatic method, we
trained a new gender-neutral model using the approximately 2000 male and 2000
female body shapes used to train the gendered SMPL models. If the gender is
known, we use the appropriate model. The model used is indicated by its color:
pink for gender-specific and light blue for gender-neutral.

The pose of the body is defined by a skeleton rig with 23 joints; pose para-
meters θ represent the axis-angle representation of the relative rotation between
parts. Let J(β) be the function that predicts 3D skeleton joint locations from
body shape. In SMPL, joints are a sparse linear combination of surface ver-
tices or, equivalently, a function of the shape coefficients. Joints can be put in
arbitrary poses by applying a global rigid transformation. In the following, we
denote posed 3D joints as Rθ(J(β)i), for joint i, where Rθ is the global rigid
transformation induced by pose θ. SMPL defines pose-dependent deformations;
for the gender-neutral shape model, we use the female deformations, which are
general enough in practice. Note that the SMPL model and DeepCut skeleton
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have slightly different joints. We associate DeepCut joints with the most simi-
lar SMPL joints. To project SMPL joints into the image we use a perspective
camera model, defined by parameters K.

3.1 Approximating Bodies with Capsules

We find that previous methods produce 3D poses that are impossible due to
interpenetration between body parts. An advantage of our 3D shape model is
that it allows us to detect and prevent this. Computing interpenetration however
is expensive for complex, non-convex, surfaces like the body. In graphics it is
common to use proxy geometries to compute collisions efficiently [10,50]. We
follow this approach and approximate the body surface as a set of “capsules”
(Fig. 3). Each capsule has a radius and an axis length.

We train a regressor from model shape parameters to capsule parameters
(axis length and radius), and pose the capsules according to Rθ, the rotation
induced by the kinematic chain. Specifically, we first fit 20 capsules, one per
body part, excluding fingers and toes, to the body surface of the unposed training
body shapes used to learn SMPL [30]. Starting from capsules manually attached
to body joints in the template, we perform gradient-based optimization of their
radii and axis lengths to minimize the bidirectional distance between capsules
and body surface. We then learn a linear regressor from body shape coefficients,
β, to the capsules’ radii and axis lengths using cross-validated ridge regression.
Once the regressor is trained, the procedure is iterated once more, initializing the
capsules with the regressor output. While previous work uses approximations to
detect interpenetrations [38,46], we believe this regression from shape parameters
is novel.

Fig. 3. Body shape approximation with capsules. Shown for two subjects. Left
to right: original shape, shape approximated with capsules, capsules reposed. Yellow
point clouds represent actual vertices of the model that is approximated.

3.2 Objective Function

To fit the 3D pose and shape to the CNN-detected 2D joints, we minimize an
objective function that is the sum of five error terms: a joint-based data term,
three pose priors, and a shape prior; that is E(β,θ) =

EJ(β,θ;K,Jest) + λθEθ(θ) + λaEa(θ) + λspEsp(θ;β) + λβEβ(β) (1)
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where K are camera parameters and λθ, λa, λsp λβ are scalar weights.
Our joint-based data term penalizes the weighted 2D distance between esti-

mated joints, Jest, and corresponding projected SMPL joints:

EJ (β,θ;K,Jest) =
∑

joint i

wiρ(ΠK(Rθ(J(β)i)) − Jest,i) (2)

where ΠK is the projection from 3D to 2D induced by a camera with parameters
K. We weight the contribution of each joint by the confidence of its estimate,
wi, provided by the CNN. For occluded joints, this value is usually low; pose in
this case is driven by our pose priors. To deal with noisy estimates, we use a
robust differentiable Geman-McClure penalty function, ρ, [12].

We introduce a pose prior penalizing elbows and knees that bend unnaturally:

Ea(θ) =
∑

i

exp(θi), (3)

where i sums over pose parameters (rotations) corresponding to the bending of
knees and elbows. The exponential strongly penalizes rotations violating natural
constraints (e.g. elbow and knee hyperextending). Note that when the joint is
not bent, θi is zero. Negative bending is natural and is not penalized heavily
while positive bending is unnatural and is penalized more.

Most methods for 3D pose estimation use some sort of pose prior to favor
probable poses over improbable ones. Like many previous methods we train our
pose prior using the CMU dataset [3]. Given that poses vary significantly, it is
important to represent the multi-modal nature of the data, yet also keep the
prior computationally tractable. To build a prior, we use poses obtained by fit-
ting SMPL to the CMU marker data using MoSh [29]. We then fit a mixture
of Gaussians to approximately 1 million poses, spanning 100 subjects. Using
the mixture model directly in our optimization framework is problematic com-
putationally because we need to optimize the negative logarithm of a sum. As
described in [32], we approximate the sum in the mixture of Gaussians by a max
operator:

Eθ(θ) ≡ − log
∑

j

(gjN (θ;μθ,j ,Σθ,j)) ≈ − log(maxj(cgjN (θ;μθ,j ,Σθ,j))) (4)

= minj (− log(cgjN (θ;μθ,j ,Σθ,j))) (5)

where gj are the mixture model weights of N = 8 Gaussians, and c a positive
constant required by our solver implementation. Although Eθ is not differentiable
at points where the mode with minimum energy changes, we approximate its
Jacobian by the Jacobian of the mode with minimum energy in the current
optimization step.

