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Abstract. We address an anomaly detection setting in which train-
ing sequences are unavailable and anomalies are scored independently of
temporal ordering. Current algorithms in anomaly detection are based
on the classical density estimation approach of learning high-dimensional
models and finding low-probability events. These algorithms are sensi-
tive to the order in which anomalies appear and require either training
data or early context assumptions that do not hold for longer, more
complex videos. By defining anomalies as examples that can be distin-
guished from other examples in the same video, our definition inspires a
shift in approaches from classical density estimation to simple discrimi-
native learning. Our contributions include a novel framework for anomaly
detection that is (1) independent of temporal ordering of anomalies, and
(2) unsupervised, requiring no separate training sequences. We show that
our algorithm can achieve state-of-the-art results even when we adjust
the setting by removing training sequences from standard datasets.

Keywords: Anomaly detection · Discriminative · Unsupervised · Con-
text · Surveillance · Temporal invariance

1 Introduction

Anomaly detection is an especially challenging problem because, while its appli-
cations are prevalent, it remains ill-defined. Where there have been attempts
at definitions, they are often informal and vary across communities and appli-
cations. In this paper, we define and propose a solution for a largely neglected
subproblem within anomaly detection, where two constraints exist: (1) no addi-
tional training sequences are available; (2) the order in which anomalies occur
should not affect the algorithm’s performance on each instance (Fig. 1). This is
an especially challenging setting because we cannot build a model in advance
and find deviations from it; much like clustering or outlier detection, the context
is defined by the video itself. This setting is prominent in application fields such
as robotics, medicine, entertainment, and data mining. For instance:
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– First-time data. A robotics team wants to create a robust set of algorithms.
They teleoperate a robot performing a new task or operating in a new environ-
ment. The team would like to find out what special cases the robot may have
to handle on the perception side, so they ask for a list of the most anomalous
instances according to the robot’s sensor data relative to that day’s conditions
and performance.

– Personalized results: context semantically defined as coming only from the test
set. (a) A father wants to find the most interesting parts of the 4-h home
video of his family’s Christmas. (b) A healthcare professional wants to review
the most anomalous footage of an elderly patient while living under at-home
nursing care over the past week.

– Database sifting. A consulting analyst is told to find abnormal behavior in a
large amount of video from a surveillance camera.

Fig. 1. Characteristics of our anomaly detection setting. Left: No training
sequences. This setting occurs when we want context to be drawn solely from the
test video (e.g. - the player’s shot distribution differs for each opponent, and we want
anomalies relative to how they played that opponent), or unavailable (a player with
a new style debuts at a tournament). Right: Temporal independence. Often we
want to find the most anomalous frames regardless of the order they appear in.

These illustrate just a few of the practical cases in which it is important to
identify all instances of anomalies, regardless of the order in which they appear,
and to do so within the context of the testing video. If videos are available
for providing context beyond the test video or it is acceptable to ignore later
anomalies as long as the first instance is recognized, there are many mature
methods that apply (see Sect. 1.1). There are also natural extensions to our
method that could incorporate additional context if it were available. Here we
consider a challenging setting in which the context must be derived from the
test video and the order in which anomalies occur does not affect their score.
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In general anomaly detection settings, one cannot use traditional supervised
approaches because it is impossible to find a sufficiently representative set of
anomalies. In our setting, we are given no context ahead of time; unlike other
algorithms, we cannot even build a distribution for a representative set of familiar
events. We require the use of approaches that operate solely on the test sequence
and adapt to each video’s context. This leads us to denote frames as anomalous
if they are easily distinguished from other frames in the same video, and familiar
otherwise.

1.1 Previous Approaches

Anomaly detection presents a set of unique challenges beyond those seen in the
supervised learning paradigm. The inability to use training data for both classes
of data (familiar and anomalous) leads to two possible approaches: (1) Estimate
a model distribution of the familiar and then classify sufficiently large deviations
as anomalous; or (2) Seek out points that are identifiable in the distribution of
all frames and label those anomalous. While these approaches seem similar on
the surface, they lead to distinct methodologies that differ in the assumptions
and data required as well as the type of anomalies they identify. We show that
the latter will satisfy our setting while the former will not, and comes with a
few other advantages.

