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Abstract. The sound of crashing waves, the roar of fast-moving cars –
sound conveys important information about the objects in our surround-
ings. In this work, we show that ambient sounds can be used as a
supervisory signal for learning visual models. To demonstrate this, we
train a convolutional neural network to predict a statistical summary of
the sound associated with a video frame. We show that, through this
process, the network learns a representation that conveys information
about objects and scenes. We evaluate this representation on several
recognition tasks, finding that its performance is comparable to that of
other state-of-the-art unsupervised learning methods. Finally, we show
through visualizations that the network learns units that are selective to
objects that are often associated with characteristic sounds.
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1 Introduction

Sound conveys important information about the world around us – the bustle
of a café tells us that there are many people nearby, while the low-pitched roar
of engine noise tells us to watch for fast-moving cars [10]. Although sound is
in some cases complementary to visual information, such as when we listen
to something out of view, vision and hearing are often informative about the
same structures in the world. Here we propose that as a consequence of these
correlations, concurrent visual and sound information provide a rich training
signal that we can use to learn useful representations of the visual world.

In particular, an algorithm trained to predict the sounds that occur within
a visual scene might be expected to learn objects and scene elements that are
associated with salient and distinctive noises, such as people, cars, and flowing
water. Such an algorithm might also learn to associate visual scenes with the
ambient sound textures [25] that occur within them. It might, for example,
associate the sound of wind with outdoor scenes, and the buzz of refrigerators
with indoor scenes.

Although human annotations are indisputably useful for learning, they are
expensive to collect. The correspondence between ambient sounds and video is,
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(a) Video frame (b) Cochleagram (c) Summary statistics

Fig. 1. Visual scenes are associated with characteristic sounds. Our goal is to take an
image (a) and predict time-averaged summary statistics (c) of a cochleagram (b). The
statistics we use are (clockwise): the response to a bank of band-pass modulation filters;
the mean and standard deviation of each frequency band; and the correlation between
bands. We show two frames from the Flickr video dataset [34]. The first contains the
sound of human speech; the second contains the sound of wind and crashing waves.
The differences between these sounds are reflected in their summary statistics: e.g. , the
water/wind sound, which is similar to white noise, contains fewer correlations between
cochlear channels.

by contrast, ubiquitous and free. While there has been much work on learning
from unlabeled image data [4,22,35], an audio signal may provide information
that that is largely orthogonal to that available in images alone – information
about semantics, events, and mechanics are all readily available from sound [10].

One challenge in utilizing audio-visual input is that the sounds that we hear
are only loosely associated with what we see. Sound-producing objects often lie
outside of our visual field, and objects that are capable of producing character-
istic sounds – barking dogs, ringing phones – do not always do so. A priori it is
thus not obvious what might be achieved by predicting sound from images.

In this work, we show that a model trained to predict held-out sound from
video frames learns a visual representation that conveys semantically meaningful
information. We formulate our sound-prediction task as a classification problem,
in which we train a convolutional neural network (CNN) to predict a statistical
summary of the sound that occurred at the time a video frame was recorded.
We then validate that the learned representation contains significant information
about objects and scenes.

We do this in two ways: first, we show that the image features that we learn
through our sound-prediction task can be used for object and scene recogni-
tion. On these tasks, our features obtain similar performance to state-of-the-art
unsupervised and self-supervised learning methods. Second, we show that the
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intermediate layers of our CNN are highly selective for objects. This augments
recent work [38] showing that object detectors “emerge” in a CNN’s internal
representation when it is trained to recognize scenes. As in the scene recognition
task, object detectors emerge inside of our sound-prediction network. However,
our model learns these detectors from an unlabeled audio-visual signal, without
any explicit human annotation.

In this paper, we: (1) present a model based on visual CNNs and sound tex-
tures [25] that predicts a video frame’s held-out sound; (2) demonstrate that
the CNN learns units in its convolutional layers that are selective for objects,
extending the methodology of Zhou et al. [38]; (3) validate the effectiveness of
sound-based supervision by using the learned representation for object- and
scene-recognition tasks. These results suggest that sound data, which is available
in abundance from consumer videos, provides a useful training signal for visual
learning.

