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Abstract. We aim to localize objects in images using image-level super-
vision only. Previous approaches to this problem mainly focus on dis-
criminative object regions and often fail to locate precise object bound-
aries. We address this problem by introducing two types of context-
aware guidance models, additive and contrastive models, that leverage
their surrounding context regions to improve localization. The addi-
tive model encourages the predicted object region to be supported by
its surrounding context region. The contrastive model encourages the
predicted object region to be outstanding from its surrounding con-
text region. Our approach benefits from the recent success of convo-
lutional neural networks for object recognition and extends Fast R-CNN
to weakly supervised object localization. Extensive experimental evalu-
ation on the PASCAL VOC 2007 and 2012 benchmarks shows that our
context-aware approach significantly improves weakly supervised local-
ization and detection.

Keywords: Object recognition · Object detection · Weakly supervised
object localization · Context · Convolutional neural networks

1 Introduction

Weakly supervised object localization and learning (WSL) [1,2] is the problem
of localizing spatial extents of target objects and learning their representations
from a dataset with only image-level labels. WSL is motivated by two funda-
mental issues of conventional object recognition. First, the strong supervision in
terms of object bounding boxes or segmentation masks is difficult to obtain and
prevents scaling-up object localization to thousands of object classes. Second,
imprecise and ambiguous manual annotations can introduce subjective biases
to the learning. Convolutional neural networks (CNN) [3,4] have recently taken
over the state of the art in many computer vision tasks. CNN-based methods for
weakly supervised object localization have been explored in [5,6]. Despite this
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progress, WSL remains a very challenging problem. The state-of-the-art perfor-
mance of WSL on standard benchmarks [1,2,6] is considerably lower compared
to the strongly supervised counterparts [7–9].

Strongly supervised detection methods often use contextual information from
regions around the object or from the whole image [7,9–13]: Indeed, visual con-
text often provides useful information about which image regions are likely to
be a target class according to object-background or object-object relations, e.g.,
a boat in the sea, a bird in the sky, a person on a horse, a table around a
chair, etc. However, can a similar effect be achieved for object localization in a
weakly supervised setting, where training data does not contain any supervisory
information neither about object locations nor about context regions?

The main contribution of this paper is exploring the use of context as a super-
visory guidance for WSL with CNNs. In a nutshell, we show that, even without
strong supervision, visual context can guide localization in two ways: additive
and contrastive guidances. As the conventional use of contextual information,
the additive guidance enforces the predicted object region to be compatible with
its surrounding context region. This can be encoded by maximizing the sum of
a class score of a candidate region with that of its surrounding context. On the
other hand, the contrastive guidance encourages the predicted object region to
be outstanding from its surrounding context region. This can be encoded by
maximizing the difference between a class score of the object region and that
of the surrounding context. For example, let us consider a candidate box for
a person and its surrounding region of context in Fig. 1. In additive guidance,
appearance of a horse in the surrounding context helps us infer the surrounded
region to contain a person. In contrast guidance, the absence of target-specific
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Fig. 1. Context-aware guidance for weakly supervised detection. Given extracted ROIs
as localization candidates, our two basic context-aware models, additive and contrastive
models, leverage their surrounding context regions to improve localization. The additive
model relies on semantic consistency that aggregates class activations from ROI and
context. The contrastive model relies on semantic contrast that computes difference of
class activations between ROI and context. For details, see text. (Best viewed in color.)
(Color figure online)
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(person) features in its surrounding context helps separating the object region
from its background.

In this work, we introduce two types of CNN architectures, additive and con-
trastive models, corresponding to the two contextual guidances. Building on the
efficient region-of-interest (ROI) pooling architecture [8], the proposed models
capture effective features among potential context regions to localize objects
and learn their representations. In practice we observe that our additive model
prevents expansion of detections beyond object boundaries. On the other hand,
the contrastive model prevents contraction of detections to small object parts.
In experimental evaluation, we show that our models significantly outperform
the baselines and demonstrate effectiveness of our models for WSL. The project
webpage and the code is available at [42].