The traditional approach for anomaly detection involves learning a model of
familiarity for a given video. Subsequent time points can then be identified as
anomalous if they deviate from the model by some distance metric or inverse
likelihood. We call this set of approaches “scanning” techniques. Examples in
this area include sparse reconstruction [1,2], dynamic textures [3–5], and human
behavior models [6]. The methods take a set of training data, either from separate
videos or from hand-chosen frames at the beginning of the video, and build a
model. Many of these methods update models online, and while some do not
need to update the model in temporal order [7], they still need a large amount
of training data for initialization. One method in particular achieves reasonable
performance with a small number of starting frames [8], but still requires manual
identification of these frames for the algorithm. Generative models work well for
domains in which the assumed model of normalcy fits the data well. This applies
when the model is complex enough to handle a variety of events, or when known
context can allow the learner to anticipate a model that will fit the data. These
methods generally assume that the features come from a predetermined type of
distribution and therefore are likely to fail if the feature distribution changes. For
complex models, computational complexity and the amount of ‘normal’ training
data needed to initialize the model becomes a significant bottleneck. Parameter
choices also have a larger effect on the ability of the algorithm to fit the data.

Scanning approaches do not satisfy our anomaly detection setting because
they violate the two conditions we specified: (1) they require training instances,
and (2) they depend on temporal ordering. Building a model in temporal order of
the video makes strong assumptions about the way anomalies should be detected.
In our setting, we must find the ‘most anomalous’ events in the video, regardless
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of their order. By building models with updates in temporal order, events that
occur earlier in the video are more likely to be anomalous. For instance, with
an event type that occurs only twice in a large video, the first instance will be
detected once but the second instance will be ignored. By choosing a discrimi-
native algorithm that acts independently of the ordering of the video, we avoid
these assumptions and pitfalls of the scanning techniques.

Our method shares the discriminative spirit of previous works using saliency
for anomaly detection [3,5]. However, the saliency methods used require training
data to run and only use local context. Our objective is to obtain a fully unsu-
pervised method that uses the context of the entire video and is independent of
the ordering in which the anomalies occur. [9] builds a graph and finds anomalies
independent of their ordering. However, it is model-based and only designed to
work with trajectories; our goal is discriminative and able to operate on any set
of features.

The primary challenge in our setting is our inability to assume the form
of the underlying distribution. A non-parametric method is preferable so that
it can generalize to many domains with few assumptions. Permutation tests are
nonparametric methods designed to handle such cases. The general idea is to test
the fidelity of a given statistic against a set of other possible statistics from a
differently-labeled dataset. We use a similar approach to test the distinctiveness
of each frame. In our method, the analogous statistic is the ease with which a
given data point can be distinguished from other points sampled from the same
video. By testing a frame’s distinguishability from different groups of frames, we
form a more accurate picture of its global anomaly score.

1.2 Our Approach

Our approach is to directly estimate the discriminability of frames with reference
to the context in the video. We do not need a model of every normal event to
generate scores for anomalous frames; we can simply attempt to discriminate
between anomalous frames and familiar frames to see if there is a difference
in the distributions. We present a framework that tests the discriminability of
frames. In this framework, we perform change detection on a sequence of data
from the video to see which frames are distinguishable from previous frames.
Because we want these comparisons to be independent of time, we create shuffles
of the data by permuting the frames before running each instance of the change
detection. Simple classifiers are used to avoid overfitting and so that each frame
will be compared against many permutations of other frames. This discriminative
framework allows us to perform in a unique setting.