2 Related Work

We take inspiration from work in psychology, such as Gaver’s Everyday Listening
[10], that studies the ways that humans learn about objects and events using
sound. In this spirit, we would like to study the situations where sound tells
us about visual objects and scenes. Work in auditory scene analysis [6,7,23]
meanwhile has provided computational methods for recognizing structures in
audio streams. Following this work, we use a sound representation [25] that has
been applied to sound recognition [6] and synthesis tasks [25].

Recently, researchers have proposed many unsupervised learning methods
that learn visual representations by solving prediction tasks (sometimes known
as pretext tasks) for which the held-out prediction target is derived from a natural
signal in the world, rather than from human annotations. This style of learning
has been called “self supervision” [4] or “natural supervision” [30]. With these
methods, the supervisory signal may come from video, for example by having
the algorithm estimate camera motion [1,17] or track content across frames
[12,27,35]. There are also methods that learn from static images, for example
by predicting the relative location of image patches [4,16], or by learning invari-
ance to simple geometric and photometric transformations [5]. The assumption
behind these methods is that, in order to solve the pretext task, the model has
to implicitly learn about semantics and, through this process, develop image
features that are broadly useful.

While we share with this work the high-level goal of learning image represen-
tations, and we use a similar technical approach, our work differs in significant
ways. In contrast to methods whose supervisory signal comes entirely from the
imagery itself, ours comes from a modality (sound) that is complementary to
vision. This is advantageous because sound is known to be a rich source of
information about objects and scenes [6,10], and it is largely invariant to visual
transformations, such as lighting, scene composition, and viewing angle. Pre-
dicting sound from images thus requires some degree of generalization to visual
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Fig. 2. Visualization of some of the audio clusters used in one of our models (5 of 30
clusters). For each cluster, we show (a) the images in the test set whose sound textures
were closest to the centroid (no more than one frame per video), and (b) we visualize
aspects of the sound texture used to define the cluster centroid – specifically, the mean
and standard deviation of the frequency channels. We also include a representative
cochleagram (that of the leftmost image). Although the clusters were defined using
audio, there are common objects and scene attributes in many of the images. We train
a CNN to predict a video frame’s auditory cluster assignment (c).

transformations. Moreover, our supervision task is based on solving a straight-
forward classification problem, which allows us to use a network design that
closely resembles those used in object and scene recognition (rather than, for
example, the siamese-style networks used in video methods).

Our approach is closely related to recent audio-visual work [30] that predicts
soundtracks for videos that show a person striking objects with a drumstick. A
key feature of this work is that the sounds are “visually indicated” by actions
in video – a situation that has also been considered in other contexts, such as in
the task of visually localizing a sound source [9,13,19] or in evaluating the syn-
chronization between the two modalities [32]. In the natural videos that we use,
however, the sound sources are frequently out of frame. Also, in contrast to other
recent work in multi-modal representation learning [2,28,33], our technical app-
roach is based on solving a self-supervised classification problem (rather than a
generative model or autoencoder), and our goal is to learn visual representations
that are generally useful for object recognition tasks.

3 Learning to Predict Ambient Audio

We would like to train a model that, when given a frame of video, can predict
its corresponding sound – a task that implicitly requires knowledge of objects
and scenes.
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3.1 Statistical Sound Summaries

A natural question, then, is how our model should represent sound. Perhaps the
first approach that comes to mind would be to estimate a frequency spectrum
at the moment in which the picture was taken, similar to [30]. However, this
is potentially suboptimal because in natural scenes it is difficult to predict the
precise timing of a sound from visual information. Upon seeing a crowd of people,
for instance, we might expect to hear the sound of speech, but the precise timing
and content of that speech might not be directly indicated by the video frames.

To be closer to the time scale of visual objects, we estimate a statistical sum-
mary of the sound, averaged over a few seconds. We do this using the sound
texture model of McDermott and Simoncelli [25], which assumes that sound
is stationary within a temporal window (we use 3.75 s). More specifically, we
closely follow [25] and filter the audio waveform with a bank of 32 band-pass
filters intended to mimic human cochlear frequency selectivity. We then take the
Hilbert envelope of each channel, raise each sample of the envelope to the 0.3
power (to mimic cochlear amplitude compression), and resample the compressed
envelope to 400 Hz. Finally, we compute time-averaged statistics of these sub-
band envelopes: we compute the mean and standard deviation of each frequency
channel, the mean squared response of each of a bank of modulation filters
applied to each channel, and the Pearson correlation between pairs of channels.
For the modulation filters, we use a bank of 10 band-pass filters with center
frequencies ranging from 0.5 to 200 Hz, equally spaced on a logarithmic scale.

