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Abstract. Heterogeneous domain adaptation (HDA) addresses the task
of associating data not only across dissimilar domains but also described
by different types of features. Inspired by the recent advances of neural
networks and deep learning, we propose Transfer Neural Trees (TNT)
which jointly solves cross-domain feature mapping, adaptation, and clas-
sification in a NN-based architecture. As the prediction layer in TNT, we
further propose Transfer Neural Decision Forest (Transfer-NDF), which
effectively adapts the neurons in TNT for adaptation by stochastic prun-
ing. Moreover, to address semi-supervised HDA, a unique embedding loss
term for preserving prediction and structural consistency between target-
domain data is introduced into TNT. Experiments on classification tasks
across features, datasets, and modalities successfully verify the effective-
ness of our TNT.

Keywords: Transfer learning · Domain adaptation · Neural Decision
Forest · Neural network

1 Introduction

Domain adaptation (DA) deals with the learning tasks from data across different
domains, which aims to adapt the information (e.g., labeled data) observed from
different domains so that the instances in the target domain of interest can be
properly described/classified [1]. A large number of computer vision and pattern
recognition applications (e.g., cross-domain object recognition [2–5] and cross-
language text categorization [6,7]) can be viewed as DA problems.
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Previously, approaches like [8–13] focus on associating cross-domain data
described by the same type of features, which is referred to as homogeneous
domain adaptation task. On the other hand, heterogeneous domain adaptation
(HDA) particularly address the task of associating data not only across different
domains but also in terms of distinct feature representations [14–24]. To solve
the challenging HDA problems, existing approaches typically choose to deter-
mine a domain-invariant feature space, or derive a proper feature mapping for
transforming cross-domain data for adaptation purposes.

Recent advances in neural networks (NN) and deep learning have shown
promising results on a variety of real-world applications, including domain adap-
tation [10,25–28]. However, most NN-based works for DA only consider homoge-
neous settings [10,25–27]. While a recent work of [28] applied a NN architecture
for associating heterogenous data across domains, cross-domain data correspon-
dence information (i.e., co-occurrence data) is required for learning their NN.
This requirement would limit its applicability for real-world HDA problems.

In this paper, we propose Transfer Neural Trees (TNT) as a novel NN-based
architecture, which can be applied for relating and recognizing heterogeneous
cross-domain data. In addition to labeled source and target-domain data, our
TNT further observes unlabeled target-domain ones during adaptation, and
solves semi-supervised HDA problems with improved performance. Our TNT
consists of the layers of feature mapping and prediction. Without observing cor-
respondence information across domains, the former layer is able to derive a
domain-invariant intermediate representation, while a novel learner of Transfer
Neural Decision Forest (Transfer-NDF) is obtained as the latter layer for joint
adaptation and classification.

The contributions of our TNT are highlighted as follow:

• We are the first to advance neural network architectures for semi-supervised
HDA, without the use of data correspondence information across domains
during learning and adaptation.

• By introducing stochastic pruning, our proposed Transfer-NDF as the pre-
diction layer in TNT is able to adapt representative neurons for relating
cross-domain data.

• We uniquely advocate an embedding loss in the layer of feature mapping,
which preserves the prediction and structural consistency between target-
domain instances for learning TNT in a semi-supervised fashion.

2 Related Work

Depending on cross-domain data described by the same/distinct types of fea-
tures, homogeneous/heterogenous domain adaptation (DA) aims at associating
data across domains, with the goal of bridging the knowledge between source and
target domains for solving the learning tasks. When it comes to the availability
of labeled instances in the target domain, one can solve homogeneous DA under
supervised [8], semi-supervised [9,13], or unsupervised settings [10–12].
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To eliminate the domain difference, existing DA approaches either derive
a domain-invariant feature subspace [8–11] for representing cross-domain data,
or learn a transformation for mapping such data [12,13]. A variety of pattern
recognition tasks like object classification [11–13], text categorization [10], or
speech tagging [8,9] benefit from the recent advances of DA.