Our contributions are as follows:

– A permutation-based framework for anomaly detection in a setting free from
training data and independent of ordering,

– A theory that guides the choice of key parameters and justifies our framework,
– Experimental evaluation demonstrating that this technique achieves perfor-

mance similar to other techniques that require training data
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Fig. 2. Detections from one-class SVM and our algorithm on a toy example.
The ground truth represents the digit classes from MNIST that were used to generate
each frame. The red dashes indicate locations of the anomalies. The red shaded region
represents detections made by each algorithm. Our algorithm without shuffling has the
same temporal disadvantages as online one-class SVM. By including shuffling, we do
not trigger false positives on prevalent examples when seen for the first time. We also
detect the full extent of each anomaly and avoid assuming the beginning is familiar.
(Color figure online)

1.3 A Motivating Example

To motivate our method and demonstrate its advantages over scanning tech-
niques, let’s walk through a toy example. Suppose we draw four images from
the MNIST dataset, each with a different label (2, 3, 4, or 5). Then we cre-
ate a ‘video’ using noisy copies of these images. The order of these images is
shown in Fig. 2. While the first portion of the video contains only instances of
‘3’, both the 3’s and 2’s are prevalent. In this case, we would hope that the
algorithm classifies all instances of 4’s and 5’s as anomalous and considers all
2’s and 3’s familiar. We use one-class SVM with a RBF kernel as an instance of
scanning techniques. Figure 2 shows scores from a static one-class SVM trained
on the first portion of the video, the same algorithm with an online update, and
our algorithm with and without shuffling. Our algorithm’s performance with-
out shuffling is similar to that of the online one-class SVM. When the model
remains static after the first third of the video, all of the 2’s are classified as
anomalous. Even with an online model update, the first few 2’s are classified
as anomalous. In addition, not all of the 4’s and 5’s are given equal anomaly
weights within their respective classes. Our algorithm avoids these pitfalls once
shuffling is introduced, classifying only the 4’s and 5’s as anomalous. By using a
permutation-based framework, we are able to evade assumptions of familiarity
and remove the effects of temporal ordering on anomaly scores.

The issues discussed extend beyond just this toy example. With scanning
methods, anomalies that appear more than once may be missed. In addition, it
is common to see failures due to the assumption that the beginning of the video
represents familiarity, both by anomalies appearing in the beginning and by other
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familiar events appearing later in the video. For videos where context changes
frequently (imagine a concert light show whose theme changes every song), this
can create a dangerously high number of false positives. Also note that while this
example uses one-class SVM as an example, all scanning techniques have the
same inherent problems. Our method was developed in part to circumvent these
previously unavoidable failure cases. In addition, we hope to demonstrate that
simple discriminative techniques can match the performance of more complex
generative methods while operating in the new setting we have identified.

2 Method

Taking the Direct Approach. Inspired by density ratio estimation for change
point detection [10–12], we take a more direct approach to anomaly detection
than the popular generative approach. The main objective of density ratio esti-
mation is to avoid doing unnecessary work when deciding from which one of
two distributions a data point was generated: rather than model both distrib-
utions independently, we can directly compute the ratio of probabilities that a
data point is drawn from one or the other. This shortcut is especially helpful
in anomaly detection. We are more interested in the relative probability that
a given frame is anomalous rather than familiar, and are less interested in the
distribution of familiar events. The machine learning community has covered
several ways to estimate this ratio directly and has enumerated the several cost
functions and other paradigms in which this ratio appears [13]. We note that
one such way to estimate these ratios directly is simple logistic regression, and
therefore we use this standard classifier as a measure of the deviation between
two groups of points (see “Larger window sizes decrease the effect of overfitting
classifiers” in Sect. 3 for formal justification).

System Overview. The full framework is depicted in Fig. 3. Recall our defini-
tion of anomalous frames: those that are easily distinguished from others in the
same video. Because this definition avoids domain-specific notions of anomalies,
it relies on a robust set of features that can be used to distinguish anomalies in
a variety of domains. We assume an appropriate set of features has been com-
puted and forms a descriptor for each frame. Because this is a discriminative
method, the choice of features has a smaller impact on the choice of algorithm
and parameters than it would for a generative method. The overall proposed
framework is agnostic to the feature choice; the user can plug in any relevant
or state-of-the-art features based on domain knowledge or novel feature meth-
ods. In addition, features can be aggregated within or across frames to obtain
different levels of spatial or temporal resolution. Because the framework does
not make explicit assumptions about the distribution of the features, these are
simply design choices based on the cost of feature computation and the desired
resolution of detections.