To make the sound features more invariant to gain (e.g., from the micro-
phone), we divide the envelopes by the median energy (median vector norm)
over all timesteps, and include this energy as a feature. As in [25], we normalize
the standard deviation of each cochlear channel by its mean, and each modula-
tion power by its standard deviation. We then rescale each kind of texture feature
(i.e. marginal moments, correlations, modulation power, energy) inversely with
the number of dimensions. The sound texture for each image is a 502-dimensional
vector. In Fig. 1, we give examples of these summary statistics for two audio clips.
We provide more details about our audio representation in the supplementary
material.

3.2 Predicting Sound from Images

We would like to predict sound textures from images – a task that we hypothesize
leads to learning useful visual representations. Although multiple frames are
available, we predict sound from a single frame, so that the learned image features
will be more likely to transfer to single-image recognition tasks. Furthermore,
since the actions that produce the sounds may not appear on-screen, motion
information may not always be applicable.

While one option would be to regress the sound texture vj directly from the
corresponding image Ij , we choose instead to define explicit sound categories
and formulate this visual recognition problem as a classification task. This also
makes it easier to analyze the network, because it allows us to compare the
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Fig. 3. Histogram of object-selective units in networks trained with different styles of
supervision. From top to bottom: training to predict ambient sound (our Clustering
model); training to predict scene category using the Places dataset [39]; and training
to do visual tracking [35]. Compared to the tracking model, which was also trained
without semantic labels, our network learns more high-level object detectors. It also
has more detectors for objects that make characteristic sounds, such as person, baby,
and waterfall, in comparison to the one trained on Places [39]. Categories marked with
∗ are those that we consider to make characteristic sounds.

internal representation of our model to object- and scene-classification models
with similar network architecture (Sect. 4.1). We consider two labeling models:
one based on a vector quantization, the other based on a binary coding scheme.

Clustering audio features. In the Clustering model, the sound textures {vj}
in the training set are clustered using k-means. These clusters define image
categories: we label each sound texture with the index of the closest centroid,
and train our CNN to label images with their corresponding labels.

We found that audio clips that belong to a cluster often contain common
objects. In Fig. 2, we show examples of such clusters, and in the supplementary
material we provide their corresponding audio. We can see that there is a cluster
that contains indoor scenes with children in them – these are relatively quiet
scenes punctuated with speech sounds. Another cluster contains the sounds of
many people speaking at once (often large crowds); another contains many water
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scenes (usually containing loud wind sounds). Several clusters capture general
scene attributes, such as outdoor scenes with light wind sounds. During training,
we remove examples that are far from the centroid of their cluster (more than
the median distance to the vector, amongst all examples in the dataset).

Binary coding model. For the other variation of our model (which we call
the Binary model), we use a binary coding scheme [14,31,36] equivalent to a
multi-label classification problem. We project each sound texture vj onto the
top principal components (we use 30 projections), and convert these projections
into a binary code by thresholding them. We predict this binary code using a
sigmoid layer, and during training we measure error using cross-entropy loss.

For comparison, we trained a model (which we call the Spectrum model) to
approximately predict the frequency spectrum at the time that the photo was
taken, in lieu of a full sound texture. Specifically, for our sound vectors vj in this
model, we used the mean value of each cochlear channel within a 33.3-millisecond
interval centered on the input frame (approximately one frame of a 30 Hz video).
For training, we used the projection scheme from the Binary model.

Training. We trained our models to predict audio on a 360,000-video subset of
the Flickr video dataset [34]. Most of the videos in the dataset are personal video
recordings containing natural audio, though many were post-processed, e.g. with
added subtitles, title screens, and music. We divided our videos into training
and test sets, and we randomly sampled 10 frames per video (1.8 million training
images total). For our network architecture, we used the CaffeNet architecture
[18] (a variation of Krizhevsky et al. [21]) with batch normalization [15]. We
trained our model with Caffe [18], using a batch size of 256, for 320,000 iterations
of stochastic gradient descent.

