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Abstract. Visual relationships capture a wide variety of interactions
between pairs of objects in images (e.g. “man riding bicycle” and “man
pushing bicycle”). Consequently, the set of possible relationships is
extremely large and it is difficult to obtain sufficient training examples
for all possible relationships. Because of this limitation, previous work
on visual relationship detection has concentrated on predicting only a
handful of relationships. Though most relationships are infrequent, their
objects (e.g. “man” and “bicycle”) and predicates (e.g. “riding” and
“pushing”) independently occur more frequently. We propose a model
that uses this insight to train visual models for objects and predicates
individually and later combines them together to predict multiple rela-
tionships per image. We improve on prior work by leveraging language
priors from semantic word embeddings to finetune the likelihood of a pre-
dicted relationship. Our model can scale to predict thousands of types of
relationships from a few examples. Additionally, we localize the objects
in the predicted relationships as bounding boxes in the image. We fur-
ther demonstrate that understanding relationships can improve content
based image retrieval.

1 Introduction

While objects are the core building blocks of an image, it is often the relation-
ships between objects that determine the holistic interpretation. For example,
an image with a person and a bicycle might involve the man riding, pushing,
or even falling off of the bicycle (Fig. 1). Understanding this diversity of rela-
tionships is central to accurate image retrieval and to a richer semantic under-
standing of our visual world.

Visual relationships are a pair of localized objects connected via a predicate
(Fig. 2). We represent relationships as (object;-predicate-objects)!. Visual
relationship detection involves detecting and localizing pairs of objects in an

' In natural language processing [2-5], relationships are defined as (subject-
predicate-object). In this paper, we define them as (objecti-predicate-objects)
for simplicity.
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Fig. 1. Even though all the images contain the same objects (a person and a bicycle),
it is the relationship between the objects that determine the holistic interpretation of
the image.

Input Output

person -on-motorcycle person-wear -helmet motorcycle-has-whee

Fig. 2. Visual Relationship Detection: Given an image as input, we detect multiple
relationships in the form of (objecti-relationship-objects). Both the objects are
localized in the image as bounding boxes. In this example, we detect the following
relationships: (person - on - motorcycle), (person - wear - helmet) and (motorcycle
- has - wheel).

image and also classifying the predicate or interaction between each pair (Fig. 2).
While it poses similar challenges as object detection [1], one critical difference
is that the size of the semantic space of possible relationships is much larger
than that of objects. Since relationships are composed of two objects, there is a
greater skew of rare relationships as object co-occurrence is infrequent in images.
So, a fundamental challenge in visual relationship detection is learning from very
few examples.

Visual Phrases [6] studied visual relationship detection using a small set of
13 common relationships. Their model requires enough training examples for
every possible (object;-predicate-objects) combination, which is difficult to
collect owing to the infrequency of relationships. If we have N objects and K
predicates, Visual Phrases [6] would need to train O(N?K) unique detectors
separately. We use the insight that while relationships (e.g. “person jumping
over a fire hydrant”) might occur rarely in images, its objects (e.g. person and
fire hydrant) and predicate (e.g. jumping over) independently appear more
frequently. We propose a visual appearance module that learns the appear-
ance of objects and predicates and fuses them together to jointly predict rela-
tionships. We show that our model only needs O(N + K) detectors to detect
O(N?K) relationships.

Another key observation is that relationships are semantically related to each
other. For example, a “person riding a horse” and a “person riding an elephant”
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are semantically similar because both elephant and horse are animals. Even if
we haven’t seen many examples of “person riding an elephant”, we might be able
to infer it from a “person riding a horse”. Word vector embeddings [7] naturally
lend themselves in linking such relationships because they capture semantic sim-
ilarity in language (e.g. elephant and horse are cast close together in a word
vector space). Therefore, we also propose a language module that uses pre-
trained word vectors [7] to cast relationships into a vector space where similar
relationships are optimized to be close to each other. Using this embedding space,
we can finetune the prediction scores of our relationships and even enable zero
shot relationship detection.