We define an interpenetration error term that exploits the capsule approx-
imation introduced in Sect. 3.1. We relate the error term to the intersection
volume between “incompatible” capsules (i.e. capsules that do not intersect in
natural poses). Since the volume of capsule intersections is not simple to com-
pute, we further simplify our capsules into spheres with centers C(θ,β) along the
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capsule axis and radius r(β) corresponding to the capsule radius. Our penalty
term is inspired by the mixture of 3D Gaussians model in [47]. We consider a
3D isotropic Gaussian with σ(β) = r(β)

3 for each sphere, and define the penalty
as a scaled version of the integral of the product of Gaussians corresponding to
“incompatible” parts

Esp(θ;β) =
∑

i

∑

j∈I(i)

exp

(
||Ci(θ,β) − Cj(θ,β)||2

σ2
i (β) + σ2

j (β)

)
(6)

where the summation is over all spheres i and I(i) are the spheres incompatible
with i. Note that the term penalizes, but does not strictly avoid, interpenetra-
tions. As desired, however, this term is differentiable with respect to pose and
shape. Note also that we do not use this term in optimizing shape since this
would bias the body shape to be thin to avoid interpenetration.

We use a shape prior Eβ(β), defined as

Eβ(β) = βT Σ−1
β β (7)

where Σ−1
β is a diagonal matrix with the squared singular values estimated via

Principal Component Analysis from the shapes in the SMPL training set. Note
that the shape coefficients β are zero-mean by construction.

3.3 Optimization

We assume that camera translation and body orientation are unknown; we
require, however, that the camera focal length or its rough estimate is known. We
initialize the camera translation (equivalently γ) by assuming that the person is
standing parallel to the image plane. Specifically, we estimate the depth via the
ratio of similar triangles, defined by the torso length of the mean SMPL shape
and the predicted 2D joints. Since this assumption is not always true, we further
refine this estimate by minimizing EJ over the torso joints alone with respect
to camera translation and body orientation; we keep β fixed to the mean shape
during this optimization. We do not optimize focal length, since the problem is
too unconstrained to optimize it together with translation.

After estimating camera translation, we fit our model by minimizing Eq. (1)
in a staged approach. We observed that starting with a high value for λθ and λβ

and gradually decreasing them in the subsequent optimization stages is effective
for avoiding local minima.

When the subject is captured in a side view, assessing in which direction the
body is facing might be ambiguous. To address this, we try two initializations
when the 2D distance between the CNN-estimated 2D shoulder joints is below
a threshold: first with body orientation estimated as above and then with that
orientation rotated by 180 degrees. Finally we pick the fit with lowest EJ .

We minimize Eq. (1) using Powell’s dogleg method [31], using OpenDR and
Chumpy [2,28]. Optimization for a single image takes less than 1 min on a com-
mon desktop machine.
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4 Evaluation

We evaluate the accuracy of both 3D pose and 3D shape estimation. For quanti-
tative evaluation of 3D pose, we use two publicly available datasets: HumanEva-I
[41] and Human3.6M [18]. We compare our approach to three state-of-the-art
methods [4,39,58] and also use these data for an ablation analysis. Both of the
ground truth datasets have restricted laboratory environments and limited poses.
Consequently, we perform a qualitative analysis on more challenging data from
the Leeds Sports Dataset (LSP) [22]. Evaluating shape quantitatively is harder
since there are few images with ground truth 3D shape. Therefore, we perform
a quantitative evaluation using synthetic data to evaluate how well shape can
be recovered from 2D joints corrupted by noise. For all experiments, we use 10
body shape coefficients. We tune the λi weights in Eq. (1) on the HumanEva
training data and use these values for all experiments.

4.1 Quantitative Evaluation: Synthetic Data

We sample synthetic bodies from the SMPL shape and pose space and project
their joints into the image with a known camera. We generate 1000 images for
male shapes and 1000 for female shapes, at 640 × 480 resolution.

In the first experiment, we add varying amounts of i.i.d. Gaussian noise
(standard deviation (std) from 1 to 5 pixels) to each 2D joint. We solve for pose
and shape by minimizing Eq. (1), setting the confidence weights for the joints
in Eq. (2) to 1. Figure 4 (left) shows the mean vertex-to-vertex Euclidean error
between the estimated and true shape in a canonical pose. Here we fit gender-
specific models. The results of shape estimation are more accurate than simply
guessing the average shape (red lines in the figure). This shows that joints carry
information about body shape that is relatively robust to noise.