4 Results

We evaluate the image representation that our model learned in multiple ways.
First, we demonstrate that the internal representation of our model contains
convolutional units (neurons) that are selective to particular objects, and we
analyze those objects’ distribution. We then empirically evaluate the quality of
the learned representation for several image recognition tasks, finding that it
achieves performance comparable to other feature-learning methods that were
trained without human annotations.

4.1 What Does the Network Learn to Detect?

Previous work [38] has shown that a CNN trained to predict scene categories
will learn convolutional units that are selective for objects – a result that follows
naturally from the fact that scenes are often defined by the objects that compose
them. We ask whether a model trained to predict ambient sound, rather than
explicit human labels, would learn object-selective units as well. For these exper-
iments, we used our Clustering model, because its network structure is similar
to that of the scene-recognition model used in [38].
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Neuron visualizations of the network trained by sound
ssargyksdlefi

racgniliecdnuorgywons

aesllafretawllafretaw

ybabybabybab

nosrepnosrepnosrep

nosrepnosrepnosrep

dnatsdnargdnatsdnargdnatsdnarg

Neuron visualizations of the network trained by visual tracking [35]
daorssargaes

ykshctipaes

Neuron visualizations of the network trained by egomotion [1]
ssargyksdnuorg

tnalpyksdnuorg

Neuron visualizations of the network trained by patch positions [4]
ybabyksyks

Neuron visualizations of the network trained by labeled scenes [39]
gnidliubtnetdlefi

ykshtaphctip

Fig. 4. Top 5 responses for neurons of various networks, tested on the Flickr dataset.
Please see the supplementary material for more visualizations.
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Quantifying object-selective units. Similar to the method in [38], we visu-
alized the images that each neuron in the top convolutional layer (conv5)
responded most strongly to. To do this, we sampled a pool of 200,000 images
from our Flickr video test set. We then collected, for each convolutional unit,
the 60 images in this set that gave the unit the largest activation. Next, we
applied the so-called synthetic visualization technique of [38] to approximately
superimpose the unit’s receptive field onto the image. Specifically, we found all
of the spatial locations in the layer for which the unit’s activation strength was
at least half that of its maximum response. We then masked out the parts of
the image that were not covered by the receptive field of one of these high-
responding spatial units. We assumed a circle-shaped receptive field, obtaining
the radius from [38]. To examine the effect of the data used in the evaluation,
we also applied this visualization technique to other datasets (please see the
supplementary material).

Next, for each neuron we showed its masked images to three human anno-
tators on Amazon Mechanical Turk, and asked them: (1) whether an object is
present in many of these regions, and if so, what it is; (2) to mark the images
whose activations contain these objects. Unlike [38], we only considered units
that were selective to objects, ignoring units that were selective to textures. For
each unit, if at least 60% of its top 60 activations contained the object, we con-
sidered it to be selective for the object (or following [38], we say that it is a
detector for that object). We then manually labeled the unit with an object cat-
egory, using the category names provided by the SUN database [37]. We found
that 91 of the 256 units in our model were object-selective in this way, and we
show a selection of them in Fig. 4.

We compared the number of these units to those of a CNN trained to recog-
nize human-labeled scene categories on Places [38]. As expected, this model –
having been trained with explicit human annotations – contained more object-
selective units (117 units). We also asked whether object-selective neurons appear
in the convolutional layers when a CNN is trained on other tasks that do not
use human labels. As a simple comparison, we applied the same methodology
to the egomotion-based model of Agrawal et al. [1] and to the tracking-based
method of Wang and Gupta [35]. We applied these networks to whole images
in all cases resizing the input image to 256 × 256 pixels and taking the center
227 × 227 crop), though we note that they were originally trained on cropped
image regions.

