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Abstract. By taking the semantic object parsing task as an exem-
plar application scenario, we propose the Graph Long Short-Term Mem-
ory (Graph LSTM) network, which is the generalization of LSTM from
sequential data or multi-dimensional data to general graph-structured
data. Particularly, instead of evenly and fixedly dividing an image to pix-
els or patches in existing multi-dimensional LSTM structures (e.g., Row,
Grid and Diagonal LSTMs), we take each arbitrary-shaped superpixel as
a semantically consistent node, and adaptively construct an undirected
graph for each image, where the spatial relations of the superpixels are
naturally used as edges. Constructed on such an adaptive graph topology,
the Graph LSTM is more naturally aligned with the visual patterns in the
image (e.g., object boundaries or appearance similarities) and provides a
more economical information propagation route. Furthermore, for each
optimization step over Graph LSTM, we propose to use a confidence-
driven scheme to update the hidden and memory states of nodes pro-
gressively till all nodes are updated. In addition, for each node, the for-
gets gates are adaptively learned to capture different degrees of semantic
correlation with neighboring nodes. Comprehensive evaluations on four
diverse semantic object parsing datasets well demonstrate the significant
superiority of our Graph LSTM over other state-of-the-art solutions.
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1 Introduction

Beyond traditional image semantic segmentation, semantic object parsing aims
to segment an object within an image into multiple parts with more fine-grained
semantics and provide full understanding of image contents, as shown in Fig. 1.
Many higher-level computer vision applications [1,2] can benefit from a powerful
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Fig. 1. Examples of semantic object parsing results by the proposed Graph LSTM
model. It parses an object into multiple parts with different semantic meanings. Best
viewed in color.

semantic object parser, including person re-identification [3], human behavior
analysis [4–7].

Recently, Convolutional Neural Networks (CNNs) have demonstrated excit-
ing success in various pixel-wise prediction tasks such as semantic segmenta-
tion and detection [8,9], semantic part segmentation [10,11] and depth predic-
tion [12]. However, the pure convolutional filters can only capture limited local
context while the precise inference for semantic part layouts and their interac-
tions requires a global perspective of the image. To consider the global structural
context, previous works thus use dense pairwise connections (Conditional Ran-
dom Fields (CRFs)) upon pure pixel-wise CNN classifiers [8,13–15]. However,
most of them try to model the structure information based on the predicted
confidence maps, and do not explicitly enhance the feature representations in
capturing global contextual information, leading to suboptimal segmentation
results under complex scenarios.

An alternative strategy is to exploit long-range dependencies by directly
augmenting the intermediate features. The multi-dimensional Long Short-Term
Memory (LSTM) networks have produced very promising results in modeling
2D images [16–19], where long-range dependencies, which are essential to object
and scene understanding, can be well memorized by sequentially functioning
on all pixels. However, in terms of the information propagation route in each
LSTM unit, most of existing LSTMs [19–21] have only explored pre-defined fixed
topologies. As illustrated in the top row of Fig. 2, for each individual image, the
prediction for each pixel by those methods is influenced by the predictions of
fixed neighbors (e.g., 2 or 8 adjacent pixels or diagonal neighbors) in each time-
step. The natural properties of images (e.g., local boundaries and semantically
consistent groups of pixels) have not be fully utilized to enable more meaningful
and economical inference in such fixed locally factorized LSTMs. In addition,
much computation with the fixed topology is redundant and inefficient as it has
to consider all the pixels, even for the ones in a simple plain region.

In this paper, we propose a novel Graph LSTM model that extends the tra-
ditional LSTMs from sequential and multi-dimensional data to general graph-
structured data, and demonstrate its superiority on the semantic object parsing
task. Instead of evenly and fixedly dividing an image into pixels or patches as
previous LSTMs did, Graph LSTM takes each arbitrary-shaped superpixel as a
semantically consistent node of a graph, while the spatial neighborhood relations
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Fig. 2. The proposed Graph LSTM structure. (1) The top row shows the traditional
pixel-wise LSTM structures, including Row LSTM [21], Diagonal BiLSTM [20,21] and
Local-Global LSTM [19]. (2) The bottom row illustrates the proposed Graph LSTM
that is built upon the superpixel over-segmentation map for each image.

are naturally used to construct the undirected graph edges. The adaptive graph
topology can thus be constructed where different nodes are connected with dif-
ferent numbers of neighbors, depending on the local structures in the image.
As shown in the bottom row of Fig. 2, instead of broadcasting information to
a fixed local neighborhood following a fixed updating sequence as in the previ-
ous LSTMs, Graph LSTM proposes to effectively propagate information from
one adaptive starting superpixel node to all superpixel nodes along the adaptive
graph topology for each image. It can effectively reduce redundant computa-
tional costs while better preserving object/part boundaries to facilitate global
reasoning.