2 Related Work

In both computer vision and machine learning, there has been a large body
of recent research on WSL [1,2,5,6,14–24]. Such methods typically attempt to
localize objects in the form of bounding boxes with visually consistent appear-
ance in the training images, where multiple objects in different viewpoints and
configurations appear in cluttered backgrounds. Most of existing approaches
to WSL are formulated as or are closely related to multiple instance learning
(MIL) [25], where each positive image has at least one true bounding box for a
target class, and negative images contain false boxes only. They typically alter-
nate between estimating a discriminative representation of the object and select-
ing an object box in positive images based on this representation. Since the task
consists in a non-convex optimization problem, WSL has focused on robust ini-
tialization and effective regularization strategies.

Chum and Zisserman [14] initialize candidate boxes using discriminative
visual words, and update localization by maximizing the average pairwise sim-
ilarity across the positive images. Shi et al. [15] introduce the Latent Dirich-
let Allocation (LDA) topic model for WSL, and Siva et al. [16] propose an
effective negative mining approach combined with discriminative saliency mea-
sures. Deselaers et al. [17] instead initialize candidate boxes using the objectness
method [26], and propose a CRF-based model that jointly localizes objects in
positive training images. Song et al.formulate an initialization strategy for WSL
as a discriminative submodular cover problem in a graph-based framework [19],
and develop a negative mining technique to increase robustness against incor-
rectly localized boxes [20]. Bilen et al. [21] propose a relaxed version of MIL that
softly labels object instances instead of choosing the highest scoring ones. In [22],
they also propose a discriminative convex clustering algorithm to jointly learn
a discriminative object model and enforce the similarity of the localized object
regions. Wang et al. [1] propose an iterative latent semantic clustering algorithm
based on latent Semantic Analysis (pLSA) that selects the most discriminative
cluster for each class in terms of its classification performance. Cinbis et al. [2]
extend a standard MIL approach and propose a multi-fold strategy that splits
the training data to escape bad local optima.



ContextLocNet 353

As CNNs have turned out to be surprisingly effective in many vision tasks
including classification and detection, recent state-of-the-art WSL approaches
also build on CNN architectures [5,6,23,24] or CNN features [1,2]. Cinbis
et al. [2] combine multi-fold multiple-instance learning with CNN features.
Wang et al. [1] develop a semantic clustering method on top of pretrained CNN
features. While these methods produce promising results, they are not trained
end-to-end. Oquab et al. [5] propose a CNN architecture with global max pool-
ing on top of its final convolutional layer. Zhou et al. [24] apply global aver-
age pooling instead to encourage the network to cover the full extent of the
object. Rather than directly providing the full extent of the object, however,
these pooling-based approaches are limited to a position of a discriminative part
or require a separate post-processing step to obtain the final localization. Jader-
berg et al. [23] propose a CNN architecture with spatial transformer layers that
automatically transform spatial feature maps to align objects to a common ref-
erence frame. Bilen et al. [6] modify a region-based CNN architecture [27] and
propose a CNN with two streams, one focusing on recognition and the other one
on localization, that performs simultaneously region selection and classification.
Our work is related to these CNN-based MIL approaches that perform WSL by
end-to-end training from image-level labels. In contrast to the above methods,
however, we focus on a context-aware CNN architecture that exploits contextual
relation between a candidate region and its surrounding regions.

While contextual information has been widely employed for object detec-
tion [7,9,11,12,28], the use of context has received relatively little attention
in weakly supervised or unsupervised localization. Russakovsky et al. [29] and
Cinbis et al. [2] use a background descriptor computed over features outside a
candidate box, and demonstrate that background modelling can improve WSL
as compared to foreground modelling only. Doersch et al. [30] align contextual
regions of an object patch to gradually discovers a visual object cluster in their
method of iterative region prediction and context alignment. Cho et al. [31,32]
propose a contrast-based contextual score for unsupervised object localization,
which measures the contrast of matching scores between a candidate region and
its surrounding candidate regions. Our context-aware CNN models are inspired
by these previous approaches. We would like to emphasize that while the use of
contextual information is not new in itself, we apply it to build a novel CNN
architecture for WSL, that is, to the best of our knowledge, unique to our work.
We believe that the simplicity of our basic models makes them extendable to a
variety of weakly supervised computer vision tasks for more accurate localization
and learning.