When cross-domain data are represented by different types of features, the
above techniques cannot be easily extended for solving such heterogeneous
domain adaptation (HDA) tasks. With the domain mismatch due to differences
in terms of both data distributions and feature dimensions, it is necessary for
HDA to at least obtain a limited amount of label information in the target
domain, so that the adaptation across heterogeneous domains can be realized.
Depending on the availability of labeled/unlabeled target-domain data, HDA
approaches can be divided into supervised and semi-supervised ones.

For supervised HDA [14–19], only labeled source and (a limited amount
of) target-domain data are presented during training. For example, Shi et al.
[14] selected a fixed number of source-domain instances to perform heteroge-
neous spectral mapping (HeMap) for relating cross-domain data. Kulis et al.
[15] proposed asymmetric regularized cross-domain transformation (ARC-t),
which maximizes similarities on cross-domain data with identical labels. With
the goal of preserving label and structure information, Wang and Mahadevan
[16] solved HDA by aligning manifolds (DAMA). Inspired by [8], Duan et al.
[17] proposed heterogeneous features augmentation (HFA) to perform common-
feature-subspace learning, in which SVM classifiers were simultaneously derived.
Hoffman et al. [18] presented a max-margin domain transformation (MMDT) to
adapt SVM classifiers across domains. Similarly, Zhou et al. [19] considered a
sparse heterogeneous feature representation (SHFR) algorithm, in which predic-
tive structures in target domain were sparse represented by the source ones.

In contrast to supervised HDA, semi-supervised HDA [20–24] allows
unlabeled target-domain data to be presented for learning and adaptation.
For example, Wu et al. [20] proposed an algorithm of heterogeneous trans-
fer discriminant-analysis of canonical correlations (HTDCC), which optimizes
the canonical correlations of between the observed data. Li et al. [21] extended
HFA [17] to a semi-supervised version (SHFA), with the purpose of exploiting
the prediction information of unlabeled target-domain data during the learning
process. By demonstrating a semi-supervised kernel matching for domain adap-
tation (SSKMDA), Xian and Guo [22] matched the cross-domain kernels while
jointly preserving the observed data locality information. They also proposed a
semi-supervised co-projection (SCP) in [23], with the objective of minimizing the
divergence between cross-domain features and their prediction models. Recently,
Yao et al. [24] presented the approach of semi-supervised domain adaptation with
subspace learning (SDASL), which minimizes the prediction risk while preserving
the locality structure and manifold information for HDA.

Recently, a number of researchers focus on advancing the techniques of neural
networks and deep learning for solving adaptation tasks. Inspired by [10], Tzeng
et al. [25] and Long et al. [29] utilized deep learning frameworks for matching



402 W.-Y. Chen et al.

Fig. 1. The architecture of Transfer Neural Trees (TNT), which consists of the layers
for feature mappings {FS , FT } and prediction G. To assign the labels YU for unlabeled
target-domain data XU , TNT is learned by source-domain labeled data {XS ,YS},
together with labeled data {XL,YL} and the unlabeled ones XU in the target domain.

distributions of cross-doman data. Both Ganin et al. [26] and Ajakan et al. [27]
proposed NN-based architectures which learn classifiers for discriminating data
across domains. To further handle heterogeneous cross-domain data, Shu et al.
[28] presented a deep neural network structure, while co-occurrence cross-domain
data are required for training their networks. Based on the above observation, we
propose to learn a novel NN-based framework in a semi-supervised HDA setting,
without the need of co-occurrence training data pairs.