Together with the adaptively constructed graph topology of an image, we
propose a confidence-driven scheme to subsequently update the features of all
nodes, which is inspired by the recent visual attention models [22,23]. Previous
LSTMs [20,21] often simply start at pre-defined pixel or patch locations and
then proceed toward other pixels or patches following a fixed updating route for
different images. In contrast, we assume that starting from a proper superpixel
node and updating the nodes following a certain content-adaptive path can lead
to a more flexible and reliable inference for global context modelling, where the
visual characteristics of each image can be better captured. As shown in Fig. 3,
the Graph LSTM, as an independent layer, can be easily appended to the inter-
mediate convolutional layers in a Fully Convolutional Neural Network [24] to
strengthen visual feature learning by incorporating long-range contextual infor-
mation. The hidden states represent the reinforced features, and the memory
states recurrently encode the global structures.
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Fig. 3. Illustration of the proposed network architecture for semantic object parsing.

Our contributions can be summarized in the following four aspects. (1)
We propose a novel Graph LSTM structure to extend the traditional LSTMs
from sequential and multi-dimensional data to general graph-structured data,
which effectively exploits global context by following an adaptive graph topol-
ogy derived from the content of each image. (2) We propose a confidence-driven
scheme to select the starting node and sequentially update all nodes, which facil-
itates the flexible inference while preserving the visual characteristics of each
image. (3) In each Graph LSTM unit, different forget gates for the neighboring
nodes are learned to dynamically incorporate the local contextual interactions
in accordance with their semantic relations. (4) We apply the proposed Graph
LSTM in semantic object parsing, and demonstrate its superiority through com-
prehensive comparisons on four challenging semantic object parsing datasets
(i.e., PASCAL-Person-Part dataset [25], Horse-Cow parsing dataset [26], ATR
dataset [27] and Fashionista dataset [28]).

2 Related Work

LSTM on Image Processing: Recurrent neural networks have been first intro-
duced to address the sequential prediction tasks [29–31], and then extended to
multi-dimensional image processing tasks [16,17]. Benefiting from the long-range
memorization of LSTM networks, they can obtain considerably larger depen-
dency fields by sequentially performing LSTM units on all pixels, compared to
the local convolutional filters. Nevertheless, in each LSTM unit, the prediction
of each pixel is affected by a fixed factorization (e.g., 2 or 8 neighboring pix-
els [19,20,32,33] or diagonal neighborhood [17,21]), where diverse natural visual
correlations (e.g., local boundaries and homogeneous regions) have not been con-
sidered. Meanwhile, the computation is very costly and redundant due to the
sequential computation on all pixels. Tree-LSTM [34] introduces the structure
with tree-structured topologies for predicting semantic representations of sen-
tences. Compared to Tree-LSTM, Graph LSTM is more natural and general
for 2D image processing with arbitrary graph topologies and adaptive updating
schemes.
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Semantic Object Parsing: There has been increasing research interest on the
semantic object parsing problem including the general object parsing [14,25,26,
35,36], person part segmentation [10,11] and human parsing [28,37–42]. To cap-
ture the rich structure information based on the advanced CNN architecture,
one common way is the combination of CNNs and CRFs [8,13,14,43], where the
CNN outputs are treated as unary potentials while CRF further incorporates
pairwise or higher order factors. Instead of learning features only from local
convolutional kernels as in these previous methods, we incorporate the global
context by the novel Graph LSTM structure to capture long-distance dependen-
cies on the superpixels. The dependency field of Graph LSTM can effectively
cover the entire image context.

3 The Proposed Graph LSTM

We take semantic object parsing as its application scenario, which aims to gen-
erate pixel-wise semantic part segmentation for each image. Figure 3 illustrates
the designed network architecture based on Graph LSTM. The input image first
passes through a stack of convolutional layers to generate the convolutional fea-
ture maps. The proposed Graph LSTM takes the convolutional features and
the adaptively specified node updating sequence for each image as the input,
and then efficiently propagates the aggregated contextual information towards
all nodes, leading to enhanced visual features and better parsing results. To
both increase convergence speed and propagate signals more directly through
the network, we deploy residual connections [44] after one Graph LSTM layer to
generate the input features of the next Graph LSTM layer. Note that residual
connections are performed to generate the element-wise input features for each
layer, which would not destroy the computed graph topology. After that, several
1 × 1 convolution filters are employed to produce the final parsing results. The
following subsections will describe the main innovations inside Graph LSTM,
including the graph construction and the Graph LSTM structure.