3 Context-Aware Weakly Supervised Network

In this section we describe our context-aware deep network for WSL. Our net-
work consists of multiple CNN components, each of which builds on previous
models [5,6,9,27]. We begin by explaining first its overall architecture, and then
detail our guidance models for WSL.
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Fig. 2. Our context-aware architecture. Convolutional layers and FC layers (in green)
correspond to the VGG-F architecture, pre-trained on ImageNet. The output of FC
layers is passed through ReLu to the classification and localization streams. The clas-
sification stream takes features from ROIs, feeds them to a linear layer FCcls, and
outputs classification scores SROI. The localization stream takes features from ROIs
and their context regions, processes them through our context-aware guidance models,
and outputs localization scores LROI. The final output is a product of classification
and localization scores for each ROI and object class. FCcls, FCa, FCb, FCc (in purple)
are fully-connected linear layers trained from scratch. See text for more details. (Color
figure online)

3.1 Overview

Following the intuition of Oquab et al. [5], our CNN-based approach to WSL
learns a network from high-scoring object candidate regions within a classifi-
cation training setup. In this approach, the visual consistency of classes within
the dataset allows the network to localize and learn the underlying objects. The
overall network architecture is described in Fig. 2.

Convolutional and ROI Pooling Layers. Our architecture has 5 convo-
lutional layers, followed by a ROI pooling layer that extracts a set of feature
maps, corresponding to the ROI (object proposal). The convolutional layers, as
our base feature extractor, come from the VGG-F model [33]. Instead of max
pooling typically used to process output of the convolutional layers in conven-
tional CNNs for classification [4,5], however, we follow the ROI pooling of Fast
R-CNN [27], an efficient region-based CNN for object detection using object
proposals [34]. This network first takes the entire image as input and applies
a sequence of convolutional layers resulting in feature maps (256 feature maps
with the effective stride of 16 pixels). The network then contains a ROI-pooling
layer [35], where ROIs (object proposals) extract corresponding features from the
final convolutional layer. Given a ROI on the image and the feature maps, the
ROI-pooling module projects the ROI on the feature maps, pools correspond-
ing features with a spatially adaptive grid, and then forwards them through
subsequent fully-connected layers. This architecture allows us to share compu-
tations in convolutional layers for all ROIs in an input image. Following [6],
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ROI context frame

Fig. 3. Region pooling types for our guidance models: ROI pooling, context pooling,
and frame pooling. For context and frame, the ratio between the side of the external
rectangle and the internal rectangle is fixed as 1.8. Note that context and frame pooling
types are designed to produce feature maps of the same shape, i.e., frame-shaped
feature maps with zeros in the center.

in this work, we initialize network layers using the weights of ImageNet-
pretrained VGG-F model [33], which is then fine-tuned in training.

Feature Pooling for Context-Aware Guidance. For context-aware localiza-
tion and learning, we extend the ROI pooling by introducing additional pooling
types for each ROI, in a similar manner to Gidaris et al. [9]. As shown in Fig. 3,
we define three types of pooling: ROI pooling, context pooling, and frame pool-
ing. Given a ROI, i.e., an object proposal [34], the context is defined as an outer
region around the ROI, and the frame is an inner region ROI. Note that context
pooling and frame pooling produce feature maps of the same shape, i.e., central
area of the outputs will have zero values. As will be explained in Sect. 3.3, this
property is useful in our contrast model. The extracted feature maps are then
independently processed by fully-connected layers (green FC layers in Fig. 2),
that outputs a ROI feature vector, a context feature vector, and/or a frame
feature vector. The models will be detailed in Sects. 3.2 and 3.3.

Two-Stream Network. To combine the guidance model components with
classification, we employ the two-stream architecture of Bilen and Vedaldi [6],
which branches a localization stream in parallel with a classification stream, and
produces final classification scores by performing element-wise multiplication
between them. In this two-stream strategy, the classification score of a ROI is
reweighted with its corresponding softmaxed localization score. As illustrated
in Fig. 2, the classification stream takes the feature vector FROI as input and
feeds it to a linear layer FCcls, that outputs a set of class scores S. Given C
classes, processing K ROIs produces a matrix S ∈ R

K×C . The localization stream
takes FROI and Fcontext as inputs, processes them through our guidance models,
giving a matrix of localization scores L ∈ R

K×C . L is then fed to a softmax layer
[σ(L)]kc = exp(Lkc)∑K

k′=1 exp(Lk′c)
which normalizes the localization scores over the ROIs
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in the image. The final score for each ROI and class is obtained by element-wise
multiplication of the corresponding scores S and σ(L).