3 Proposed Method

3.1 Notations and Problem Definition

For the sake of clarity, we first define the notations which will be used in the
paper. We have source-domain data DS = {XS ,YS} = {xs

i , y
s
i }ns

i=1 in a ds-
dimensional space, where xs

i ∈ R
ds denotes the ith source-domain instance with

the corresponding label ys
i ∈ {1, ..., C}. Note that ns is the number of source-

domain data, and C is the number of classes.
As for the target domain of dt dimensions, a number nl of labeled data DL can

be observed, while the remaining nu target-domain instances DU are unlabeled.
Thus, we have DL = {XL,YL} = {xl

i, y
l
i}nl

i=1, DU = {XU ,YU} = {xu
i , yu

i }nu
i=1,

and the target domain data is defined as DT = DL ∪DU . Note that xl
i,x

u
i ∈ R

dt

and yl
i, y

u
i ∈ {1, . . . , C}. For the task of semi-supervised heterogeneous domain

adaptation (HDA), the goal is to predict YU by observing DS ,DL, and XU with
nl � nu and ds �= dt.

3.2 Transfer Neural Trees (TNT)

Inspired by the recent advances on neural networks and deep learning [26–28]
we propose Transfer Neural Trees (TNT), which can be viewed as a neural
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network based learning framework for solving semi-supervised HDA problems.
As illustrated in Fig. 1, our TNT advocates the learning of source and target-
domain mapping FS and FT , respectively, followed by a prediction layer G for
performing joint adaptation and classification.

It is worth noting that, our TNT enforces the mapping FT to be updated
in a semi-supervised fashion (i.e., FT is learned by both labeled and unlabeled
target-domain data). And, in order to associate and recognize cross-domain data,
we propose Transfer Neural Decision Forest (Transfer-NDF) as the pre-
diction layer G in TNT. The details of each TNT component will be discussed
in the following subsections.

(i) Transfer Neural Decision Forest G. As shown in Fig. 1, G is viewed as
a prediction layer in our TNT, which is applied to adapt and recognize cross-
domain data. Instead of applying existing techniques like soft-max layers and
learning fine-tuned parameters for NN, we propose Transfer Neural Decision For-
est (Transfer-NDF) as G for TNT. Benefiting from the successful developments
of random forests and neural networks, our Transfer-NDF is designed to exhibit
capabilities in handling and discriminating data with diverse distributions.

We now briefly review Neural Decision Forests (NDF) for the sake of com-
pleteness. Viewing decision trees as a special type of NN [30], Kontschieder et al.
propose NDF and deep NDF (dNDF) for image classification [31,32]. Let dNDF
as a forest F with nF neural decision trees, and each tree T in dNDF consists
of N decision nodes and L leaf nodes (see Fig. 2(a) for example). For an input x
reaching a decision node n ∈ N with architecture weight/hyperplane θn, prob-
abilities of dn and d̄n = 1 − dn will be output to the subsequent nodes in the
following level, i.e.,

dn(x;Θ) = σ(fn(x;Θ)), (1)

with the sigmoid function σ = (1 + e−x)−1 and fn(x;Θ) = θTnx (Θ denotes the
network parameter). Thus, the probability μl(x|Θ) at leaf node l ∈ L is:

μl(x|Θ) =
∏

n∈N
dn(x;Θ)1l↙n d̄n(x;Θ)1l↘n . (2)

Note that 1l↙n and 1l↘n indicate the decision at node n when traversing a path
along T to reach the leaf node l.

In dNDF, each leaf node observes class-label distribution πl = {πl1 , . . . , πlC}
with each entry denoting the probability of taking the corresponding class. Thus,
the prediction from all leaf nodes in T is computed as:

PT[y|x, Θ,π] =
∑

l∈L
πlyμl(x|Θ). (3)

Finally, the overall prediction from the entire forest F is determined by:

PF[y|x, Θ,π] =
1

nF

∑

T∈F

PT[y|x, Θ,π]. (4)
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Fig. 2. (a) Illustration of each tree structure in dNDF and (b) visualization of dNDF
in terms of a neural network architecture.

As noted in [32], the overall objective function of dNDF is determined by the
log-loss term for the training/labeled data, i.e.,

Lp(Θ,π;x, y) =
∑

T∈F

− log(PT[y|x, Θ,π]). (5)

With stochastic routing and differentiable properties, each decision and leaf node
in dNDF can be learned via back propagation, which makes dNDF as an effective
alternative to (deep) NN when learning the network parameters.