No Shuffles - Change Detection. If we were to remove permutation
from our algorithm, it would perform simple change detection by testing the
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Fig. 3. The proposed anomaly detection framework. (A) Given an input video, (B) a
descriptor for each frame is passed into the anomaly detection algorithm, (C) where
the descriptors are shuffled K times. For each shuffle, the algorithm evaluates anomaly
scores for a sliding window of frames. This score is based on the density ratio compared
to frames that came before the sliding window. (D) Finally, the scores are combined
with averaging to produce the final output signal. Image depicting dense trajectory
features is from Wang et al. [14].

distinguishability of a sliding window of tw frames, where all frames before it are
assumed to be familiar. A conceptual example is shown in Fig. 4.

In the first iteration, a classifier f is learned on the set of 2tw points, where
the first tw points are given the label 0 and the second tw points are given
the label 1. We call this set of labels a ‘split’ of the data. Each point x that
is labeled 1 is then given the score f(x), which is the probability it belongs to
class 1 instead of class 0 according to the classifier f(x). In our implementation,
f(x) is simply 1

1+ exp (−wT x)
where w minimizes the l2-regularized logistic loss.

We say the second set of frames are within a ‘sliding time window’ or ‘sliding
window’, because in the next iteration these frames are reassigned a label of
0 and the next tw points are labeled 11. The process repeats until the sliding
window reaches the end of the video. As the sliding window reaches the end,
events in the window are compared to all events in the past. The higher f(x) for
a given point x, the larger the classifier’s confidence that it can be distinguished
from previous points.

A sliding window is chosen rather than moving point-by-point for several
reasons. First of all, it provides inherent regularization for the classifier, since
distinguishing any one point the rest can be misleadingly easy even if that point
is familiar. In addition, the number of splits the algorithm must compute is
inversely proportional to the window size tw. It may seem that ‘polluting’ the
sliding window with familiars would ruin an anomaly’s chance of being accurately
scored. However, this is not the case, as anomalies are more easily distinguished

1 For simplicity, we describe the algorithm when the sliding window size and stride
equal each other, tw = Δtw. It is just as valid to shorten the stride to increase
accuracy. See Algorithm 1.
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Algorithm 1. Anomaly Detection Selects the most anomalous frames
1 Parameters: K (#permutations), tw (window size), Δtw (window stride) ;

Input: {x1, .., xT } (descriptors for each frame)
Output: {a1, ..., aT } (estimates of anomalousness of each frame)

2 Generate a random set of K permutations {σ1([1, ..., T ]), ..., σK([1, ..., T ])}
3 for k = 1, ..., K do
4 for all sliding windows [tstart, tstart + tw) until T do

5 yσk(t) ←
{

0 if t < tstart

1 if tstart ≤ t < (tstart + tw)

6 w ← TrainLogisticRegression(xσk , yσk )

7 p
(k)
t ← P (y

(k)
t = 1|xt, w), ∀(y

(k)
t == 1)

8 p̄t ← mean(p
(k)
t ) across all k

9 at ← p̄t
(1−p̄t)

10 return {a1, ..., aT }

from the rest of the video, and therefore the chance that they fall near the
resulting classifier boundary is low, while the probability that a familiar event
does is high (see Fig. 4 for intuition).

Adding in Shuffles - Full Anomaly Detection. As we pointed out earlier,
the disadvantage of this approach without shuffles is the same as with other
scanning techniques: temporal dependencies cause the algorithm to miss events
that occur more than once and raise false alarms to events that may be prevalent
later in the video but not in the beginning. We therefore shuffle the order of the
data and repeat the change detection process described to reduce the effect of the
order. Producing a series of distinguishability scores from classifiers learned on
different permutations of frames can be thought of as testing a set of hypotheses.
If a series of classifiers are all able to easily distinguish a frame labeled “1” from
many combinations of those labeled “0”, it is likely an anomaly.