In the second experiment, we assume that the pose is known, and try to
understand how many joints one needs to accurately estimate body shape. We
fit SMPL to ground-truth 2D joints by minimizing Eq. (2) with respect to: the
full set of 23 SMPL joints; the subset of 12 joints corresponding to torso and
limbs (excluding head, spine, hands and feet); and the 4 joints of the torso. As
above, we measure the mean Euclidean error between the estimated and true
shape in a canonical pose. Results are shown in Fig. 4 (right). The more joints
we have, the better body shape is estimated. To our knowledge, this is the first
demonstration of estimating 3D body shape from only 2D joints. Of course some
joints may be difficult to estimate reliably; we evaluate on real data below.

4.2 Quantitative Evaluation: Real Data

HumanEva-I. We evaluate pose estimation accuracy on single frames from the
HumanEva dataset [41]. Following the standard procedure, we evaluate on the
Walking and Box sequences of subjects 1, 2, and 3 from the “validation” set
[8,49]. We assume the gender is known and apply the gender-specific SMPL
models.
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Fig. 4. Evaluation on synthetic data. Left: Mean vertex-to-vertex Euclidean error
between the estimated and true shape in a canonical pose, when Gaussian noise is
added to 2D joints. Dashed and dotted lines represent the error obtained by guessing
the mean shape for males and females, respectively. Right: Error between estimated
and true shape when considering only a subset of joints during fitting.

Many methods train sequence-specific pose priors for HumanEva; we do not
do this. We do, however, tune our weights on HumanEva training set and learn a
mapping from the SMPL joints to the 3D skeletal representation of HumanEva.
To that end we fit the SMPL model to the raw mocap marker data in the training
set using MoSh to estimate body shape and pose. We then train a linear regressor
from body vertices (equivalently shape parameters β) to the HumanEva 3D
joints. This is done once on training data for all subjects together and kept
fixed. We use the regressed 3D joints as our output for evaluation.

We compare our method against three state-of-the-art methods [4,39,58],
which, like us, predict 3D pose from 2D joints. We report the average Euclid-
ean distance between the ground-truth and predicted 3D joint positions. Before
computing the error we apply a similarity transform to align the reconstructed
3D joints to a common frame via the Procrustes analysis on every frame. Input
to all methods is the same: 2D joints detected by DeepCut [36]. Recall that
DeepCut has not been trained on either dataset used for quantitative evalua-
tion. Note that these approaches have different skeletal structures of 3D joints.
We evaluate on the subset of 14 joints that semantically correspond across all
representations. For this dataset we use the ground truth focal length.

Table 1 shows quantitative results where SMPLify achieves the lowest errors
on all sequences. While the recent method of Zhou et al. [58] is very good, we
argue that our approach is conceptually simpler and more accurate. We simply
fit the body model to the 2D data and let the model constrain the solution. Not
only does this “lift” the 2D joints to 3D, but SMPLify also produces a skinned
vertex-based model that can be immediately used in a variety of applications.

To gain insight about the method, we perform an ablation study (Table 2)
where we evaluate different pose priors and the interpenetration penalty term.
First we replace the mixture-model-based pose prior with Eθ′ , which uses a single
Gaussian trained from the same data. This significantly degrades performance.
Next we add the interpenetration term, but this does not have a significant
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Table 1. HumanEva-I results. 3D joint errors in mm.

Method: Walking Boxing Mean Median

S1 S2 S3 S1 S2 S3

Akhter and Black [4] 186.1 197.8 209.4 165.5 196.5 208.4 194.4 171.2

Ramakrishna et al. [39] 161.8 182.0 188.6 151.0 170.4 158.3 168.4 145.9

Zhou et al. [58] 100.0 98.89 123.1 112.5 118.6 110.0 110.0 98.9

SMPLify 73.3 59.0 99.4 82.1 79.2 87.2 79.9 61.9

impact on the 3D joint error. However, qualitatively, we find that it makes a
difference in more complex datasets with varied poses and viewing angles as
illustrated in Fig. 5.

Human3.6M. We perform the same analysis on the Human 3.6M dataset [18],
which has a wider range of poses. Following [27,49,59], we report results on
sequences of subjects S9 and S11. We evaluate on five different action sequences
captured from the frontal camera (“cam3”) from trial 1. These sequences consist
of 2000 frames on average and we evaluate on all frames individually. As above,
we use training mocap and MoSh to train a regressor from the SMPL body shape
to the 3D joint representation used in the dataset. Other than this we do not use
the training set in any manner. We assume that the focal length as well as the

Fig. 5. Interpenetration error term. Examples where the interpenetration term
avoids unnatural poses. For each example we show, from left to right, CNN estimated
joints, and the result of the optimization without and with interpenetration error term.