Despite the above promising properties, dNDF cannot be easily extended for
domain adaptation tasks. This is because that, not all the leaf nodes learned by
source-domain data can generalize to describing target-domain data. More pre-
cisely, if a leaf node is seldom updated by source-domain data, the corresponding
class-label distribution might not be sufficiently representative for adaptation.

Instead of selecting a threshold to prune such leaf nodes and resulting in
a complex neural network in Fig. 2(b), we introduce a novel stochastic pruning
approach for learning our Transfer-NDF. Given an input x and network Θ, we
choose to learn and update the class-label distribution at a leaf node l by:

π
(t+1)
ly

=
1

Z
(t)
l

(pd +
∑

(x,y′)∈DS

1y=y′π
(t)
ly

μl(x|Θ)

PT[y|x, Θ,π(t)]
). (6)

In (6), μl is the probability of the input x reaching leaf node l, π
(t)
l is the derived

class-label distribution at iteration t, and PT denotes the probability of taking
class y. Note that 1 is the indicator function, and Zl is a normalizing factor
ensuring that

∑
y π

(t+1)
ly

= 1. Different from dNDF, we choose to add a small
positive pd in (6) for updating the class-label distributions of each leaf node.

We now explain why the use of (6) in our Transfer-NDF can be viewed as a
stochastic pruning technique and thus is preferable for domain adaptation. We
note that, the second term in (6) (also presented in the original dNDF definition)
counts the number of XS reaching leaf node l with decision y. If a leaf node is
only updated by few source-domain instances, the resulting distribution would
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Fig. 3. Comparisons of dNDF [32] and Transfer-NDF as the decision layer G in TNT.
Learning class-label distributions π using XS , adaptation of XL, and prediction of XU

using dNDF are shown in (a), (b), and (c), respectively. The associated processes with
Transfer-NDF are shown in (d), (e), and (f).

be sparse and with small πli values. However, the normalization process in (6)
would amplify their distribution values, as illustrated in the resulting π of the
rightmost leaf node in Fig. 3(a). When XL are taken as inputs, the prediction
loss observed from all leaf nodes would be considered as equally important when
updating TNT via back propagation. As a result, prediction of the unlabeled
ones XU would overfit the outputs from such leaf nodes (see Fig. 3(c)).

With the introduction of pd in (6), we are able to suppress the above extreme
class-label distributions at the leaf nodes with seldom updates. As illustrated in
Figs. 3(d), adding pd in (6) would turn the class-label distributions of such nodes
close to uniform distribution after normalization. Thus, as depicted in Figs. 3(e),
no strong prediction results can be inferred by XL reaching such leaf nodes. This
allows the prediction of XU to be dominated by the leaf nodes with sufficient
representation ability only (see Fig. 3(f)). It is worth repeating that, with this
stochastic pruning process for constructing TNT, we do not need to carefully
select and disregard particular nodes for adaptation purposes.

(ii) Feature Mapping FS and FT . As illustrated in Fig. 1, FS and FT in our
TNT are neural network based structures which map source and target-domain
data for representation learning. Once the domain-invariant feature representa-
tion is derived, the prediction layer G (i.e., Transfer-NDF) will be applied for
joint adaptation and classification. While FS and FT share the same goal of
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learning cross-domain feature representation, we need to derive these two map-
pings separately using the observed data in the associated domain. Moreover,
when learning FT , we will utilize both labeled and unlabeled target-domain data
for learning our TNT in a semi-supervised setting.

In our work, we apply hyperbolic tangent as the activation function for FS .
When observing the source-domain data as inputs, we have (5) as the objective
function with back propagation to update FS (and G), with the goal of minimiz-
ing the prediction error observed from all the leaf nodes. Similar remarks can be
applied to the update of FT using labeled target-domain data XL.