We found that the tracking-based method also learned object-selective units,
but that the objects that it detected were often textural “stuff,” such as grass,
ground, and water, and that there were fewer of these detection units in total
(72 of 256). The results were similar for the egomotion-based model, which had
26 such units. In Fig. 3 and in the supplementary material, we provide the distri-
bution of the objects that the units were selective to. We also visualized neurons
from the method of Doersch et al. [4] (as before, applying the network to whole
images, rather than to patches). We found a significant number of the units were
selective for position, rather than to objects. For example, one convolutional unit
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Table 1. Row 1: the number of detectors (i.e. units that are selective to a particular
object); row 2: the number of detectors for objects with characteristic sounds; row
3: fraction of videos in which an object’s sound is audible (computed only for object
classes with characteristic sounds); row 4: given that an activation corresponds to an
object with a characteristic sound, the probability that its sound is audible. There are
256 units in total for each method.

Method Sound Places

# Detectors 91 117

# Detectors for objects with characteristic sounds 49 26

Videos with object sound 43.7 % 16.9 %

Characteristic sound rate 81.2 % 75.9 %

responded most highly to the upper-left corner of an image – a unit that may
be useful for the training task, which involves predicting the relative position of
image patches. In Fig. 4, we show visualizations of a selection of object-detecting
neurons for all of these methods.

The differences between the objects detected by these methods and our own
may have to do with the requirements of the tasks being solved. The other unsu-
pervised methods, for example, all involve comparing multiple input images or
sub-images in a relatively fine-grained way. This may correspondingly change the
representation that the network learns in its last convolutional layer – requiring
its the units to encode, say, color and geometric transformations rather than
object identities. Moreover, these networks may represent semantic information
in other (more distributed) ways that would not necessarily be revealed through
this visualization method.

Analyzing the types of objects that were detected. Next, we asked what
kinds of objects our network learned to detect. We hypothesized that the object-
selective neurons were more likely to respond to objects that produce (or are
closely associated with) characteristic sounds. To evaluate this, we (an author)
labeled the SUN object categories according to whether they were closely asso-
ciated with a characteristic sound. We denote these categories with a ∗ in Fig. 3.
Next, we counted the number of units that were selective to these objects, finding
that our model contained significantly more such units than a scene-recognition
network trained on the Places dataset, both in total number and as a proportion
(Table 1). A significant fraction of these units were selective to people (adults,
babies, and crowds).

Finally, we asked whether the sounds that these objects make were actually
present in the videos that these video frames were sampled from. To do this, we
listened to the sound of the top 30 video clips for each unit, and recorded whether
the sound was made by the object that the neuron was selective to (e.g. , human
speech for the person category). We found that 43.7 % of these videos contained
the objects’ sounds (Table 1).
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4.2 Evaluating the Image Representation

We have seen through visualizations that a CNN trained to predict sound from
an image learns units that are highly selective for objects. Now we evaluate,
experimentally, how well the CNN’s internal representation conveys information
that is useful for recognizing objects and scenes.

Since our goal is to measure the amount of semantic information provided by
the learned representation, rather than to seek absolute performance, we used
a simple evaluation scheme. In most experiments, we computed image features
using our CNN and trained a linear SVM to predict object or scene category
using the activations in the top layers.

Object recognition. First, we used our CNN features for object recognition
on the PASCAL VOC 2007 dataset [8]. We trained a one-vs.-rest linear SVM to
detect the presence of each of the 20 object categories in the dataset, using the
activations of the upper layers of the network as the feature set (pool5, fc6, and
fc7). To help understand whether the convolutional units considered in Sect. 4.1
directly convey semantics, we also created a global max-pooling feature (similar
to [29]), where we applied max pooling over the entire convolutional layer. This
produces a 256-dimensional vector that contains the maximum response of each
convolutional unit (we call it max5). Following common practice, we evaluated
the network on a center 227×227 crop of each image (after resizing the image to
256 × 256), and we evaluated the results using mean average precision (mAP).
We chose the SVM regularization parameter for each method by maximizing
mAP on the validation set using grid search (we used {0.5k | 4 ≤ k < 20}).

The other unsupervised (or self-supervised) models in our comparison [1,4,
35] use different network designs. In particular, [4] was trained on image patches,
so following their experiments we resized its convolutional layers for 227 × 227
images and removed the model’s fully connected layers1. Also, since the model
of Agrawal et al. [1] did not have a pool5 layer, we added one to it. We also
considered CNNs that were trained with human annotations: object recognition
on ImageNet [3] and scene categories on Places [39]. Finally, we considered using
the k-means weight initialization method of [20] to set the weights of a CNN
model (we call this the K-means model).