Table 2. HumanEva-I ablation study. 3D joint errors in mm. The first row drops
the interpenetration term and replaces the pose prior with a uni-modal prior. The
second row keeps the uni-modal pose prior but adds the interpenetration penalty. The
third row shows the proposed SMPLify model.

Method: Walking Boxing Mean Median

S1 S2 S3 S1 S2 S3

Eβ + EJ + Eθ′ 98.4 79.6 117.8 105.9 98.5 122.5 104.1 82.3

Eβ + EJ + Eθ′ + Esp 97.9 79.4 116.0 105.8 98.5 122.3 103.7 82.3

SMPLify 73.3 59.0 99.4 82.1 79.2 87.2 79.9 61.9
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Table 3. Human 3.6M. 3D joint errors in mm.

Directions Discussion Eating Greeting Phoning Photo Posing Purchases Sit

Akhter and

Black [4]

199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7

Ramakrishna et

al. [39]

137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6

Zhou et al. [58] 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1

SMPLify 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3

SitDown Smoking Waiting WalkDog Walk WalkTogether Mean Median

Akhter and

Black [4]

173.7 177.8 181.9 176.2 198.6 192.7 181.1 158.1

Ramakrishna et

al. [39]

175.6 160.4 161.7 150.0 174.8 150.2 157.3 136.8

Zhou et al. [58] 137.5 106.0 102.2 106.5 110.4 115.2 106.7 90.0

SMPLify 137.3 83.4 77.3 79.7 86.8 81.7 82.3 69.3

Fig. 6. Leeds Sports Dataset. Each sub-image shows the original image with the 2D
joints fit by the CNN. To the right of that is our estimated 3D pose and shape and the
model seen from another view. The top row shows examples using the gender-neutral
body model; the bottom row show fits using the gender-specific models.

distortion coefficients are known since the subjects are closer to the borders of the
image. Evaluation on Human3.6 M is shown in Table 3 where our method again
achieves the lowest average 3D error. While not directly comparable, Ionescu
et al. [17] report an error of 92 mm on this dataset.

Fig. 7. LSP Failure cases. Some representative failure cases: misplaced limbs, limbs
matched with the limbs of other people, depth ambiguities.

4.3 Qualitative Evaluation

Here we apply SMPLify to images from the Leeds Sports Pose (LSP) dataset
[22]. These are much more complex in terms of pose, image resolution, clothing,
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illumination, and background than HumanEva or Human3.6M. The CNN, how-
ever, still does a good job of estimating the 2D poses. We only show results on the
LSP test set. Figure 6 shows several representative examples where the system
works well. The figure shows results with both gender-neutral and gender-specific
SMPL models; the choice has little visual effect on pose. For the gender-specific
models, we manually label the images according to gender.

Figure 8 visually compares the results of the different methods on a few
images from each of the datasets. The other methods suffer from not having
a strong model of how limb lengths are correlated. LSP contains complex poses
and these often show the value of the interpenetration term. Figure 5 shows two
illustrative examples. Figure 7 shows a few failure cases on LSP. Some of these
result from CNN failures where limbs are mis-detected or are matched with
those of other people. Other failures are due to challenging depth ambiguities.
See Supplementary Material [1] for more results.

Fig. 8. Qualitative comparison. From top to bottom: Input image. Akhter and
Black [4]. Ramakrishna et al. [39]. Zhou et al. [58]. SMPLify.

5 Conclusions

We have presented SMPLify, a fully automated method for estimating 3D body
shape and pose from 2D joints in single images. SMPLify uses a CNN to estimate
2D joint locations, and then fits a 3D human body model to these joints. We
use the recently proposed SMPL body model, which captures correlations in
body shape, highly constraining the fitting process. We exploit this to define an
objective function and optimize pose and shape directly by minimizing the error
between the projected joints of the model and the estimated 2D joints. This gives
a simple, yet very effective, solution to estimate 3D pose and approximate shape.
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The resulting model can be immediately posed and animated. We extensively
evaluate our method on various datasets and find that SMPLify outperforms
state-of-the-art methods.

Our formulation opens many directions for future work. In particular, body
shape and pose can benefit from other cues such as silhouettes and we plan to
extend the method to use multiple camera views and multiple frames. Addition-
ally a facial pose detector would improve head pose estimation and automatic
gender detection would allow the use of the appropriate gender-specific model. It
would be useful to train CNNs to predict more than 2D joints, such as features
related directly to 3D shape. Our method provides approximate 3D meshes in
correspondence with images, which could be useful for such training. The method
can be extended to deal with multiple people in an image; having 3D meshes
should help with reasoning about occlusion.

Acknowledgements. We thank M. Al Borno for inspiring the capsule representation,
N. Mahmood for help with the figures, I. Akhter for helpful discussions.
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