3.1 Graph Construction

The graph is constructed on superpixels that are obtained through image over-
segmentation using SLIC [45]1. Note that, after several convolutional layers, the
feature maps of each image have been down-sampled. Therefore, in order to use
the superpixel map for graph construction in each Graph LSTM layer, one needs
to upsample the feature maps into the original size of the input image.

The superpixel graph G for each image is then constructed by connecting
a set of graph nodes {vi}Ni=1 via the graph edges {Eij}. Each graph node vi
represents a superpixel and each graph edge Eij only connects two spatially
neighboring superpixel nodes. The input features of each graph node vi are
1 Other over-segmentation methods such as entropy rate-based approach [41] could

also be used, and we did not observe much difference in the final results in our
experiments.
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denoted as fi ∈ R
d, where d is the feature dimension. The feature fi is computed

by averaging the features of all the pixels belonging to the same superpixel node
vi. As shown in Fig. 3, the input states of the first Graph LSTM layer come
from the previous convolutional feature maps. For the subsequent Graph LSTM
layers, the input states are generated after the residual connections [44] for the
input features and the updated hidden states by the previous Graph LSTM layer.
To make sure that the number of the input states for the first Graph LSTM layer
is compatible with that of the following layers and that the residual connections
can be applied, the dimensions of hidden and memory states in all Graph LSTM
layers are set the same as the feature dimension of the last convolutional layer
before the first Graph LSTM layer.

3.2 Graph LSTM

Confidence-driven Scheme. The node updating scheme is more important yet
more challenging in Graph LSTM than the ones in traditional LSTMs [20,21] due
to its adaptive graph topology. To enable better global reasoning, Graph LSTM
specifies the adaptive starting node and node updating sequence for the infor-
mation propagation of each image. Given the constructed undirected graph G,
we extensively tried several schemes to update all nodes in a graph in the exper-
iments, including the Breadth-First Search (BFS), Depth-First Search (DFS)
and Confidence-Driven Search (CDS). We find that the CDS achieves better
performance. Specifically, as illustrated in Fig. 3, given the top convolutional
feature maps, the 1 × 1 convolutional filters can be used to generate the ini-
tial confidence maps with regard to each semantic label. Then the confidence of
each superpixel for each label is computed by averaging the confidences of its
contained pixels, and the label with highest confidence could be assigned to the
superpixel. Among all the foreground superpixels (i.e., assigned to any semantic
part label), the node updating sequence can be determined by ranking all the
superpixel nodes according to the confidences of their assigned labels.

During updating, the (t + 1)-th Graph LSTM layer determines the current
states of each node vi that comprises the hidden states hi,t+1 ∈ R

d and mem-
ory states mi,t+1 ∈ R

d of each node. Each node is influenced by its previous
states and the states of neighboring graph nodes as well in order to propagate
information to the whole image. Thus the inputs to Graph LSTM units con-
sist of the input states fi,t+1 of the node vi, its previous hidden states hi,t and
memory states mi,t, and the hidden and memory states of its neighboring nodes
vj , j ∈ NG(i).

Averaged Hidden States for Neighboring Nodes. Note that with an adap-
tive updating scheme, when operating on a specific node in each Graph LSTM
layer, some of its neighboring nodes have already been updated while others may
have not. We therefore use a visit flag qj to indicate whether the graph node
vj has been updated, where qj is set as 1 if updated, and otherwise 0. We then
use the updated hidden states hj,t+1 for the visited nodes, i.e., qj = 1 and the
previous states hj,t for the unvisited nodes. The 1(·) is an indicator function.
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Note that the nodes in the graph may have an arbitrary number of neighboring
nodes. Let |NG(i)| denote the number of neighboring graph nodes. To obtain a
fixed feature dimension for the inputs of the Graph LSTM unit during network
training, the hidden states h̄i,t used for computing the LSTM gates of the node vi
are obtained by averaging the hidden states of neighboring nodes, computed as:

h̄i,t =

∑
j∈NG(i)(1(qj = 1)hj,t+1 + 1(qj = 0)hj,t)

|NG(i)| . (1)

Adaptive Forget Gates. Note that unlike the traditional LSTMs [20,46], the
Graph LSTM specifies different forget gates for different neighboring nodes by
functioning the input states of the current node with their hidden states, defined
as ḡfij , j ∈ NG(i). It results in the different influences of neighboring nodes on
the updated memory states mi,t+1 and hidden states hi,t+1. The memory states
of each neighboring node are also utilized to update the memory states mi,t+1

of the current node. The shared weight metrics Ufn for all nodes are learned
to guarantee the spatial transformation invariance and enable the learning with
various neighbors. The intuition is that each pair of neighboring superpixels may
be endowed with distinguished semantic correlations compared to other pairs.