We found that our best-performing of our model (the binary-coding method)
obtained comparable performance to other unsupervised learning methods, such
as [4]. Both models based on sound textures (Clustering and Binary) outper-
formed the model that predicted only the frequency spectrum. This suggests
that the additional time-averaged statistics from sound textures are helpful. For
these models, we used 30 clusters (or PCA projections): in the supplementary
material, we consider varying the number of clusters, finding that there is a small
improvement from increasing it, and a substantial decrease in performance when
using just two clusters. The sound-based models significantly outperformed other

1 As a result, this model has a larger pool5 layer than the other methods: 7 × 7 vs.
6 × 6. Likewise, the fc6 layer of [35] is smaller (1,024 dims. vs. 4,096 dims.).
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methods when we globally pooled the conv5 features, suggesting that the con-
volutional units contain a significant amount of semantic information (and are
well suited to being used at this spatial scale).

Scene recognition. We also evaluated our model on a scene recognition task
using the SUN dataset [37], a large classification benchmark that involves recog-
nizing 397 scene categories with 7,940 training and test images provided in mul-
tiple splits. Following [1], we averaged our classification accuracy across 3 splits,
with 20 examples per scene category. We chose the linear SVM’s regularization
parameter for each model using 3-fold cross-validation.

We again found that our features’ performance was comparable to other
models. In particular, we found that the difference between our models was
smaller than in the object-recognition case, with both the Clustering and Binary
models obtaining performance comparable to the patch-based method with pool5
features.

Pretraining for object detection. Following recent work [4,20,35], we used
our model to initialize the weights of a CNN-based object detection system (Fast
R-CNN [11]), verifying that the results improved over random initialization. We
followed the training procedure of Krähenbühl et al. [20], using 150,000 iterations
of backpropagation with an initial learning rate of 0.002, and we compared our
model with other published results (we report the numbers provided by [20]).

Our best-performing model (the Clustering model) obtains similar perfor-
mance to that of Wang and Gupta’s tracking-based model [35], while the overall
best results were from variations of Doersch et al. ’s patch-based model [4,20].
We note that the network changes substantially during fine-tuning, and thus the
performance is fairly dependent on the parameters used in the training proce-
dure. Moreover all models, when fine-tuned in this way, achieve results that are
close to those of a well-chosen random initialization (within 6 % mAP). Recent
work [20,26] has addressed these optimization issues by rescaling the weights of
a pretrained network using a data-driven procedure. The unsupervised method
with the best performance combines the rescaling method of [20] with the patch-
based pretraining of [4].

Sound prediction. We also asked how well our model learned to solve its sound
prediction task. We found that on our test set, the clustering-based model (with
30 clusters) chose the correct sound label 15.8 % of the time. Pure chance in this
case is 3.3 % , while the baseline of choosing the most commonly occurring label
is 6.6 % .

Audio supervision. It is natural to ask what role audio plays in the learning
process. Perhaps, for example, our training procedure would produce equally
good features if we replaced the hand-crafted sound features with hand-crafted
visual features, computed from the images themselves. To study this, we replaced
our sound texture features with (512-dimensional) visual texton histograms [24],
using the parameters from [37], and we used them to train a variation of our
Clustering model.
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Table 2. (a) Mean average precision for PASCAL VOC 2007 classification, and accu-
racy on SUN397. Here we trained a linear SVM using the top layers of different net-
works. We note in Sect. 4.2 that the shape of these layers varies between networks. (b)
Mean average precision on PASCAL VOC 2007 using Fast-RCNN [11]. We initialized
the CNN weights using those of our learned sound models. (c) Per-class AP scores for
the VOC 2007 classification task with pool5 features (corresponds to mAP in (a)).