This procedure is done for each ROI and, as a final step, we sum all the ROI
class scores to obtain the image class scores. During training, we use the hinge
loss function and train the model for multi-label image classification:

L(w) =
1

C · N

C∑

c=1

N∑

i=1

max(0, 1 − yci · fc(xi;w)),

where fc(x;w) is the score of our model evaluated on input image x pararme-
terized by w (all weights and biases) for a class c; yci = 1 if i’th image contains
a ground truth object of class c, otherwise yci = −1. Note that the loss is nor-
malized by the number of classes C and the number of examples N .

3.2 Additive Model

The additive model, inspired by the conventional use of contextual informa-
tion [7,9,11,12,28], encourages the network to select a ROI that is semantically
compatible with its context. Specifically, we introduce two fully-connected lay-
ers FCROI and FCcontext as shown in Fig. 4(a), and the localization score for
each ROI is obtained by summing outputs of the layers. Note that compared to
context-padding [7], this model separates a ROI and its context, and learns the
adaptation layers FCROI and FCcontext in different branches. This conjunction
of separate branches allows us to learn context-aware activations for the ROI in
an effective way.

Figure 5(top) illustrates the behavior of the FCROI and FCcontext branches
of the additive model trained on PASCAL VOC 2007. The scores of the tar-
get object (car) vary for different sizes of object proposals. We observe that the
FCcontext branch discourages small detections on the interior of the object as well
as large detections outside of object boundaries. FCcontext is, hence, complemen-
tary to FCROI and can be expected to prevent detections outside of objects.

3.3 Contrastive Model

The contrastive model encourages the network to select a ROI that is outstand-
ing from its context. This model is inspired by Cho et al.’s standout scoring
for unsupervised object discovery [31], which measures the maximum contrast
of matching scores between a rectangular box and its surrounding boxes. We
adapt this idea of semantic contrast to our ROI-based CNN architecture. Specif-
ically, we introduce two fully-connected layers FCROI and FCcontext as shown in
Fig. 4(b), and the locacalization score for each ROI is obtained by subtracting
the output activation of FCcontext from that of FCROI for each ROI. Note that
in order to make subtraction work properly, all weights of the layers FCROI and
FCcontext are shared for this model. Without sharing parameters, this model
reduces to the additive model.



ContextLocNet 357

Fig. 4. Context-aware guidance models. The additive model takes outputs of ROI
and context pooling, feeds them to independent fully-connected layers, and compute
localization scores by adding their outputs. The contrastive models take outputs of ROI
(or frame) and context pooling, feed them to a shared fully-connected layer (i.e., two
fully-connected layers with all parameter shared), and compute localization scores by
subtracting the output of context from the other. For details, see the text.

Fig. 5. Visualization of object scores produced by different branches of our models.
The scores are computed for the car class for bounding boxes of different sizes centered
on the target object. Red and blue colors correspond to high and low scores respec-
tively. While the outputs of FCROI branches for the additive and contrastive models are
similar, the FCcontext branches, corresponding to feature pooling at object boundaries,
have notably different behavior. The FCcontext branch of the additive model discour-
ages detections outside of the object. The FCcontext branch of the contrastive model,
discourages detections on the interior of the object. The combination of the FCROI and
FCcontext branches results in correct object localization for both models. (Color figure
online)
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Figure 5(bottom) illustrates the behavior of FCROI and FCcontext branches
of the contrastive model. We denote by GROI and Gcontext the outputs of respec-
tive layers. The variation of scores for the car object class and different object
proposals indicates low responses of −Gcontext on the interior of the object. The
combination GROI−Gcontext compensate each other resulting in correct localiza-
tion of object boundaries. We expect the contrastive model to prevent incorrect
detections on the interior of the object.

One issue in this model is that in the localization stream the shared adapta-
tion layers FCROI and FCcontext need to process input feature maps of different
shapes FROI and Fcontext, i.e., FCROI processes features from a whole region (ROI
inFig. 3),whereasFCcontext processes features froma frame-shaped region (context
in Fig. 3). We call this model the asymmetric contrastive model (contrastive A).