In this paper, we propose a model that can learn to detect visual relationships
by (1) (1) learning visual appearance models for its objects and predicates and
(2) using the relationship embedding space learnt from language. We train our
model by optimizing a bi-convex function. To benchmark the task of visual rela-
tionship detection, we introduce a new dataset that contains 5000 images with
37,993 relationships. Existing datasets that contain relationships were designed
for improving object detection [6] or image retrieval [8] and hence, don’t contain
sufficient variety of relationships or predicate diversity per object category. Our
model outperforms all previous models in visual relationship detection. We fur-
ther study how our model can be used to perform zero shot visual relationship
detection. Finally, we demonstrate that understanding relationships can improve
image-based retrieval.

2 Related Work

Visual relationship prediction involves detecting the objects that occur in an
image as well as understanding the interactions between them. There has been
a series of work related to improving object detection by leveraging object
co-occurrence statistics [9-14]. Structured learning approaches have improved
scene classification along with object detection using hierarchial contextual data
from co-occurring objects [15-18]. Unlike these methods, we study the context
or relationships in which these objects co-occur.

Some previous work has attempted to learn spatial relationships between
objects [13,19] to improve segmentation [19]. They attempted to learn four
spatial relationships: “above”; “below”, “inside”, and “around” [13]. While we
believe that that learning spatial relationships is important, we also study non-
spatial relationships such as pull (actions), taller than (comparative), etc.

There have been numerous efforts in human-object interaction [20-22]
and action recognition [23] to learn discriminative models that distinguish
between relationships where object; is a human ( e.g. “playing violin” [24]).
Visual relationship prediction is more general as object; is not constrained to
be a human and the predicate doesn’t have to be a verb.

Visual relationships are not a new concept. Some papers explicitly col-
lected relationships in images [25-29] and videos [27,30,31] and helped mod-
els map these relationships from images to language. Relationships have also
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improved object localization [6,32-34]. A meaning space of relationships have
aided the cognitive task of mapping images to captions [35-38]. Finally, they
have been used to generate indoor images from sentences [39] and to improve
image search [8,40]. In this paper, we formalize visual relationship prediction as
a task onto itself and demonstrate further improvements in image retrieval.

The most recent attempt at relationship prediction has been in the form
of visual phrases. Learning appearance models for visual phrases has shown
to improve individual object detection, i.e. detecting “a person riding a horse”
improves the detection and localization of “person” and “horse” [6,41]. Unlike
our model, all previous work has attempted to detect only a handful of visual
relationships and do not scale because most relationships are infrequent. We pro-
pose a model that manages to scale and detect millions of types of relationships.
Additionally, our model is able to detect unseen relationships.

3 Visual Relationship Dataset

Visual relationships put objects in context; they capture the different interac-
tions between pairs of objects. These interactions (shown in Fig.3) might be
verbs (e.g. wear), spatial (e.g. on top of), prepositions (e.g. with), compara-
tive (e.g. taller than), actions (e.g. kick) or a preposition phrase (e.g. drive
on). A dataset for visual relationship prediction is fundamentally different from
a dataset for object detection. A relationship dataset should contain more than
just objects localized in images; it should capture the rich variety of interactions
between pairs of objects (predicates per object category). For example, a person
can be associated with predicates such as ride, wear, kick etc. Additionally,
the dataset should contain a large number of possible relationships types.
Existing datasets that contain relationships were designed to improve object
detection [6] or image retrieval [8]. The Visual Phrases [6] dataset focuses on
17 common relationship types. But, our goal is to understand the rich variety
of infrequent relationships. On the other hand, even though the Scene Graph

Number of Instances

o

T L .
Number of Relationships ~ P=rson kick >erson on top of

Fig. 3. (left) A log scale distribution of the number of instances to the number of
relationships in our dataset. Only a few relationships occur frequently and there is a
long tail of infrequent relationships. (right) Relationships in our dataset can be divided
into many categories, 5 of which are shown here: verb, spatial, preposition, comparative
and action.
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Table 1. Comparison between our visual relationship benchmarking dataset with exist-
ing datasets that contain relationships. Relationships and Objects are abbreviated to
Rel. and Obj. because of space constraints.