Method
VOC Cls. (%mAP) SUN397 (%acc.)

max5 pool5 fc6 fc7 max5 pool5 fc6 fc7

Sound (cluster) 36.7 45.8 44.8 44.3 17.3 22.9 20.7 14.9
Sound (binary) 39.4 46.7 47.1 47.4 17.1 22.5 21.3 21.4
Sound (spect.) 35.8 44.0 44.4 44.4 14.6 19.5 18.6 17.7
Texton-CNN 28.9 37.5 35.3 32.5 10.7 15.2 11.4 7.6
K-means [20] 27.5 34.8 33.9 32.1 11.6 14.9 12.8 12.4
Tracking [35] 33.5 42.2 42.4 40.2 14.1 18.7 16.2 15.1
Patch pos. [4] 26.8 46.1 - - 9.8 22.2 - -
Egomotion [1] 22.7 31.1 - - 9.1 11.3 - -

ImageNet [21] 63.6 65.6 69.6 73.6 29.8 34.0 37.8 37.8
Places [39] 59.0 63.2 65.3 66.2 39.4 42.1 46.1 48.8

(a) Image classification with linear SVM

Method (%mAP)

Random init. [20] 41.3
Sound (cluster) 44.1
Sound (binary) 43.3
Motion [35,20] 44.0
Egomotion [1,20] 41.8
Patch pos. [4,20] 46.6
Calib. + Patch [4,20] 51.1

ImageNet [21] 57.1
Places [39] 52.8

(b) Finetuning detection

Method aer bk brd bt btl bus car cat chr cow din dog hrs mbk prs pot shp sfa trn tv

Sound (cluster) 68 47 38 54 15 45 66 45 42 23 37 28 73 58 85 25 26 32 67 42
Sound (binary) 69 45 38 56 16 47 65 45 41 25 37 28 74 61 85 26 39 32 69 38
Sound (spect.) 65 40 35 54 14 42 63 41 39 24 32 25 72 56 81 27 33 28 65 40
Texton-CNN 65 35 28 46 11 31 63 30 41 17 28 23 64 51 74 9 19 33 54 30
K-means 61 31 27 49 9 27 58 34 36 12 25 21 64 38 70 18 14 25 51 25
Motion [35] 67 35 41 54 11 35 62 35 39 21 30 26 70 53 78 22 32 37 61 34
Patches [4] 70 44 43 60 12 44 66 52 44 24 45 31 73 48 78 14 28 39 62 43
Egomotion [1] 60 24 21 35 10 19 57 24 27 11 22 18 61 40 69 13 12 24 48 28

ImageNet [21] 79 71 73 75 25 60 80 75 51 45 60 70 80 72 91 42 62 56 82 62
Places [39] 83 60 56 80 23 66 84 54 57 40 74 41 80 68 90 50 45 61 88 63

(c) Per class mAP for image classification on PASCAL VOC 2007

As expected, the images that belong to each cluster are visually coherent, and
share common objects. However, we found that the network performed signifi-
cantly worse than the audio-based method on the object- and scene-recognition
metrics (Table 2a). Moreover, we found that its convolutional units rarely were
selective for objects (generally they responded responded to “stuff” such as grass
and water). Likely this is because the network simply learned to approximate
the texton features, obtaining low labeling error without high-level generaliza-
tion. In contrast, the audio-based labels – despite also being based on another
form of hand-crafted feature – are largely invariant to visual transformations,
such as lighting and scale, and therefore predicting them requires some degree of
generalization (one benefit of training with multiple, complementary modalities).

5 Discussion

Sound has many properties that make it useful as a supervisory training sig-
nal: it is abundantly available without human annotations, and it is known to
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convey information about objects and scenes. It is also complementary to visual
information, and may therefore convey information not easily obtainable from
unlabeled image analysis.

In this work, we proposed using ambient sound to learn visual representa-
tions. We introduced a model, based on convolutional neural networks, that
predicts a statistical sound summary from a video frame. We then showed, with
visualizations and experiments on recognition tasks, that the resulting image
representation contains information about objects and scenes.

Here we considered one audio representation, based on sound textures, but
it is natural to ask whether other audio representations would lead the model to
learn about additional types of objects. To help answer this question, we would
like to more systematically study the situations when sound does (and does not)
tell us about objects in the visual world. Ultimately, we would like to know what
object and scene structures are detectable through sound-based training, and we
see our work as a step in this direction.
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