To remove this asymmetry in the localization stream, we replace ROI pooling
with frame pooling (Fig. 3) that extracts a feature map from an internal rectan-
gular frame of ROI. This allows the shared adaptation layers in the localization
stream to process input feature maps of the same shape Fframe and Fcontext.
We call this model the symmetric contrastive model (contrastive S). Note that
adaptation layer FCcls in the classification stream maintains the original ROI
pooling regardless of modification in the localization stream. The advantage of
this model will be verified in our experimental section.

4 Experimental Evaluation

4.1 Experimental Setup

Datasets and Evaluation Measures. We evaluate our method on PASCAL
VOC 2007 dataset [36], which is a common benchmark in weakly supervised
object detection. This dataset contains 2501 training images, 2510 validation
images and 4952 test images, with bounding box annotations provided for 20
object classes. We use the standard trainval/test splits. We also evaluate our
method on PASCAL VOC 2012 [37]. VOC 2012 contains the same object classes
as VOC 2007 and is approximately twice larger in size for both splits.

For evaluation, two performance metrics are used: mAP and CorLoc. Detec-
tion mAP is evaluated using the standard intersection-over-union (IoU) criterion
defined by [36]. Correct localization (CorLoc) [17] is a standard metric for mea-
suring localization accuracy on a training set, where WSL usually provides one
object localization per image for a target class. CorLoc is evaluated per-class,
only on positive images for that class, and counts the percentage of images
for which the highest-scoring candidate provided by the method overlaps (IoU
> 0.5) with a ground truth box. We evaluate this mAP and CorLoc on the test
and trainval splits respectively.

Implementation Details. ROIs for VOC 2007 are directly provided by the
authors of the Selective Search proposal algorithm [34]. For VOC 2012, we use the
Selective Search windows computed by Girshick et al. [27]. Our implementation
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is done using Torch [38], and we use the rectangular frame pooling based on
the open-sourced code by Gidaris et al. [9,39]1 which is itself based on Fast R-
CNN [27] code. We use the pixel→features map coordinates transform for region
proposals from the public implementation of [35]2, with offset parameter set to
zero (see the precise procedure in our code online1). All of our models, including
our reproduction of WSDDN, use the same transform. We use the ratio between
the side of the external rectangle and the internal rectangle fixed to 1.8.3 Our
pretrained network is the VGG-F model [33] ported to Torch using the loadcaffe
package [40]. We train our networks using cuDNN [41] on an NVidia Titan X
GPU. All layers are fine-tuned. Our training parameters are detailed below.

Parameters. For training, we use stochastic gradient descent (SGD) with
momentum 0.9, dampening 0.0 on examples using a batch size of 1. In our
experiments (both training and testing) we use all ROIs for an image provided
by Selective Search [34] that have width and height larger than 20 pixels. The
experiments are run for 30 epochs each. The learning rates are set to 10−5 for
the first ten epochs, then lowered to 10−6 until the end of training. We also use
jittering over scales. Images are rescaled randomly into one of the five following
sizes: 800 × 608, 656 × 496, 544 × 400, 960 × 720, 1152 × 864. Random horizontal
flipping is also applied.

At test time, the scores are evaluated on all scales and flips, then averaged.
Detections are filtered to have a minimum score of 10−4 and then processed by non-
maxima suppression with an overlap threshold of 0.4 prior to mAP calculation.

4.2 Results and Discussion

We first evaluate our method on the VOC 2007 benchmark and compare results
to the recent methods for weakly-supervised object detecton [1,6] in Table 1.
Specifically, we compare to the WSDDN-SSW-S setup of [6] which, similar to
our method, uses VGG-F as a base model and Selective Search Windows object
proposals. For fair comparison we also compare results to our re-implementation
of WSDDN-SSW-S (row (f) in Table 1). The original WSDDN-SSW-S employs
an additional softmax in the classification stream and uses binary cross-entropy
instead of hinge loss, but we found that these differences to have minor effect on
the detection accuracy in our experiments (performance matches up to 1 %, see
rows (d) and (f)).