Images | Rel. types | Rel. instances | # Predicates per Obj. category
Visual phrases [6] | 2,769 |13 2,040 120
Scene graph [8] 5,000 |23,190 109,535 2.3
Ours 5,000 |6,672 37,993 24.25

dataset [8] has 23,190 relationship types?, it only has 2.3 predicates per object
category. Detecting relationships on the Scene Graph dataset [8] essentially boils
down to object detection. Therefore, we designed a dataset specifically for bench-
marking visual relationship prediction.

Our dataset (Table 1) contains 5000 images with 100 object categories and 70
predicates. In total, the dataset contains 37,993 relationships with 6,672 relation-
ship types and 24.25 predicates per object category. Some example relationships
are shown in Fig. 3. The distribution of relationships in our dataset highlights
the long tail of infrequent relationships (Fig. 3(left)). We use 4000 images in our
training set and test on the remaining 1000 images. 1,877 relationships occur in
the test set but never occur in the training set.

4 Visual Relationship Prediction Model

The goal of our model is to detect visual relationships from an image. During
training (Sect. 4.1), the input to our model is a fully supervised set of images with
relationship annotations where the objects are localized as bounding boxes and
labelled as (object;-predicate-objects). At test time (Sect.4.2), our input is
an image with no annotations. We predict multiple relationships and localize the
objects in the image. Figure4 illustrates a high level overview of our detection
pipeline.

4.1 Training Approach

In this section, we describe how we train our visual appearance and language
modules. Both the modules are combined together in our objective function.

2 Note that the Scene Graph dataset [8] was collected using unconstrained language,
resulting in multiple annotations for the same relationship (e.g. (man - kick - ball)
and (person - is kicking - soccer ball)). Therefore, 23,190 is an inaccurate esti-
mate of the number of unique relationship types in their dataset. We do not com-
pare with the Visual Genome dataset [42] because their relationships had not been
released at the time this paper was written.
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Fig.4. A overview of our visual relationship detection pipeline. Given an image as
input, RCNN [43] generates a set of object proposals. Each pair of object proposals is
then scored using a (1) visual appearance module and a (2) language module. These
scores are then thresholded to output a set of relationship labels (e.g. (person - riding
- horse)). Both objects in a relationship (e.g. person and horse) are localized as
bounding boxes. The parameters of those two modules (W and ©) are iteratively
learnt in Sect. 4.1.

Visual Appearance Module. While Visual Phrases [6] learned a sepa-
rate detector for every single relationship, we model the appearance of visual
relationships V() by learning the individual appearances of its comprising objects
and predicate. While relationships are infrequent in real world images, the
objects and predicates can be learnt as they independently occur more frequently.
Furthermore, we demonstrate that our model outperforms Visual Phrases’ detec-
tors, showing that learning individual detectors outperforms learning detectors
for relationships together (Table2).

First, we train a convolutional neural network (CNN) (VGG net [44]) to
classify each of our N = 100 objects. Similarly, we train a second CNN (VGG
net [44]) to classify each of our K = 70 predicates using the union of the bounding
boxes of the two participating objects in that relationship. Now, for each ground
truth relationship R(; 5 jy where i and j are the object classes (with bounding
boxes O; and Os) and k is the predicate class, we model V' (Fig. 4) as:

V(R(i,j), (01, 02)) = Pi(01)(2;, CNN(O1, O2) + 1) P;(O2) (1)

where O is the parameter set of {z, si}. zr and s are the parameters learnt
to convert our CNN features to relationship likelihoods. & = 1,..., K represent
the K predicates in our dataset. P;(O1) and P;(O2) are the CNN likelihoods of
categorizing box O as object category i and box Os as category j. CNN(O1, O2)
is the predicate CNN features extracted from the union of the O; and Os boxes.