Graph LSTM Unit. The Graph LSTM consists of four gates: the input gate
gu, the forget gate gf , the adaptive forget gate ḡf , the memory gate gc and the
output gate go. The Wu,W f ,W c,W o are the recurrent gate weight matrices
specified for input features while Uu, Uf , U c, Uo are those for hidden states of
each node. Uun, Ufn, U cn, Uon are the weight parameters specified for states of
neighboring nodes. The hidden and memory states by the Graph LSTM can be
updated as follows:

gui = δ(Wufi,t+1 + Uuhi,t + Uunh̄i,t + bu),

ḡfij = δ(W f fi,t+1 + Ufnhj,t + bf ),

gfi = δ(W f fi,t+1 + Ufhi,t + bf ),
goi = δ(W ofi,t+1 + Uohi,t + Uonh̄i,t + bo),
gci = tanh(W cfi,t+1 + U chi,t + U cnh̄i,t + bc), (2)

mi,t+1 =

∑
j∈NG(i)(1(qj = 1)ḡfij � mj,t+1 + 1(qj = 0)ḡfij � mj,t)

|NG(i)|
+ gfi � mi,t + gui � gci ,

hi,t+1 = tanh(goi � mi,t+1).

Here δ is the logistic sigmoid function, and � indicates a point-wise product.
The memory states mi,t+1 of the node vi are updated by combining the mem-
ory states of visited nodes and those of unvisited nodes by using the adaptive
forget gates. Let W,U denote the concatenation of all weight matrices and
{Zj,t}j∈NG(i) represent all related information of neighboring nodes. We can
thus use G-LSTM(·) to shorten Eq. (2) as
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(hi,t+1,mi,t+1) = G-LSTM(fi,t+1,hi,t,mi,t, {Zj,t}j∈NG(i),W,U,G). (3)

The mechanism acts as a memory system, where the information can be written
into the memory states and sequentially recorded by each graph node, which is
then used to communicate with the hidden states of subsequent graph nodes
and previous Graph LSTM layer. The back propagation is used to train all the
weight metrics.

4 Experiments

Dataset: We evaluate the performance of the proposed Graph LSTM structure
on semantic object parsing on four challenging datasets.

PASCAL-Person-Part Dataset [25]. The public PASCAL-Person-part
dataset concentrates on the human part segmentation annotated by Chen et
al. [25] from PASCAL VOC 2010 dataset. The dataset contains detailed part
annotations for every person. Following [10,11], the annotations are merged to
be Head, Torso, Upper/Lower Arms and Upper/Lower Legs, resulting in six per-
son part classes and one background class. 1, 716 images are used for training
and 1, 817 for testing.

Horse-Cow Parsing Dataset [26]. The Horse-Cow parsing dataset is a part
segmentation benchmark introduced in [26]. For each class, most observable
instances from PASCAL VOC 2010 benchmark [47] are manually selected,
including 294 training images and 227 testing images. Each image pixel is elab-
orately labeled as one of the four part classes, including head, leg, tail and body.

ATR Dataset [27] and Fashionista dataset [28]. Human parsing aims to
predict every pixel of each image with 18 labels: face, sunglass, hat, scarf, hair,
upper-clothes, left-arm, right-arm, belt, pants, left-leg, right-leg, skirt, left-shoe,
right-shoe, bag, dress and null. Originally, 7,700 images are included in the ATR
dataset [27], with 6,000 for training, 1,000 for testing and 700 for validation.
10,000 real-world human pictures are further collected by [42] to cover images
with more challenging poses, occlusion and clothes variations. We follow the
training and testing settings used in [42].

Evaluation Metric: The standard intersection over union (IOU) criterion and
pixel-wise accuracy are adopted for evaluation on PASCAL-Person-Part dataset
and Horse-Cow parsing dataset, following [11,26,36]. We use the same evaluation
metrics as in [27,37,42] for evaluation on two human parsing datasets, including
accuracy, average precision, average recall, and average F-1 score.

Network Architecture: For fair comparison with [10,11,14], our network is
based on the publicly available model, “DeepLab-CRF-LargeFOV” [13] for the
PASCAL-Person-Part and Horse-Cow parsing dataset, which slightly modifies
VGG-16 net [48] to FCN [24]. For fair comparing with [19,42] on two human
parsing datasets, the basic “Co-CNN” structure proposed in [42] is utilized due
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Table 1. Comparison of object parsing performance with four state-of-the-art methods
over the PASCAL-Person-Part dataset [26].