Aggregating Scores. Once the scores have been computed for each shuffle, we
average the results. The average outperforms other methods of aggregation like
the median and maximum. After aggregating over shuffles, log-odds are com-
puted as the final anomaly score. The full overview is explained in Algorithm 1.

3 Supporting Theory

Our method is based on distinguishing two labeled subsets of data. We consider
here how to think about the tradeoffs between increasing and decreasing the
window size and the number of shuffles given a choice of classifier. We attempt
only to provide intuition by considering simple analyses that suggest how one
might understand the tradeoffs of parameters and classifier choices.

Overall Objective. In order for the algorithm to work, the classifier needs to
have enough capacity to be able to tell anomalies and familiars apart, but simple
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Fig. 4. Visualizing two consecu-
tive splits. Points in red and blue
have been labeled 1 and 0 respectively.
Here the window size tw = 7 (# red
points). The values in red are the prob-
ability values pt. Familiars are close
to the boundary (pt close to 0.5) and
therefore yield a low log odds score at.
(Color figure online)
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Fig. 5. Upper bound on the probability
that any one of A anomalies appears first
in fewer than 1/A − ε shuffles (ε = 0.05).
The resulting probability decreases expo-
nentially with the number of shuffles.

enough that it is unable to tell familiars apart from other familiars. This capacity
is a function of the classifier complexity, the number of points being compared
(related to tw), and the subset of points being compared (the shuffling).

Classifier Assumptions. We must make basic assumptions about the classifier.
We assume that the classifier f(x) is able to correctly distinguish between an
anomaly and familiars. In the case of logistic regression, for instance, we assume
that f will label an anomaly 1 with relatively high confidence if it is learned on
a set of familiars labeled 0 and an anomaly within a set of familiars labeled 1.
This means f(x) = P (y = 1|x,w) will be significantly higher than 0.5 if x is an
anomaly and close to or below 0.5 if x is a familiar.

Increasing the Number of Shuffles, K, Removes Temporal Dependen-
cies. Here we show that the number of shuffles K needed to remove temporal
dependencies scales with the number of anomalies A at O(A log A).

Suppose a video has A anomalies and a significantly larger number of total
frames, A � T . Consider the worst case scenario for our algorithm, where all A
anomalies are identical. Formally, each of these anomalies have identical feature
vectors: xn1 = xn2 = ... = xnA

. This represents the worst case because if one
such anomaly xni

is labeled 0 while another anomaly xnj
is labeled 1, the score

of f(xnj
) will be small. In other words, an anomaly in the negative window can

negate the score of another in the positive window. Therefore, the best split of
the data for a given anomaly instance is when it occurs first in the video.2 The
goal of shuffling is to reorder the anomalies enough times that every anomaly
gets the opportunity to be the first instance in the reordered set of frames.

2 Ignoring the rare case when it occurs in the very first negative window.
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More formally, let us define random variable F as the event that an anomaly x
appears first in a given shuffle. F is a binary variable that occurs with probability
1/A, so in expectation, the fraction of shuffles in which it appears first is also
μ = 1/A. However, we would like to use as few shuffles as possible to ensure that
the event F gets close to its mean 1/A. This means we need a bound on the
probability that F̄K − μ is less than some ε for K shuffles. A relative tolerance
ε = (εp/A) is required because as the desired fraction 1/A gets smaller, the
effect of deviations ε on the score of an anomaly grows proportionally larger. For
instance, εp = 0.25 requires that every anomaly is first in at least 75 % as many
shuffles as it would be on average. To obtain this bound, we apply the Relative
Entropy Chernoff Bound [15]3.