However, due to the lack of label information, we cannot apply (5) for learning
FT with unlabeled target-domain data XU . In our work, we advocate to preserve
the prediction and structural consistency between XL and XU , and propose to
enforce an embedding loss term Le defined as follows:

Le(Θ,π;x, ỹ) =
∑

x∈{XL,XU},T∈F

−PT[ỹ|x, Θ,π]
PF[ỹ|x, Θ,π]
PF[ỹ|Θ,π]

,

PF[ỹ|Θ,π] =
1

nl + nu

∑

x∈{XL,XU}
PF[ỹ|x, Θ,π].

(7)

In (7), ỹ denotes the output labels of inputs x ∈ {XL,XU}, and PF[ỹ|Θ,π] is
viewed as a normalization term. We can see that, minimizing this embedding
loss term Le is equivalent to maximizing the prediction consistency between the
output of each tree PT[ỹ|x, Θ,π] and that of the decision forests PF[ỹ|x, Θ,π].
By performing adaptation and classification using the prediction layer G in our
TNT, the above process further implies that the structural consistency between
XL and XU can be preserved.

It is worth noting that, when updating FT , the decision layer G (i.e., Transfer-
NDF) learned from source-domain data is remained fixed. This is to enforce and
to adapt G for recognizing target-domain data. The details of the above learning
process will be discussed in the next subsection.

3.3 Learning of TNT

(i) Learning from Source-Domain Data. When observing source-domain
data DS = {XS ,YS} for learning our TNT, both mapping FS and the decision
layer G (i.e., Transfer-NDF) will be updated by:

min
FS ,G

∑

(x,y)∈DS

Lp(Θ,π;x, y). (8)

As determined in (5), Lp returns the prediction loss of the input labeled data.
We take the derivative of Lp with respect to Θ, and apply back propagation to
update the architectures of FS and G:

∂Lp

∂Θ
(Θ,π;x, y) =

∑

n∈N

∂Lp(Θ,π;x, y)
∂fn(F(x), Θ)

∂fn(F(x), Θ)
∂Θ

, (9)
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where F indicates FS or FT , and we have

∂fn(F(x), Θ)
∂Θ

=
∂θTnF(x)

∂Θ
= F(x) and

∂Lp(Θ,π;x, y)
∂fn(F(x), Θ)

=
∑

l∈L 1l↘ndn(x;Θ)πlyμl(x|Θ) − 1l↙nd̄n(x;Θ)πlyμl(x|Θ)
PT[y|x, Θ,π]

.

(10)
The details of the above derivations can be found in [32].

(ii) Learning from Target-Domain Data. Once FS and G are obtained, we
have XL and XU as the target-domain inputs for deriving FT . Recall that G is
only updated by source-domain data. Since it is utilized to adapt target-domain
data, it would remain fixed when we learn the mapping FT .

For the mapping FT , we choose to solve the following optimization task:

min
FT

∑

(x,y)∈DL

Lp(Θ,π;x, y) + λ
∑

ỹ

∑

x∈{XL,XU}
Le(Θ,π;x, ỹ). (11)

Note that the first term in (11) is in the same formulation as (8), which only
calculates the loss observed from the labeled target-domain data XL. As intro-
duced in Sect. 3.2, the second term Le is the embedding loss term determined
in (7) (with ỹ denoting the predicted labels). As discussed earlier, this Le term
enforces prediction/structural consistency between target-domain data, so that
semi-supervised HDA can be addressed accordingly.

In (11), we have parameter λ regularizing the embedding loss term. As sug-
gested by[26], we gradually increase the value of λ during iterative updates. This
is because that the loss produced by XL in early iterations are not sufficiently
reliable, and thus we do not emphasize the feedback of Le in the early stage of
our TNT derivation.

To update FT via back propagation, we also take the derivatives of Lp and
Le with respect to Θ. While the derivative of Lp is in the same form as (9), that
of Le needs additional efforts to calculate its partial derivative with respect to
fn (see Supplementary for detailed derivations), i.e.,

∂Le(Θ,π;x, ỹ)
∂fn(F(x);Θ)

=
∂Le(Θ,π;x, ỹ)
∂PT[ỹ|x, Θ,π]

∂PT[ỹ|x, Θ,π]
∂fn(F(x);Θ)

≈ PF[ỹ|x, Θ,π]
PF[ỹ|Θ,π]

∑

l∈L
1l↘ndn(x;Θ)πlyμl(x|Θ) − 1l↙nd̄n(x;Θ)πlyμl(x|Θ).