Language Module. One of our key observations is that relationships are
semantically related to one another. For example, (person - ride - horse) is
semantically similar to (person - ride - elephant). Even if we have not seen
any examples of (person - ride - elephant), we should be able to infer it from
similar relationships that occur more frequently (e.g. (person - ride - horse)).
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Our language module projects relationships into an embedding space where simi-
lar relationships are optimized to be close together. We first describe the function
that projects a relationship to the vector space (Eq.2) and then explain how we
train this function by enforcing similar relationships to be close together in a
vector space (Eq.4) and by learning a likelihood prior on relationships (Eq.5).

Projection Function. First, we use pre-trained word vectors (word2vec) [7] to
cast the two objects in a relationship into an word embedding space [7]. Next,
we concatenate these two vectors together and transform it into the relationship
vector space using a projection parameterized by W, which we learn. This pro-
jection presents how two objects interact with each other. We denote word2vec()
as the function that converts a word to its 300 dim. vector. The relationship
projection function (shown in Fig.4) is defined as:

F(R iy W) = wi [word2vec(t;), word2vec(t;)] + by (2)

where t; is the word (in text) of the j object category. wy, is a 600 dim. vector
and by, is a bias term. W is the set of {{w1,b1},...,{wg,br}}, where each row
presents one of our K predicates.

Training Projection Function. We want to optimize the projection function f()
such that it projects similar relationships closer to one another. For example,
we want the distance between (man - riding - horse) to be close to (man -
riding - cow) but farther from (car - has - wheel). We formulate this by using
a heuristic where the distance between two relationships is proportional to the
word2vec distance between its component objects and predicate:

[f(Rv W) — f(R/a W)]2
d(R,R)

= constant, VR,R’ (3)

where d(R,R’) is the sum of the cosine distances (in word2vec space [7]) between
of the two objects and the predicates of the two relationships R and R’. Now, to
satisfy Eq. 3, we randomly sample pairs of relationships ((R,R’)) and minimize
their variance:

[f(R,W) = f(R',W)]?
d(R,R)

K(W) =var({ VR,R'}) (4)

where var() is a variance function. The sample number we use is 500K.

Likelihood of a Relationship. The output of our projection function should ideally
indicate the likelihood of a visual relationship. For example, our model should
not assign a high likelihood score to a relationship like (dog - drive - car),
which is unlikely to occur. We model this by enforcing that if R occurs more
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frequently than R’ in our training data, then it should have a higher likelihood
of occurring again. We formulate this as a rank loss function:

L(W)= Y max{f(R,W)— f(R,W)+1,0} (5)
{RR'}

While we only enforce this likelihood prior for the relationships that occur in
our training data, the projection function f() generalizes it for all (object;-
predicate-objects) combinations, even if they are not present in our training
data. The max operator here is to encourage correct ranking (with margin)
F(R, W) — f(R', W) > 1. Minimizing this objective enforces that a relationship
with a lower likelihood of occurring has a lower f() score.

Objective Function. So far we have presented our visual appearance module
(V()) and the language module (f()). We combine them to maximize the rank
of the ground truth relationship R with bounding boxes O; and O using the
following rank loss function:

CO.W)= > max{l-V(R,0[(01,02)f(R,W)
<01,02>,R
max V(R',8|{0}, O} R, W),0 6
oo I V(R'O(0],00)f(R' W), 0) (6)
We use a ranking loss function to make it more likely for our model to choose
the correct relationship. Given the large number of possible relationships, we find
that a classification loss performs worse. Therefore, our final objective function
combines Eq. 6 with Eqgs.4 and 5 as:

min{C(0, W) + M L(W) + A K (W)} (7)

where A; = 0.05 and A\ = 0.002 are hyper-parameters that were obtained though
grid search to maximize performance on the validation set. Note that both Egs. 6
and 5 are convex functions. Equation 4 is a biqudratic function with respect to
W. So our objective function Eq.7 has a quadratic closed form. We perform
stochastic gradient descent iteratively on Eqgs.6 and 5. It converges in 20 ~ 25
iterations.