The Chernoff bound for Bernoulli random variables states that the average
F̄K of K variables with mean μ falls below μ− ε for some ε > 0 with probability:

Pr
(
F̄K ≤ μ − ε

) ≤ e−K KL(μ−ε,μ), (1)

where KL(p1, p2) is the KL divergence between two Bernoulli distributions with
parameters p1 and p2. This is a well-known formula, and the KL divergence
KL(μ − ε, μ) with μ = 1/A, ε = εp/A is:

KL(μ − ε, μ) =
1
A

[
log(1 − εp)(1 − εp) + log

( εp

A − 1

)
(A − 1 + εp)

]
(2)

With Eqs. 1 and 2, we have bounded the probability that a single anomaly will
not appear first in a large enough fraction of shuffles. To extend this to all A
anomalies, we apply the union bound to all events F̄

(i)
K to get our final bound:

δ := Pr

(
A⋃

i=1

(
F̄

(i)
K ≤ μ − ε

)
)

≤ Ae−K KL(μ−ε,μ) (3)

The bounding probability δ is defined in terms of A, K, and εp. Values of this
bound for different values of K, δ, and A are depicted in Fig. 5. We are interested
in choosing the number of shuffles K for a given δ, A, and εp, so we solve Eq. 3
for K :

K ≥ log(A
δ )

KL(μ − ε, μ)
(4)

In big O terms, for fixed δ and εp, we need O(A log A) shuffles to reorder the
anomalies enough times to equally score them.

Larger Window Sizes Decrease the Effect of Overfitting Classi-
fiers. Given a choice K, there is one more parameter in the framework that
requires care: the window size tw. Increasing the window stride decreases the
computational load on the system (more splits per shuffle). In terms of perfor-
mance, it may also seem best to make tw as small as possible because anomalies
3 Kakade provides a quick summary for those unfamiliar with these bounds [16]:

http://stat.wharton.upenn.edu/∼skakade/courses/stat928/lectures/lecture06.pdf.

http://stat.wharton.upenn.edu/~skakade/courses/stat928/lectures/lecture06.pdf
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are easier to distinguish in a smaller window size. In addition, with large window
sizes, anomalies of different types can fall within the same window and ‘interfere’
with each others’ scores. However, decreasing the window size beyond a certain
point also reduces performance, as the classifier overfits and familiars become
distinguishable from other familiars. In other words, we must choose tw to be
able to trade off our ability to distinguish anomalies without being able to dis-
tinguish familiars. We consider here a theoretical sketch explicating the relation
between the complexity of the classifier and the choice of window size tw.

Assume we have computed a complexity metric [17] for our chosen classifier f .
In this instance, we will work with the Rademacher complexity4 R(m), where m
is the size of the subset of points being classified [18]. A higher Rademacher
complexity indicates the classifier is able to more easily distinguish randomly
labeled data. For instance, a highly regularized linear classifier has a much lower
Rademacher complexity than a RBF-kernel SVM or complex neural network.
This metric is especially convenient because it is measured relative to the data
distribution (so it adapts to the video) and can be empirically estimated by
simply computing a statistic over randomly labeled subsampled data [18]5.

Given that we have a classifier of complexity R, we can adjust the window
size to decrease the probability that familiars can be distinguished from each
other. Generalization bounds provide a way to relate the error from overfitting
or noisy labels to the classifier complexity and dataset size. In our case, the
true error, is the error from classifying anomalous or familiar points incorrectly
according to their true labels. The training error is the error when we trained
the classifier on our synthetic labels.

While a careful analysis requires understanding errors in the fixed design [20]
setting, the traditional i.i.d. random design provides crude guidance on algo-
rithm behavior and trade-offs. In this setting, the Rademacher complexity
provides us a generalization bound [18]. For i.i.d. samples, the difference
between the estimated and true error in classifying a set of m datapoints will

be err − êrr ≤ R(m) + O
(√

log 1/δ
m

)
with probability 1 − δ. This gives a good

intuition for how the overfitting of our classifier relates to its complexity and the
number of points m that we train on. This bound follows our intuition: (1) as m
decreases, the chance of classifying incorrectly increases; (2) as R(m) increases,
the classifier complexity increases and we have a better chance of incorrectly
distinguishing familiars from other familiars.

Due to this intuition, we choose a simple classifier, l2-regularized logistic
regression. Window size tw is most easily chosen through empirical testing; if the
variance in the anomaly signal is large, familiars are too easy to tell apart and the
window size tw should be decreased. When no anomalies are visible, tw should
be increased.