Our best model, contrastive S, reaches 36.3 % mAP and outperforms previous
WSL methods using selective search object proposals in rows (a)-(e) of Table 1.
Class-specific CorLoc and AP results can be found in Tables 2 and 3, respectively.

1 http://github.com/gidariss/locnet.
2 http://github.com/ShaoqingRen/SPP net.
3 This choice for the frame parameters follows [9,39], and the ratio is kept same for

both context and frame pooling types. We have experimented with different ratios,
and observed that results of our method change marginally with increasing the ratio,
and drop with decreasing the ratio.

http://github.com/gidariss/locnet
http://github.com/ShaoqingRen/SPP_net
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Table 1. Comparison of our proposed models on PASCAL VOC 2007 with the state
of the art, CorLoc (%) and detection mAP (%)

Model CorLoc mAP

(a) Cinbis et al. [2] 52.0 30.2

(b) Wang et al. [1] 48.5 30.9

(c) Wang et al.+ context [1] 31.6

(d) WSDDN-SSW-S [6] 31.1

(e) WSDNN-SSW-ENS [6] 54.2 33.3

(f) WSDDN-SSW-S∗ 50.0 30.5

(g) additive 52.8 33.3

(h) contrastive A 50.2 32.2

(i) contrastive S 55.1 36.3

Bilen et al. [6] experiment with alternative options in terms of EdgeBox object
proposals, rescaling ROI pooling activations by EdgeBoxes objectness score, a
new regularization term and model ensembling. When combined together, these
additions improve result in [6] to 39.3 %. Such improvements are orthogonal to
our method and we believe our method will benefit from extensions proposed
in [6]. We note that our single contrastive S model (36.3 % mAP) outperforms
the ensemble of multiple models using SSW in [6] (33.3 % mAP).

Context Branch Helps. The additive model (row (g) in Table 1) improves
localization (CorLoc) and detection (mAP) over those of the WSDDN-SSW-S∗

baseline (row (f)). We also applied a context-padding technique [7] to WSDDN-
SSW-S∗ by enlarging ROI to include context (in the localization branch).
Our additive model (mAP 33.3 %) surpasses the context-padding model (mAP
30.9 %). Contrastive A also improves localization and detection, but performs
slightly worse than the additive model (Table 1, rows (g) and (h)). These results
show that processing the context in a separate branch helps localization in the
weakly supervised setup.

ContrastiveModel with Frame Pooling. The basic contrastive model above,
contrastive A (see Fig. 4), processes different shapes of feature maps (FROI and
Fcontext) in the localization branch while sharing weights between FCROI and
FCcontext. To the contrary, contrastive S processes the same shape of feature maps
(Fframe and Fcontext) in the localization branch. As shown in rows (h) and (i) of
Table 1, contrastive S greatly improves CorLoc and mAP over contrastive A. Our
hypothesis is that, since the weights are shared between the two layers in the the
localization branch, these layers may perform better if they process the same shape
of feature maps. Contrastive S obtains such a property by using frame pooling.
This modification allows us to significantly outperform the baselines (rows (a)–(e)
in Table 1). We believe that the model overfits less to the central pixels, achieving
better performance. Per-class results are presented in Tables 2 and 3.
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Table 2. Per-class comparison of our proposed models on VOC 2007 with the state of
the art, detection AP (%)

Model aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

Cinbis et al. [2] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2
Wang et al. [1] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9
Wang et al.+context [1] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

WSDDN-SSW-S∗ 49.8 50.5 30.1 12.7 11.4 54.2 49.2 20.4 1.5 31.2 27.9 18.6 32.2 49.7 22.9 15.9 25.6 27.4 38.1 41.3 30.5
additive 48.7 50.7 29.5 12.3 14.1 56.5 51.7 21.1 4.0 30.0 36.5 22.5 42.6 56.2 21.5 17.5 29.5 27.0 41.3 52.3 33.3
contrastive A 52.8 49.6 28.9 6.8 10.9 50.4 52.2 35.0 3.2 31.4 37.6 39.7 44.1 53.4 10.7 17.4 24.2 30.9 37.8 26.9 32.2
contrastive S 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

Table 3. Per-class comparison of our proposed models on VOC 2007 with the state of
the art, CorLoc (%)