4.2 Testing

At test time, we use RCNN [43] to produce a set of candidate object proposals for
every test image. Next, we use the parameters learnt from the visual appearance
model (©) and the language module (W) to predict visual relationships (Rii k)
for every pair of RCNN object proposals (O1, O3) using:

R* = arg max V(R,0(01,02))f(R, W) (8)
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5 Experiments

We evaluate our model by detecting visual relationships from images. We show
that our proposed method outperforms previous state-of-the-art methods on our
dataset (Sect.5.1) as well as on previous datasets (Sect.5.3). We also measure
how our model performs in zero-shot learning of visual relationships (Sect.5.2).
Finally, we demonstrate that understanding visual relationship can improve com-
mon computer vision tasks like content based image retrieval (Sect. 5.4).

5.1 Visual Relationship Detection

Setup. Given an input image, our task is to extract a set of visual relationships
(objecti-predicate-objects) and localize the objects as bounding boxes in the
image. We train our model using the 4000 training images and perform visual
relationship prediction on the 1000 test images.

The evaluation metrics we report is recall @ 100 and recall @ 50 [45].
Recall @ x computes the fraction of times the correct relationship is predicted
in the top x confident relationship predictions. Since we have 70 predicates and
an average of 18 objects per image, the total possible number of relationship
predictions is 100 x 70 x 100, which implies that the random guess will result
in a recall @ 100 of 0.00014. We notice that mean average precision (mAP) is
another widely used metric. However, mAP is a pessimistic evaluation metric
because we can not exhaustively annotate all possible relationships in an image.
Consider the case where our model predicts (person - taller than - person).
Even if the prediction is correct, mAP would penalize the prediction if we do
not have that particular ground truth annotation.

Detecting a visual relationship involves classifying both the objects, predict-
ing the predicate and localization both the objects. To study how our model
performs on each of these tasks, we measure visual relationship prediction under
the following conditions:

1. In predicate detection (Fig. 5(left)), our input is an image and set of local-
ized objects. The task is to predict a set of possible predicates between pairs
of objects. This condition allows us to study how difficult it is to predict
relationships without the limitations of object detection [43].

2. In phrase detection (Fig.5(middle)), our input is an image and our task
is to output a label (object;-predicate-objects) and localize the entire
relationship as one bounding box having at least 0.5 overlap with ground
truth box. This is the evaluation used in Visual Phrases [6].

3. Inrelationship detection (Fig. 5(right)), our input is an image and our task
is to output a set of (objecti-predicate-objects) and localize both objecty
and objects in the image having at least 0.5 overlap with their ground truth
boxes simultaneously.

Comparison Models. We compare our method with some state-of-that-art
approaches [6,44]. We further perform ablation studies on our model, considering
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Fig. 5. We evaluate visual relationship detection using three conditions: predicate
detection (where we only predict the predicate given the object classes and boxes),
phrase detection (where we label a region of an image with a relationship) and rela-
tionship detection (where we detect the objects and label the predicate between them).

just the visual appearance and the language module, including the likelihood
term (Eq.4) and embedding term (Eq.5) to study their contributions.

— Visual phrases. Similar to Visual Phrases [6], we train deformable parts
models for each of the 6,672 relationships (e.g. “chair under table”) in our
training set.

— Joint CNN. We train a CNN model [44] to predict the three components
of a relationship together. Specifically, we train a 270 (100 + 100 4 70) way
classification model that learns to score the two objects (100 categories each)
and predicate (70 categories). This model represents the Visual phrases

— Visual appearance (Ours - V only). We only use the visual appearance
module of our model described in Eq. 6 by optimizing V().

— Likelihood of a relationship (Ours - L only). We only use the likelihood
of a relationship described in Eq.5 by optimizing L().

— Visual appearance + naive frequency (Ours - V + naive FC). One
of the contributions of our model is the ability to use a language prior via our
semantic projection function f() (Eq.2). Here, we replace f() with a function
that maps a relationship to its frequency in our training data. Using this
naive function, we hope to test the effectiveness of f().