4 The insights that follow generalize to VC dimension and other complexity measures.
5 For a useful introduction, see [19].
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4 Experiments

Dataset. We tested our algorithm on the Avenue Dataset [2]6 as well as the
Subway surveillance dataset [21], the Personal Vacation Dataset [11], and the
UMN Unusual Activity Dataset [22].

The Avenue dataset contains 16 training videos and 21 testing videos, and
locations of anomalies are marked in ground truth pixel-level masks for each
frame in the testing videos. The videos include a total of 15324 frames for testing.
Our algorithm was permitted to use only the testing videos, and performed
anomaly detection with no assumptions on the normality of any section of this
video. This is in stark contrast to other methods, which must train a model
on a set of frames from the training videos and/or from pre-marked sections of
video. There are several other datasets available for anomaly detection, and our
algorithm demonstrated reasonable success on all of the ones we tested7. We
focus on the Avenue Dataset specifically because it was more challenging than
staged datasets (such as the UMN Unusual Activity Dataset) and is more recent
with more specific labeling than others, such as the Personal Vacation dataset.
The dataset is also valuable because the method in [2] has publicly available
code and results, so we were able to compare with the same implementation
and features as a recent standard in anomaly detection. The UCSD pedestrian
anomaly detection dataset [6] is another well-labeled and recent dataset, but
nearly half of the frames in each test video contain anomalies, so the provided
anomaly labels are not applicable in our unsupervised setting. More precisely, in
our setting, no frames would be defined as anomalous since the activities labeled
as such in the dataset often compose half of the video.8

Implementation. For the Avenue dataset, we follow the same feature genera-
tion procedure as Lu [2], courtesy of code they provided upon request. The fea-
tures computed on the video match their method exactly, resulting in gradient-
based features for 10×10×5 (rows × columns × frames) spatiotemporal subunits
in the video. After PCA and normalization, each subunit is represented by a 100
dimensional vector. Using the code provided by the authors, we are able to run
their algorithm alongside ours on the same set of features. Following their eval-
uation, we treat each subunit as a ‘frame’ in our framework, classifying each
subunit independently. The results are smoothed with the same filter as [2].

We used liblinear’s l2-logistic regression for the classifier f in the framework.
We experimented with several values of λ across other videos and found that
as long as the features are whitened, λ within an order of magnitude of 1 gives
reasonable results (see Table 1. We only needed 10 shuffles to get adequate perfor-
mance, likely because there were few anomalies per video. We display our results

6 http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html.
7 See supplementary material for more results, including results on individual videos

in the UMN and Avenue datasets.
8 Other videos are unusable for a similar reason; for instance, 2 of the 8 videos available

from [23] contain more than 50% frames with at least one anomaly, and only 2 con-
tain fewer than 20% anomalous frames (one of which is the Subway exit sequence).

http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html


346 A. Del Giorno et al.

for a window size of 10. The algorithm is trivially parallelizable across shuffles
and splits; we provide a multithreaded version that runs splits simultaneously
across all allocated CPUs. This ability to increase accuracy by operating more
units in parallel is a significant benefit of this framework. In contrast, scanning
techniques that update models in an online fashion must operate serially; their
computation cost is dependent on the desired accuracy. An implementation of
our method is available online.9

Evaluation Metric. We are interested in identifying every instance of an anom-
aly. We also care about proposing frames for a human to review, meaning we
would like to evaluate the fidelity of the anomalousness with a human rating of
anomalousness. Consequently, we avoid metrics that score anomaly detections
in an event-detection style, where flagging a single frame is counted as a suc-
cessful detection of adjacent frames. In addition, metrics like Equal Error Rate
(EER) can be misleading in the anomaly detection setting.10 Therefore, we using
ROC curves and the corresponding area under the curve (AUC) as the evalua-
tion metric, computed with reference to human-labeled frame and pixel ground
truth.

Results. Figure 6 shows example detections and the resulting ROC curves and
AUC values for our algorithm and [2] on the Avenue dataset. Note our algorithm
operates in a separate setting – it does not (a) use any sequence other than an
individual test video, (b) obtain a guiding form for models of familiarity, or
(c) assume any partition of the video is familiar. Even with these additional
challenges, we are able to obtain near-state-of-the-art performance.