Model aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv avg

Conbis et al. [2] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0
Wang et al. [1] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

WSDDN-SSW-S∗ 80.4 62.4 53.8 28.2 26.0 68.0 72.5 45.1 9.3 64.4 38.8 35.6 51.4 77.1 37.6 38.1 66.0 31.2 61.6 53.0 50.0
additive 78.8 66.7 52.9 25.0 26.3 68.0 73.6 44.8 14.9 62.3 45.2 46.3 61.6 82.3 35.3 39.6 69.1 30.9 62.0 69.5 52.8
contrastive A 78.8 62.7 51.1 20.2 21.8 68.5 71.6 55.8 10.3 67.8 46.8 53.7 62.2 82.3 26.0 40.7 55.7 33.6 55.5 39.4 50.2
contrastive S 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1

PASCAL VOC 2012 Results. The per-class localization results for the
VOC 2012 benchmark using our contrastive model S are summarized in
Table 4(detection AP) and Table 5(CorLoc). We are not aware of other weakly
supervised localization methods reporting results on VOC 2012.

Observations. We have explored several other options and made the following
observations. Training the additive model and the contrastive model in a joint
manner (adding the outputs of individual models to compute the localization
score that is further processed by softmax) have not improve results in our
experiments. Following Gidaris et al. [9], we have tried adding other types of
region pooling as input to the localization branch, however, this did not improve
our results significantly. It is possible that different types of context pooling

Table 4. Per-class comparison of the contrastive S model on VOC 2012 test set, AP
(%)

Model aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv mAP

contrastive S 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3

Table 5. Per-class comparison of the contrastive S model on VOC 2012 trainval set,
CorLoc (%)

Model aer bik brd boa btl bus car cat cha cow tbl dog hrs mbk prs plt shp sfa trn tv Avg.

contrastive S 78.3 70.8 52.5 34.7 36.6 80.0 58.7 38.6 27.7 71.2 32.3 48.7 76.2 77.4 16.0 48.4 69.9 47.5 66.9 62.9 54.8
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Fig. 6. The first five rows show localization examples where our method (contrastive
S) outperforms WSDDN-SSW-S∗ baseline. Two next rows show examples where both
methods succeed. The last two rows illustrate failure cases for both methods. Our
method often suceeds in localizing correct object boundaries on examples where
WSDNN-SSW-S∗ is locked to descriminative object parts such as heads of people and
animals. Typical failure cases for both methods include images with multiple objects
of the same class.
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other than rectangular region pooling can provide improvements. We also found
that sharing the weights or replacing the context pooling with the frame pooling
in our additive model degrades the performance.

Qualitative Results. We illustrate examples of object detections by our
method and WSDDN in Fig. 6. We observe that our method tends to provide
more accurate localization results for classes with localized discriminative parts.
For example, for person and animal classes our method often finds the whole
extent of the objects while previous methods tend to localize head regions. This
is consistent with results in Table 2 where, for example, the dog class obtains the
highest improvement by our contrastive S model when compared to WSDDN.

Our method still suffers from the second typical failure mode of weakly
supervised methods, as shown in the two bottom rows of Fig. 6, which is the
multiple-object case: when many objects of the same class are encountered in
close vicinity, they tend to be detected as a single object.

5 Conclusions

In this paper, we have presented context-aware deep network models for WSL.
Building on recent improvements in region-based CNNs, we designed a novel
localization architecture integrating the idea of contrast-based contextual guid-
ance to the weakly-supervised object localization. We studied the localization
component of a weakly-supervised detection network and proposed a subnetwork
that effectively makes use of visual contextual information that helps refining
the boundaries of detected objects. Our results show that the proposed seman-
tic contrast is an effective cue for obtaining more accurate object boundaries.
Qualitative results show that our method is less sensitive to the typical failure
mode of WSL methods, such as shrinking to discriminative object parts. Our
method has been validated on VOC 2007 and 2012 benchmarks demonstrating
significant improvements over the baselines.

Given the prohibitive cost of large-scale exhaustive annotation, it is crucial
to further develop methods for weakly-supervised visual learning. We believe
the proposed approach is complementary to many previously explored ideas and
could be combined with other techniques to foster further improvements.
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