— Visual appearance + Likelihood (Ours - V + L only). We use both
the visual appearance module (Eq. 6) and the likelihood term (Eq. 5) by opti-
mizing both V() and L(). The only part of our model missing is K() Eq.4,
which projects similar relationships closer.

— Visual appearance + likelihood + regularizer (Ours - V + L +
Reg.). We use the visual appearance module and the likelihood term and
add an Lo regularizer on W.

— Full Model (Ours - V + L + K). This is our full model. It contains
the visual appearance module (Eq.6), the likelihood term (Eq.5) and the
embedding term (Eq.4) from similar relationships.
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Table 2. Results for visual relationship detection (Sect.5.1). R@100 and R@50 are
abbreviations of Recall @ 100 and Recall @ 50. Note that in predicate det., we are
predicting multiple predicates per image (one between every pair of objects) and hence
R@100 is less than 1.

Phrase Det. Relationship Det. | Predicate Det.

R@100 | R@50 | R@100 | R@50 R@100 | R@50
Visual phrases [6] 0.07 0.04 |- - 1.91 0.97
Joint CNN [44] 0.09 0.07 ]0.09 0.07 2.03 1.47
Ours - V only 2.61 224 |1.85 1.58 7.11 7.11
Ours - L only 0.08 0.08 |0.08 0.08 18.22 | 18.22
Ours - V 4+ naive FC | 6.39 6.65 |5.47 5.27 28.87 |28.87
Ours - V + L only 8.59 9.13 |9.18 9.04 35.20 |35.20
Ours - V + L + Reg. | 8.91 9.60 |9.63 9.71 36.31 |36.31
Ours-V+ L+ K 17.03 /16.17|14.70 | 13.86 47.87 |47.87

Results. Visual Phrases [6] and Joint CNN [44] train an individual detector
for every relationship. Since the space of all possible relationships is large (we
have 6,672 relationship types in the training set), there is a shortage of training
examples for infrequent relationships, causing both models to perform poorly
on predicate, phrase and relationship detection (Table2). (Ours - V only) can’t
discriminative between similar relationships by itself resulting in 1.85 R@100
for relationship detection. Similarly, (Ours - L only) always predicts the most
frequent relationship (person - wear - shirt) and results in 0.08 R@100, which
is the percentage of the most frequent relationship in our testing data. These
problems are remedied when both V and L are combined in (Ours - V + L only)
with an increase of 3% R@100 in on both phrase and relationship detection and
more than 10% increase in predicate detection. (V + Naive FC) is missing our
relationship projection function f(), which learns the likelihood of a predicted
relationship and performs worse than (Ours - V + L only) and (Ours - V + L
+ K). Also, we observe that (Ours - V + L + K) has an 11% improvement in
comparison to (Ours - V + L only) in predicate detection, demonstrating that
the language module from similar relationships significantly helps improve visual
relationship detection. Finally, (Ours - V 4+ L + K) outperforms (Ours - V + L
+ Reg.) showcasing the K () is acting not only as a regularizer but is learning to
preserve the distances between similar relationships.

By comparing the performance of all the models between relationship and
predicate detection, we notice a 30% drop in R@100. This drop in recall is largely
because we have to localize two objects simultaneously, amplifying the object
detection errors. Note that even when we have ground truth object proposals
(in predicate detection), R@100 is still 47.87.

Qualitative Results. In Fig.6(a), (b) and (c), Visual Phrase and Joint CNN
incorrectly predict a common relationship: (person - drive - car) and
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V only: car-on-clock X Vonly: hand-on-phone ¥ V only: person-carry-elephant
L only: person-wear-shirt % L only: person-wear-shirt y L only: person-wear-shirt X
V+naive FC: car-has-wheel,/ V+naive FC:hand-in-phong V+naive FC: person-in-elephari.