Method head torso u-arms l-arms u-legs l-legs Bkg Avg

DeepLab-LargeFOV [13] 78.09 54.02 37.29 36.85 33.73 29.61 92.85 51.78

HAZN [10] 80.79 59.11 43.05 42.76 38.99 34.46 93.59 56.11

Attention [11] - - - - - - - 56.39

LG-LSTM [19] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97

Graph LSTM 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16

to its leading accuracy. Our networks based on “Co-CNN” are trained from the
scratch following the same setting in [42].

Training: We use the same data augmentation techniques for the object part
segmentation and human parsing as in [14,42], respectively. The scale of the
input image is fixed as 321 × 321 for training networks based on “DeepLab-
CRF-LargeFOV”. Based on “Co-CNN”, the input image is rescaled to 150×100
as in [42]. We use the SLIC over-segmentation method [45] to generate averagely
1,000 superpixels for each image. Two training steps are employed to train the
networks. First, we train the convolutional layer with 1 × 1 filters to generate
initial confidence maps that are used to produce the starting node and the update
sequence for all nodes in Graph LSTM. Then, the whole network is fine-tuned
based on the pretrained model to produce final parsing results. In each step,
the learning rate of the newly added layers, including Graph LSTM layers and
convolutional layers is initialized as 0.001 and that of other previously learned
layers, is initialized as 0.0001. All weight matrices used in the Graph LSTM units
are randomly initialized from a uniform distribution of [−0.1, 0.1]. The Graph
LSTM predicts the hidden and memory states with the same dimension as in the
previous convolutional layers. We only use two Graph LSTM layers for all models
since only slight improvements are observed by using more Graph LSTM layers,
which also consumes more computation resources. We fine-tune the networks on
“DeepLab-CRF-LargeFOV” for roughly 60 epochs and it takes about 1 day. For
training based on “Co-CNN” from scratch, it takes about 4–5 days. In the testing
stage, one image takes 0.5 s on average except for the superpixel extraction step.

4.1 Results and Comparisons

We compare the proposed Graph LSTM structure with several state-of-the-art
methods on four public datasets.

PASCAL-Person-Part dataset [26]: We report the results and the compar-
isons with four recent state-of-the-art methods [10,11,13,19] in Table 1. The
results of “DeepLab-LargeFOV” were originally reported in [10]. The proposed
Graph LSTM structure substantially outperforms these baselines in terms of
average IoU metric. In particular, for the semantic parts with more likely
confusions such as upper-arms and lower-arms, the Graph LSTM provides
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Table 2. Comparison of object parsing performance with five state-of-the-art methods
over the Horse-Cow object parsing dataset [26].

Horse

Method Bkg head body leg tail Fg IOU Pix.Acc

SPS [26] 79.14 47.64 69.74 38.85 - 68.63 - 81.45

HC [36] 85.71 57.30 77.88 51.93 37.10 78.84 61.98 87.18

Joint [14] 87.34 60.02 77.52 58.35 51.88 80.70 65.02 88.49

LG-LSTM [19] 89.64 66.89 84.20 60.88 42.06 82.50 68.73 90.92

HAZN [10] 90.87 70.73 84.45 63.59 51.16 - 72.16 -

Graph LSTM 91.73 72.89 86.34 69.04 53.76 87.51 74.75 92.76

Cow

Method Bkg head body leg tail Fg IOU Pix.Acc

SPS [26] 78.00 40.55 61.65 36.32 - 71.98 - 78.97

HC [36] 81.86 55.18 72.75 42.03 11.04 77.04 52.57 84.43

Joint [14] 85.68 58.04 76.04 51.12 15.00 82.63 57.18 87.00

LG-LSTM [19] 89.71 68.43 82.47 53.93 19.41 85.41 62.79 90.43

HAZN [10] 90.66 75.10 83.30 57.17 28.46 - 66.94 -

Graph LSTM 91.54 73.88 85.92 63.67 35.22 88.42 70.05 92.43

Table 3. Comparison of human parsing performance with seven state-of-the-art meth-
ods when evaluating on ATR dataset [27].

Method Acc. F.g. acc. Avg. prec. Avg. recall Avg. F-1 score

Yamaguchi et al. [28] 84.38 55.59 37.54 51.05 41.80

PaperDoll [37] 88.96 62.18 52.75 49.43 44.76

M-CNN [41] 89.57 73.98 64.56 65.17 62.81

ATR [27] 91.11 71.04 71.69 60.25 64.38

Co-CNN [42] 95.23 80.90 81.55 74.42 76.95

Co-CNN (more) [42] 96.02 83.57 84.95 77.66 80.14

LG-LSTM [19] 96.18 84.79 84.64 79.43 80.97

LG-LSTM (more) [19] 96.85 87.35 85.94 82.79 84.12

CRFasRNN (more) [8] 96.34 85.10 84.00 80.70 82.08

Graph LSTM 97.60 91.42 84.74 83.28 83.76

Graph LSTM (more) 97.99 93.06 88.81 87.80 88.20
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considerably better prediction than baselines, e.g., 4.95% and 6.67% higher
over [10] for lower-arms and upper-legs, respectively. This superior performance
achieved by Graph LSTM demonstrates the effectiveness of exploiting global
context to boost local prediction.