(12)
It is worth noting that, despite the learning of FT enforces the prediction

consistency between target-domain data, the diversity of all trees in Transfer-
NDF G can be preserved. This is because that the prediction layer G in TNT is
fixed when learning FT . Thus, the resulting adaptation/recognition performance
would not be affected.



408 W.-Y. Chen et al.

Fig. 4. Cross-domain datasets: Caltech-256, Office, NUS-WIDE and ImageNet.
Note that we apply Caltech-256 and Office for cross-domain object recognition, and
we perform translated learning using NUS-WIDE and ImageNet.

4 Experiment

4.1 Datasets and Settings

We consider cross-domain classification tasks in our experiments. We first
address cross-domain object recognition problems using the datasets of Office
+ Caltech-256 datasets [2,33]. The former is composed of object images of 31
categories, collected from three sources: Amazon (A), Webcam (W) and DSLR
(D). On the other hand, Caltech-256 contains 256 object categories also col-
lected from the Internet. Among these objects, 10 overlapping categories are
considered for experiments. For HDA tasks, we consider two type of features:
DeCAF6 [34] and SURF [35]. The former is of 4096 dimensions, while the latter
is a 100-dimensional bag-of-word feature representation.

In additional to cross-domain object recognition, we further consider the task
of associating and recognizing text and image data, also referred to as translated
learning [6]. While most existing works on this task requires co-occurrence text
and image data for learning purposes, we will show that our TNT is able to solve
this cross-domain classification problem in a semi-supervised setting without the
need of any cross-domain co-occurrence data. Following the setting of [28], we
apply NUS-WIDE [36] and ImageNet [37] as the datasets for text and images,
respectively. NUS-WIDE contains of tag information of 269,648 Flickr images,
while ImageNet is with 5247 synsets and 3.2 million images in total. The selected
datasets and their examples images are shown in Fig. 4.

To preprocess the NUS-WIDE tag data, we pre-trained a 5-layer NN with a
soft-max layer, and take the 4th hidden layer as the 64-dimensional feature rep-
resentation. As for the ImageNet data, we follow [38] and extract their DeCAF6

features as representation. For simplicity, we choose 8 overlapping categories of
these two datasets: airplane, birds, buildings, cars, dog, fish, flowers, horses.

For fair comparisons, we fix our TNT settings for all experiments. Both FS

and FT are single-layer neural networks, which apply hyperbolic tangent as the
activation function, with the dimension of the mapping output as 100. Transfer-
NDF G is composed of 20 trees with depth of 7, and each tree randomly samples
20 dimensions from the mapping output (out of 100). And, we have pd fixed as
0.001, and λ is gradually increased from 0 to 0.1 as noted in Sect. 3.3.
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Table 1. Performance comparisons for cross-feature object recognition. Note that DS

and DT denote source (DeCAF6) and target (SURF) domains, respectively.

DS → DT SVMt NNt MMDT [18] HFA [21] SHFR [19] SCP [23] TNT

A → A 45.37 45.80 45.47 46.66 44.50 45.47 50.41

C → C 37.15 35.02 35.50 36.32 33.39 34.67 39.03

W → W 61.51 61.06 61.13 61.89 54.34 60.00 62.34

Table 2. Performance comparisons using NN, dNDF, and Transfer-NDF as G in
TNT. Note that Transfer-NDF* denotes dNDF with our stochastic pruning, while our
Transfer-NDF observes both labeled and unlabeled target-domain data during adap-
tation by introducing Le in (11).