V+L: car-has-wheel v V+L:hand-hold-phone ,/ V+L: person-hold-elephant %
V+L+K: car-has-wheel v V+L+K: hand-hold-phone ,/ V+L+K: person-ride-elephant /
(d) (e) (f)

Fig. 6. (a), (b) and (c) show results from our model, Visual Phrases [6] and Joint CNN
[44] on the same image. All ablation studies results for (d), (e) and (f) are reported
below the corresponding image. Ticks and crosses mark the correct and incorrect results
respectively. Phrase, object: and objects boxes are in blue, red and green respectively.
(Color figure online)

(car - next to - tree). These models tend to predict the most common rela-
tionship as they see a lot of them during training. In comparison, our model
correctly predicts and localizes the objects in the image. Figure 6(d), (e) and (f)
compares the various components of our model. Without the relationship likeli-
hood score, (Ours - V only) incorrectly classifies a wheel as a clock in (d) and
mislabels the predicate in (e) and (f). Without any visual priors, (Ours - L only)
always reports the most frequent relationship (person - wear - shirt). (Ours -
V + L) fixes (d) by correcting the visual model’s misclassification of the wheel
as a clock. But it still does not predict the correct predicate for (e) and (f)
because (person - ride - elephant) and (hand - hold - phone) rarely occur in
our training set. However, our full model (Ours - V 4+ L + K) leverages similar
relationships it has seen before and is able to correctly detect the relationships
in (e) and (f).

5.2 Zero-shot Learning

Owing to the long tail of relationships in real world images, it is difficult to build
a dataset with every possible relationship. Therefore, a model that detects visual
relationships should also be able to perform zero-shot prediction of relationships
it has never seen before. Our model is able to leverage similar relationships it
has already seen to detect unseen ones.

Setup. Our test set contains 1, 877 relationships that never occur in our train-
ing set (e.g. (elephant - stand on - street)). These unseen relationships can be
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Table 3. Results for zero-shot visual relationship detection (Sect. 5.2). Visual Phrases,
Joint CNN and Ours - V + naive FC are omitted from this experiment as they are
unable to do zero-shot learning.

Phrase Det. Relationship Det. | Predicate Det.
R@100 | R@50 | R@100 | R@50 R@100 | R@50

Ours - V only 1.12 0.95 |0.78 0.67 3.52 3.52
Ours - L only 0.01 0.00 |0.01 0.00 5.09 5.09
Ours - V 4 L only | 2.56 2.43 |2.66 2.27 6.11 6.11

OQurs-V+L+K|3.75 |3.36 |3.52 |3.13 8.45 |8.45

inferred by our model using similar relationships (e.g. (dog - stand on- street))
from our training set. We report our results for detecting unseen relationships
in Table 3 for predicate, phrase, and relationship detection.

Results. (Ours - V) achieves a low 3.52 R@100 in predicate detection because
visual appearances are not discriminative enough to predict unseen relationships.
(Ours - L only) performs poorly in predicate detection (5.09 R@100) because it
automatically returns the most common predicate. By comparing (Ours - V +
L+ K) and (Ours - V + L only), we find the use of K gains an improvement of
30% since it utilizes similar relationships to enable zero shot predictions.

5.3 Visual Relationship Detection on Existing Dataset

Our goal in this paper is to understand the rich variety of infrequent relation-
ships. Our comparisons in Sect. 3 show that existing datasets either do not have
enough diveristy of predicates per object category or enough relationship types.
Therefore, we introduced a new dataset (in Sect.3) and tested our visual rela-
tionship detection model in Sects. 5.1 and 5.2. In this section, we run additional
experiments on the existing visual phrases dataset [6] to provide further bench-
marks.

Setup. The visual phrase dataset contains 17 phrases (e.g. “dog jumping”). We
evaluate the models (introduced in Sect. 5.1) for visual relationship detection on
12 of these phrases that can be represented as a (object;-predicate-objects)
relationship. To study zero-shot learning, we remove two phrases (“person lying
on sofa” and “person lying on beach”) from the training set, and attempt to
recognize them in the testing set. We report mAP, R@Q50 and R@100.