Horse-Cow Parsing Dataset [26]: Table 2 shows the comparison results with
five state-of-the-art methods on the overall metrics. The proposed Graph LSTM
gives a huge boost in average IOU. For example, Graph LSTM achieves 70.05%,
7.26% better than LG-LSTM [19] and 3.11% better than HAZN [10] for the
cow class. Large improvement, i.e. 2.59% increase by Graph LSTM in IOU
over the best performing state-of-the-art method, can also be observed from the
comparisons on horse class.

Table 4. Comparison of human parsing performance with five state-of-the-art methods
on the test images of Fashionista [28].

Method Acc. F.g. acc. Avg. prec. Avg. recall Avg. F-1 score

Yamaguchi et al. [28] 87.87 58.85 51.04 48.05 42.87

PaperDoll [37] 89.98 65.66 54.87 51.16 46.80

ATR [27] 92.33 76.54 73.93 66.49 69.30

Co-CNN [42] 96.08 84.71 82.98 77.78 79.37

Co-CNN (more) [42] 97.06 89.15 87.83 81.73 83.78

LG-LSTM [19] 96.85 87.71 87.05 82.14 83.67

LG-LSTM (more) [19] 97.66 91.35 89.54 85.54 86.94

Graph LSTM 97.93 92.78 88.24 87.13 87.57

Graph LSTM (more) 98.14 93.75 90.15 89.46 89.75

ATRDataset [27]: Table 3 and Table 5 report the comparison performance with
seven state-of-the-arts on overall metrics and F-1 scores of individual seman-
tic labels, respectively. The proposed Graph LSTM can significantly outperform
these baselines, particularly, 83.76% vs 76.95% of Co-CNN [42] and 80.97% of
LG-LSTM [19] in terms of average F-1 score. Following [42], we also take the
additional 10,000 images in [42] as extra training images and report the results as
“Graph LSTM (more)”. The “Graph LSTM (more)” can also improve the aver-
age F-1 score by 4.08% over “LG-LSTM (more)”. We show the F-1 score for each
label in Table 5. Generally, our Graph LSTM shows much higher performance
than other baselines. In addition, our “Graph LSTM (more)” significantly out-
performs “CRFasRNN (more)” [8], verifying the superiority of Graph LSTM over
the pair-wise terms in CRF in capturing global context. The results of “CRFas-
RNN (more)” [8] are obtained by training the network using their public code.
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Table 5. Per-Class Comparison of F-1 scores with six state-of-the-art methods on
ATR [27].

Method Hat Hair S-gls U-cloth Skirt Pants Dress Belt L-shoe R-shoe Face L-leg R-leg L-arm R-arm Bag Scarf

Yamaguchi et al. [28] 8.44 59.96 12.09 56.07 17.57 55.42 40.94 14.68 38.24 38.33 72.10 58.52 57.03 45.33 46.65 24.53 11.43
PaperDoll [37] 1.72 63.58 0.23 71.87 40.20 69.35 59.49 16.94 45.79 44.47 61.63 52.19 55.60 45.23 46.75 30.52 2.95
M-CNN [41] 80.77 65.31 35.55 72.58 77.86 70.71 81.44 38.45 53.87 48.57 72.78 63.25 68.24 57.40 51.12 57.87 43.38

ATR [27] 77.97 68.18 29.20 79.39 80.36 79.77 82.02 22.88 53.51 50.26 74.71 69.07 71.69 53.79 58.57 53.66 57.07
Co-CNN [42] 72.07 86.33 72.81 85.72 70.82 83.05 69.95 37.66 76.48 76.80 89.02 85.49 85.23 84.16 84.04 81.51 44.94

Co-CNN more [42] 75.88 89.97 81.26 87.38 71.94 84.89 71.03 40.14 81.43 81.49 92.73 88.77 88.48 89.00 88.71 83.81 46.24
LG-LSTM (more) [19] 81.13 90.94 81.07 88.97 80.91 91.47 77.18 60.32 83.40 83.65 93.67 92.27 92.41 90.20 90.13 85.78 51.09

Graph LSTM (more) 85.30 90.47 72.77 95.11 97.31 96.58 96.43 68.55 85.27 84.35 92.70 91.13 93.17 91.20 81.00 90.83 66.09

Fashionista Dataset [28]: Table 4 gives the comparison results on the Fashion-
ista dataset. Following [27], we only report the performance by training on the
same large ATR dataset [27] and then testing on the 229 images of the Fashion-
ista dataset. Our Graph LSTM architecture can substantially outperform the
baselines by a large gain.