DS → DT NN dNDF Transfer-NDF* Transfer-NDF

C → A 42.84 46.57 46.72 49.50

C → C 32.31 33.94 34.62 39.03

C → W 56.75 60.30 61.36 62.42

4.2 Evaluation

When comparing the performance of different HDA approaches, we first consider
SVMt and NNt as baseline methods, which simply take labeled target-domain
data for training SVM and (two-layer) NN, respectively. As for the state-of-
the-art HDA ones, we include the results produced by MMDT [18], HFA [21],
SCP [23] and SHFR [19] for comparisons.

Object Recognition Across Feature Spaces. For the task of object recog-
nition, we first address the problem of cross-feature image recognition using
Office + Caltech-256. DSLR (D) is excluded in the experiments, since only a
limited amount of data is available for this subset. For source-domain data, we
take images in CNN features (i.e., DeCAF6); as for the target-domain images,
we have SURF as the features. In the semi-supervised settings of HDA, we ran-
domly choose 3 images in the target domain as labeled data, while the remaining
one in that domain as the images to be recognized.

Table 1 lists the average classification results with 5 random trials. From
this table, we see that all the HDA approaches were able to produce improved
performance when comparing to SVMt and NNt. And, our TNT consistently
achieves the best results among all cross-feature pairs in this experiment.

Moreover, we further verify the use of our Transfer-NDF in TNT for associ-
ating and recognizing cross-domain data. In Table 2, we compare the results of
using NN, dNDF and our Transfer-NDF as G in TNT (with DeCAF6 and SURF
describing source and target-domain data, respectively). We can see that, while
the use of dNDF exhibited improved adaptation ability than NN, introducing
stochastic pruning to dNDF (i.e., Transfer-NDF* in Table 2) further increased
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Table 3. Performance comparisons of object recognition across features and datasets.
Note that DeCAF6 and SURF describe source and target-domain data, respectively.

DS → DT SVMt NNt MMDT [18] HFA [21] SHFR [19] SCP [23] TNT

C → A 45.37 45.80 45.69 46.44 44.61 41.59 49.50

W → A 46.23 46.98 43.86 44.50 48.45

A → C 37.15 35.02 35.77 36.32 33.39 35.04 38.37

W → C 36.05 36.41 33.21 35.96 37.75

A → W 61.51 61.06 61.13 61.89 54.34 58.87 60.08

C → W 60.76 62.26 54.34 51.32 62.42

Table 4. Comparisons of classification results by adapting text (NUS-WIDE) to image
data (ImageNet).

DS → DT SVMt NNt MMDT [18] HFA [21] SHFR [19] SCP [23] TNT

tag → image 63.75 65.65 49.38 62.88 60.38 65.00 72.22

the recognition performance. Nevertheless, the full version of Transfer-NDF was
able to achieve the best performance.

Object Recognition Across Features and Datasets. We now consider a
more challenging object recognition task, in which source and target domains
observe distinct features (i.e., DeCAF6 vs. SURF) and from different datasets
(i.e., A, C, or W). The average recognition results of different methods are
listed in Table 3. From this table, we see that our TNT produced comparable or
improved results than baseline and recent HDA approaches did, which confirms
that the use of our TNT for cross-domain object recognition is preferable.

Text-to-Image Classification. As noted earlier, we further consider the adap-
tation and classification of text and image data. With tag information observed
in the source domain dataset of NUS-WIDE, our goal is to improve image clas-
sification using the ImageNet data. For the semi-supervised setting in the target
domain, we randomly select 3 images per category as labeled data, and 100
images for prediction.

Table 4 lists and compares the performances of different approaches with 5
random trials. It can be seen that, without utilizing co-occurrence data across
domains for learning, it is not an easy task for solving such cross-domain classi-
fication problems. Our TNT was able to achieve a significantly improved result
under this semi-supervised setting, and this shows the effectiveness and robust-
ness of our TNT for handling heterogeneous cross-domain data.
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Fig. 5. t-SNE visualization of cross-domain data distributions using NN, dNDF, and
Transfer-NDF as G in TNT: (a) NN, (b) dNDF, (c) Transfer-NDF*, and (d) Transfer-
NDF. As noted in Table 2, Transfer-NDF* denotes dNDF with stochastic pruning.