Results. In Table4 we see that our method is able to perform better than the
existing Visual Phrases’ model even though the dataset is small and contains only
12 relationships. We get a mAP of 0.59 using our entire model as compared to
a mAP of 0.38 using Visual Phrases’ model. We also outperform the Joint CNN
baseline, which achieves a mAP of 0.54. Considering that (Ours - V only) model
performs similarly to the baselines, we believe that our full model’s improvements
on this dataset are heavily influenced by the language priors. By learning to
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Table 4. Visual phrase detection results on Visual Phrases dataset [6].

Phrase detection Zero-shot phrase detection
R@100 | R@50  mAP | R@100 | R@50 | mAP
Visual phrase [6] 52.7 49.3 |38.0 |- - -
Joint CNN 75.3 71.5 |54.1 |- - -
Ours V only 72.0 68.6 |53.4 |13.5 11.3 |5.3
Ours V + naive FC | 77.8 73.4 | 55.8
Ours V + L only 79.3 76.7 |57.3 |17.8 15.1 8.8
Ours V+ L+ K 82.7 78.1 |59.2 11.4 23.9 |18.5

embed similar relationships close to each other, the language model’s aid can be
thought of as being synonymous to the improvements achieved through training
set augmentation. Finally, we see a similar improvements in zero shot learning.

5.4 Image based Retrieval

An important task in computer vision is image retrieval. An improved retrieval
model should be able to infer the relationships between objects in images. We will
demonstrate that the use of visual relationships can improve retrieval quality.

Setup. Recall that our test set contains 1000 images. Every query uses 1 of
these 1000 images and ranks the remaining 999. We use 54 query images in our
experiments. Two annotators were asked to rank image results for each of the 54
queries. To avoid bias, we consider the results for a particular query as ground
truth only if it was selected by both annotators. We evaluate performance using
R@1, R@5 and R@10 and median rank [8]. For comparison, we use three image
descriptors that are commonly used in image retrieval: CNN [44], GIST [46] and
SIFT [47]. We rank results for a query using the Lo distance from the query
image. Given a query image, our model predicts a set of visual relationships
{R1,...,R,} with a probability of {P{,..., P4} respectively. Next, for every

i | (e
Our Model

Fig. 7. Examples retrieval results using an image as the query.
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Table 5. Example image retrieval using a image of a (person - ride - horse) (Sect. 5.4).
Note that a higher recall and lower median rank indicates better performance.

Recall @ 1 | Recall @ 5| Recall @ 10 | Median rank
GIST [46] 0.00 5.60 8.70 68
SIFT [47] 0.70 6.10 10.3 54
CNN [44] 3.15 7.70 11.5 20
Visual phrases [6] | 8.72 18.12 28.04 12
Our model 10.82 30.02 47.00 4

image I; in our test set, it predicts Ry, ..., R, with a confidence of {P},..., Pi}.
We calculate a matching score between an image with the query as Z?Zl ij * P
We also compare our model with Visual Phrases’ detectors [6].

Results. SIFT [47] and GIST [46] descriptors perform poorly with a median
rank of 54 and 68 (Table5) because they simply measure structural similar-
ity between images. CNN [44] descriptors capture object-level information and
performs better with a median rank of 20. Our method captures the visual rela-
tionships present in the query image, which is important for high quality image
retrieval, improving with a median rank of 4. When queried using an image of
a “person riding a horse” (Fig.7), SIFT returns images that are visually similar
but are not semantically relevant. CNN retrieves one image that contains a horse
and one that contains both a man and a horse but neither of them capture the
relationship: “person riding a horse”. Visual Phrases and our model are able to
detect the relationship (person - ride - horse) and perform better.

6 Conclusion

We proposed a model to detect multiple visual relationships in a single image.
Our model learned to detect thousands of relationships even when there were
very few training examples. We learned the visual appearance of objects and
predicates and combined them to predict relationships. To finetune our predic-
tions, we utilized a language prior that mapped similar relationships together —
outperforming previous state of the art [6] on the visual phrases dataset [6] as
well as our dataset. We also demonstrated that our model can be used for zero
shot learning of visual relationships. We introduced a new dataset with 37,993
relationships that can be used for further benchmarking. Finally, by understand-
ing visual relationships, our model improved content based image retrieval.
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