4.2 Discussions

Graph LSTM vs locally fixed factorized LSTM. To show the superior-
ity of the Graph LSTM compared to previous locally fixed factorized LSTM
[19–21], Table 6 gives the performance comparison among different LSTM struc-
tures. These variants use the same network architecture and only replace the
Graph LSTM layer with the traditional fixedly factorized LSTM layer, including

Table 6. Performance comparisons of using different LSTM structures and taking the
superpixel smoothing as the post-processing step when evaluating on PASCAL-Person-
Part dataset.

Method head torso u-arms l-arms u-legs l-legs Bkg Avg

Grid LSTM [20] 81.85 58.85 43.10 46.87 40.07 34.59 85.97 55.90

Row LSTM [21] 82.60 60.13 44.29 47.22 40.83 35.51 87.07 56.80

Diagonal
BiLSTM [21]

82.67 60.64 45.02 47.59 41.95 37.32 88.16 57.62

LG-LSTM [19] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97

Diagonal
BiLSTM [21]
+ superpixel
smoothing

82.91 61.34 46.01 48.07 42.56 37.91 89.21 58.29

LG-LSTM [19] +
superpixel
smoothing

82.98 61.58 46.27 48.08 42.94 38.55 89.66 58.58

Graph LSTM 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16
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Row LSTM [21], Diagonal BiLSTM [21], LG-LSTM [19] and Grid LSTM [20].
The experimented Grid LSTM [20] is a simplified version of Diagnocal BiL-
STM [21] where only the top and left pixels are considered. Their basic struc-
tures are presented in Fig. 2. It can be observed that using richer local contexts
(i.e., number of neighbors) to update the states of each pixel can lead to better
parsing performance. In average, there are six neighboring nodes for each super-
pixel node in the constructed graph topologies in Graph LSTM. Although the
LG-LSTM [19] has employed eight neighboring pixels to guide local prediction,
its performance is still worse than our Graph LSTM.

Graph LSTM vs Superpixel Smoothing. In Table 6, we further demon-
strate that the performance gain by Graph LSTM is not just from using more
accurate boundary information provided by superpixels. The superpixel smooth-
ing can be used as a post-processing step to refine confidence maps by previous
LSTMs. By comparing “Diagonal BiLSTM [21] + superpixel smoothing” and
“LG-LSTM [19] + superpixel smoothing” with our “Graph LSTM”, we can find
that the Graph LSTM can still bring more performance gain benefiting from its
advanced information propagation based on the graph-structured representation.

Node Updating Scheme. Different node updating schemes to update the
states of all nodes are further investigated in Table 7. The Breadth-first search
(BFS) and Depth-first search (DFS) are the traditional algorithms to search
graph data structures. For one parent node, selecting different children nodes to
first update may lead to different updated hidden states for all nodes. Two ways
of selecting first children nodes for updating are thus evaluated: “BFS (location)”
and “DFS (location)” choose the spatially left-most node among all children
nodes to update first while “BFS (confidence)” and “DFS (confidence)” select
the child node with maximal confidence on all foreground classes. We find that

Table 7. Performance comparisons with different node updating schemes when evalu-
ating on PASCAL-Person-Part dataset.

Method head torso u-arms l-arms u-legs l-legs Bkg Avg

BFS (location) 83.00 61.63 46.18 48.01 44.09 38.71 93.82 58.63

BFS (confidence) 82.97 62.20 46.70 48.00 44.02 39.00 90.86 59.11

DFS (location) 82.85 61.25 45.89 48.02 42.50 38.10 89.04 58.23

DFS (confidence) 82.89 62.31 46.76 48.04 44.24 39.07 91.18 59.21

Graph LSTM (confidence-driven) 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16

Table 8. Performance comparisons of using the confidence-drive scheme based on
confidences on different foreground labels when evaluating on PASCAL-Person-Part
dataset.

Foreground label head torso u-arms l-arms u-legs l-legs Avg

Avg IoU 61.03 61.45 60.03 59.23 60.49 59.89 60.35
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using our confidence-driven scheme can achieve better performance than other
alternative ones. The possible reason may be that the features of superpixel nodes
with higher foreground confidences embed more accurate semantic meanings and
thus lead to more reliable global reasoning.