The ROC curve sheds some light on the possible performance bottleneck
for these algorithms: the last half of the curves for the two algorithms match
closely. This highlights that for difficult anomaly instances, a similar number of
false positives seem to be commonly detected by both algorithms. We believe
that both are hitting a limitation with the encoding of events in the feature
space: either the feature space is not descriptive enough or several other instances
appear as anomalous as the true anomalies in feature space. Example detections
and per-video analysis (see Supplementary) also shed light on our method’s
behavior. Since our algorithm is operating only on the test sequence, it exhibits
false positives such as the only time someone enters the foreground from the
right. This is penalized because the provided ground truth was marked relative
to the training data. In addition, by using features that operate on 15-frame
chunks of time, we often detect events as early as 15 frames too soon.

In Table 1 we show that our algorithm’s robust performance across a range
of parameters on the Avenue dataset. These results show that for sub-optimal
parameter choices (common in the unsupervised learning setting), shuffles can

9 http://www.cs.cmu.edu/∼adelgior/anomalyframework.html.
10 Consider the case when only 1% of the video is anomalous: the EER on an algorithm

that markes all frames normal would be 1 %, outperforming most modern algorithms.
This extreme class imbalance is less prevalent in current standard datasets, but will
become an apparent problem as more realistic datasets become prevalent.

http://www.cs.cmu.edu/~adelgior/anomalyframework.html
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improve performance. Imagine an under-regularized classifier (λ too small). The
classifier will too easily distinguish normal points from subsets of the data, but
this effect is reduced as the number of shuffles increases. A similar argument
follows for other sub-optimal parameters. The major benefits of shuffling cannot
be seen in the commonly used datasets for anomaly detection because the test
sequences are too short to show context changes or multiple instances of the
same anomaly that are more commonly found in real-world scenarios.

In addition, we report our AUC values on the Subway dataset (exit: 0.8236;
entrance: 0.6913). Results for one of the videos in the Personal Vacation Dataset
are shown in Fig. 7. Detailed UMN Dataset results can be found in the supple-
mentary material. Our method outperforms [2] on all but one scene. While the
AUC values are good (average = 0.91), the average AUC for both our method
and the sparse method is still lower than the sparse and model-based approaches
reported in [5]; this indicates that a change in features could make up for the
difference in the performance gap.
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(a) Pixel-based ROC on Av-
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(b) Frame-based ROC on
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(c) Pixel-based detection
examples

Fig. 6. Performance on the Avenue Dataset. ROC curves in (a) and (b) show our
performance nearly matches this algorithm, while we require no training data. Detec-
tion examples shown in (c) show a correctly classified familiar frame, two detected
anomalous frames (running and dropping papers), and a false alarm (camera shake).

Table 1. Frame-based AUC averaged across all 21
test videos of the Avenue dataset. All instances of
K = 10 outperform their K = 0 counterparts.

tw K = 0 K = 10

10 100 1000 10 100 1000

λ = 0.01 0.8697 0.8149 0.7731 0.8950 0.8951 0.8085

λ = 1 0.8921 0.8736 0.7731 0.8957 0.8954 0.8085

λ = 100 0.8947 0.8922 0.7751 0.8958 0.8953 0.8088

Fig. 7. Results on video 00016 in
the Personal Vacation Dataset. As
the number of shuffles increases,
the signal-to-noise ratio increases.
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5 Discussion

We have developed a method for identifying anomalies in videos in a setting
that is independent of the order in which anomalies appear and requires no
separate training sequences. The permutation-testing methodology requires no
assumptions about the content in the descriptors of each frame and the user
is able to “plug in” the latest optimal features for their video as long as the
anomalous frames are distinguishable in this space. No training data needs to be
collected or labeled within the test video. We show that our anomaly detection
algorithm is able to perform as well as state of the art on standard datasets, even
when we adjust the setting by removing training data. The lack of assumptions
on the content or location of familiars is valuable for finding true anomalies that
had previously remained unseen.
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