4.3 Analysis and Visualization

Adaptation Ability of Transfer-NDF. Recall that, in Table 2, we compare
the performance of the uses of different classifiers as the prediction layer G in
TNT. We now visualize the observed cross-data distributions at the mapping
layer output (i.e., the input layer of G), and show the results in Fig. 5.

Comparing Figs. 5(a) and (b), we see the use of NN in TNT over-fitted the
target-domain labeled data, and such problems were only slightly alleviated when
dNDF was applied as G. While the supervised version of TNT (i.e., Transfer-
NDF*) further improved the adaptation ability as depicted in Fig. 5(c), the full
version of our Transfer-NDF successfully related cross-domain heterogenous data
in this layer and achieved the best recognition performance.

Stochastic Pruning for Transfer-NDF. To confirm that our introduced sto-
chastic pruning for Transfer-NDF would disregard the leaf nodes with insufficient
adaptation ability, We plot the observed class-label distributions π without and
with such pruning (i.e., dNFD and Transfer-NDF) in Figs. 6(a) and (b), respec-
tively. Note that each row in Fig. 6(a) or (b) denotes a tree, in which each entry
indicates a leaf node. The color (out of 10 categories) of each entry denotes the
dominant class label observed from the associated distribution.

In Fig. 6(a), we see that dNDF (i.e., no stochastic pruning) produced the
leaf nodes with different colors. This means that all the leaf nodes were consid-
ered equally important for adaptation/prediction, as discussed in Sect. 3.2. With
stochastic pruning (i.e., adding a small constant pd = 0.001 for all class labels
in (6)), a portion of the leaf nodes were not able to observe dominant distribu-
tion values, and thus were shown in black in Fig. 6(b). Note that a cutoff thresh-
old is set as 0.3 in Fig. 6(b) for visualization purposes. Thus, in addition the
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Fig. 6. Class-label distribution π of (a) dNDF and (b) Transfer-NDF on C (DeCAF6)
→ C (SURF). Note that each entry indicates the distribution value of the dominant
class (out of 10 categories/colors). (Color figure online)

Fig. 7. Prediction variance vs. iteration number on C (DeCAF6) → C (SURF). Note
that Transfer-NDF* (i.e., dNDF with stochastic pruning) is learned from labeled cross-
domain data only.

quantitative evaluation, the above observation further supports our Transfer-
NDF for adapting cross-domain data.

Enforcing Embedding Loss Le. Finally, we verify the effectiveness of intro-
ducing Le in TNT for learning FT in a semi-supervised setting. Using Transfer-
NDF without and with Le (i.e., Transfer-NDF* and Transfer-NDF, respectively),
we observe the associated variances of the predicted probability outputs of all
the target-domain instances, and we plot the results in Fig. 7.

Comparing the two curves in Fig. 7, we see that the use of Le (i.e., Transfer-
NDF) was able to reduce the variance of the prediction probability outputs
during the adaptation process. This supports our argument in Sect. 3.3 that,
the enforcement of prediction consistency between labeled and unlabeled target-
domain data would preserve their structural consistency during adaptation. This
is the reason why our TNT is able to handle HDA in a semi-supervised setting.

5 Conclusion

We presented Transfer Neural Trees (TNT) for adapting and recognizing cross-
domain heterogeneous data in a semi-supervised setting. With the embedding
loss for enforcing prediction and structural consistency between target-domain
data, plus the use of our Transfer-NDF with stochastic pruning for adapting rep-
resentative neurons, our TNT is able to solve feature mapping, adaptation, and
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classification in a unified NN-based framework. Our experiments confirmed that
the proposed TNT performed favorably against state-of-the-art HDA approaches
on a variety of classification tasks using data across different feature spaces, col-
lected by different datasets, or in terms of distinct modalities. Among the future
research directions, one can extend the feature mapping layers in our TNT archi-
tecture. This would further allow the learning and adaptation of cross-domain
data with increasing sizes or modalities with more complexities.
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