Note that we use the ranking of confidences on all foreground classes to gen-
erate the node updating scheme. In Table 8, we extensively test the performance
of using the initial confidence maps of different foreground labels to produce
the node updating sequence. In average, only slight performance differences are
observed when using the confidences of different foreground labels. In particular,
using the confidences of “head” and “torso” leads to improved performance over
using those of all foreground classes, i.e., 61.03% and 61.45% vs 60.16%. It is
possible because the segmentation of head/torso are more reliable in the person
parsing case, which further verifies that the reliability of nodes in the updating
order is important. It is difficult to determine the best semantic label for each
task, hence we just use the one over all the foreground labels for simplicity and
efficiency in implementation.

Adaptive Forget Gates. In Graph LSTM, adaptive forget gates are adopted
to treat the local contexts from different neighbors differently. The superiority
of using adaptive forget gates can be verified in Table 9. “Identical forget gates”
shows the results of learning identical forget gates for all neighbors and simul-
taneously ignoring the memory states of neighboring nodes. Thus in “Identical
forget gates”, the gfi and mi,t+1 in Eq. (2) can be simply computed as

gfi = δ(W f fi,t+1 + Ufhi,t + Ufnh̄i,t + bf ),

mi,t+1 = gfi � mi,t + gui � gci .
(4)

It can be observed that learning adaptive forgets gates in Graph LSTM
shows better performance over learning identical forget gates for all neighbors
on the object parsing task, as diverse semantic correlations with local context
can be considered and treated differently during the node updating. Compared
to Eq. (4), no extra parameters is brought to specify adaptive forget gates due
to the usage of the shared parameters Ufn in Eq. (2).

Superpixel number. The drawback of using superpixels is that superpixels
may introduce quantization errors whenever pixels within one superpixel have
different ground truth labels. We thus evaluate the performance of using different

Table 9. Comparisons of parsing performance by the version with or without learning
adaptive forget gates for different neighboring nodes when evaluating on PASCAL-
Person-Part dataset.

Method head torso u-arms l-arms u-legs l-legs Bkg Avg

Identical forget gates 82.89 62.31 46.76 48.04 44.24 39.07 91.18 59.21

Graph LSTM (dynamic forget gates) 82.69 62.68 46.88 47.71 45.66 40.93 94.59 60.16
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Fig. 4. Performance comparisons with six averaged numbers of superpixels when evalu-
ating on PASCAL-Person-Part and ATR datasets, including 250, 500, 750, 1000, 1250,
1500.

average numbers of superpixels to construct the graph structure. As shown in
Fig. 4, there are slight improvements when using over 1,000 superpixels. We thus
use averagely 1,000 superpixels for each image in all our experiments.

Residual connections. Residual connections were first proposed in [44] to
better train very deep convolutional layers. The version in which the residual
connections are eliminated achieves 59.12% in terms of Avg IoU on PASCAL-
Person-Part dataset. It demonstrates that residual connections between Graph
LSTM layers can also help boost the performance, i.e., 60.16% vs 59.12%. Note
that our Graph LSTM version without using residual connections is still signif-
icantly better than all baselines in Table 1.

4.3 More Visual Comparison and Failure Cases

The qualitative comparisons of parsing results on PASCAL-Person-Part and
ATR dataset are visualized in Figs. 5 and 6, respectively. In general, our Graph-
LSTM outputs more reasonable results for confusing labels by effectively exploit-
ing global context to assist the local prediction. We also show some failure cases
on each dataset.

Fig. 5. Comparison of parsing results of our Graph LSTM and the baseline “DeepLab-
LargeFov” and some failure cases by our Graph LSTM on PASCAL-Person-Part.
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Fig. 6. Parsing result comparisons of our Graph LSTM and the LG-LSTM [19] and
some failure cases by our Graph LSTM on ATR dataset.

5 Conclusion and Future Work

In this work, we proposed a novel Graph LSTM network to address the funda-
mental semantic object parsing task. Our Graph LSTM generalizes the existing
LSTMs into the graph-structured data. The adaptive graph topology for each
image is constructed by connecting the arbitrary-shaped superpixels nodes via
their spatial neighborhood connections. The confidence-driven scheme is used to
adaptively select the starting node and determine the node updating sequence.
The Graph LSTM can thus sequentially update the states of all nodes. Compre-
hensive evaluations on four public semantic object parsing datasets well demon-
strate the significant superiority of our graph LSTM. In future, we will explore
how to dynamically adjust the graph structure to directly produce the semantic
masks according to the connected superpixel nodes.
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networks. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds.) ICANN
2007. LNCS, vol. 4668, pp. 549–558. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74690-4 56

33. Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-
dimensional LSTM, with application to fast biomedical volumetric image segmen-
tation. arXiv preprint arXiv:1506.07452 (2015)

34. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015)

35. Lu, W., Lian, X., Yuille, A.: Parsing semantic parts of cars using graphical models
and segment appearance consistency. In: BMVC (2014)
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