
Monitoring-Based Task Scheduling
in Large-Scale SaaS Cloud

Puheng Zhang(B), Chuang Lin, Xiao Ma, Fengyuan Ren, and Wenzhuo Li

Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China
zhangph14@mails.tsinghua.edu.cn, chlin@tsinghua.edu.cn

Abstract. With the increasing scale of SaaS and the continuous growth
in server failures, task scheduling problems become more intricate, and
both scheduling quality and scheduling speed raise further concerns. In
this paper, we first propose a virtualized and monitoring SaaS model
with predictive maintenance to minimize the costs of fault tolerance.
Then with the monitored and predicted available states of servers, we
focus on dynamic real-time task scheduling in large-scale heterogeneous
SaaS, targeting at jointly optimizing the long-term performance benefits
and energy costs in order to improve scheduling quality. We formulate a
dynamic programming problem, where both the state and action spaces
are too large to be solved by simple iterations. To address these issues, we
take advantage of Machine Learning theory, and put forward an approxi-
mate dynamic programming algorithm. We utilize value function approx-
imation and candidate-heuristic method to separately solve state and
action explosions. Thus, computation complexity is significantly reduced
and scheduling speed is greatly enhanced. Finally, we conduct experi-
ments with both random simulation data and Google cloud trace-logs.
Qos evaluations and comparisons demonstrate that our approach is effec-
tive and efficient under bursty requests and high throughputs.

Keywords: Multi-objective optimization · SaaS cloud · Data center ·
Task scheduling · Approximate dynamic programming

1 Introduction

Currently, services and businesses of SOFTWARE-AS-A-SERVICE (SaaS) cloud
are exponentially growing, and one cloud data center is often built with thou-
sands of servers, equipped with complex networking and power apparatuses [2].
SaaS brings vast opportunities and enormous benefits, but introduces many new
requirements and challenges.

For one thing, a more efficient scheduling algorithm is in urgent need to cope
with server failures. Due to inexpensive commodity hardware equipments, cloud
service providers are faced with high hardware and software failures [19]. Thus,
the maintenance culture is on the move [13]. In the era of “Internet of Things”, all
manner of equipments are embedded with intelligent sensors, and sophisticated
c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 140–156, 2016.
DOI: 10.1007/978-3-319-46295-0 9

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 141

analysis can then be applied to describe the health status of servers and pre-
dict the needs for repairs in advance. Therefore, predictive maintenance, which
means identifying problems and executing maintenance procedures beforehand,
is strongly recommended and advocated recently [8]. It can effectively minimize
unplanned asset downtime, make full use of resources, and reduce maintenance
costs. With predictive maintenance, health states of servers can be real-time
monitored and predicted, and scheduling a request to an unhealthy server can
be avoided maximally. Otherwise, if unhealthy servers break down half way,
unfinished tasks should be redone. No matter “Check pointing/Restart” or other
reactive fault-resilient mechanisms will lead to huge waste of time and resources.

For another, two targets, scheduling quality and speed, deserve equal atten-
tions. In order to maximize resistance to failures, provide good performance, save
energy, and cut costs, careful placement of tasks is needed but it is always ignored
by sampling methods. Meanwhile, fast scheduling is also important to guarantee
user experience, especially for real-time tasks, but many complex multi-objective
scheduling algorithms last long. Therefore, the two targets should be reconciled,
and a new approach is required.

Besides, virtual machine (VM) migrations ought to be avoided as possible,
for they are time consuming and energy intensive. In most cases, there are two
motives of VM migrations, one for fault tolerance and the other for energy con-
solidation. If under the scheme of predictive maintenance, only VMs on healthy
servers can be allocated with tasks to avoid faults. At the same time, if tasks are
first distributed to VMs on the busy servers for energy consolidation purposes,
VM migration incidents can be minimized. What is more, servers with all their
VMs switched off can then hibernate, thus auto-scaling can be realized.

In theory, multi-objective task scheduling problem for large-scale cloud data
centers is rather complicated. Not only should we arbitrate the tradeoff of multi
factors such as performance and power, but also we need to solve the problems
of state and decision explosions. Consider the real-time queue of each VM. Each
queue length can take continuous values. The number of states for one server
is uncountable and infinite, let alone the combination states of a huge number
of servers. When tasks or requests arrive, they should be allocated to some
of the massive available servers. The static distribution problem for thousands of
servers itself is NP-hard, let alone the dynamic scheduling for various types of
tasks. If we pursue long-term overall rewards, the method of Markov Decision
Processes (MDP) is often used. However, it does not work in this scenario due
to curses of dimensionality [15]. When the number of servers is very large, many
classical algorithms may also not work well within an acceptable time limit.

Tasks scheduling is a classical problem in cloud data centers, and there
have already been many algorithms to address this issue. Liu et al. [10]
built an analytical framework to do the task scheduling in SaaS clouds, and
Alahmadi et al. [1] developed a new, energy-aware task scheduling framework.
However, they are both under the assumption of homogenous servers, and do
not take into account failures of servers and deadlines of tasks. Hosseinimotlagh
et al. [7] proposed a cooperative two-tier approach for scheduling real-time tasks
to benefit both cloud providers and their customers. Mao et al. [11] put forward

142 P. Zhang et al.

a task scheduling algorithm concerning the delay of the associated tasks in cloud
computing systems. Zhu et al. [21] developed an energy-aware scheduling algo-
rithm in cloud for real-time, periodic, independent tasks in virtualized clouds.
Nevertheless, they do not consider metrics of throughput, and energy consol-
idation for various types of tasks. Cheng et al. [3] proposed an energy-saving
task scheduling algorithm based on the queuing theory. Yet, it relied on the
assumption that the coming tasks must conform to an established distribution.
Moreover, most limited the number of servers, for multi-objective scheduling in
large-scale commercial SaaS can not be efficiently conducted by their algorithms.

Consequently, all previous studies cannot simultaneously address all the
requirements and challenges mentioned above. Motivated by the need of high
efficient real-time tasks scheduling algorithms in large-scale heterogeneous SaaS
cloud, we put forward a heuristic approximate dynamic programming (H-ADP)
algorithm to jointly optimize the performance and power with predictive main-
tenance. The main contributions of this work are as follows:

(1) We put forward a virtualized and monitoring model of SaaS cloud with
predictive maintenance, based on which we constitute a scheduling rule to
minimize the costs and overheads caused by fault tolerance.

(2) We introduce popular Machine Learning theory into solving traditional sto-
chastic dynamic programming (SDP) problems, and propose a novel task
scheduling algorithm, simultaneously considering scheduling speed and qual-
ity. Both random synthetic data and real trace-logs are used in experiments
to demonstrate the applicability and superiority of our approach under
bursty requests and high throughputs.

(3) We solve the problems of both state and action explosions in task scheduling
problems. Firstly, we carefully design the basis function with the method of
value function approximation (VFA), by which state values can be parame-
terized and recursively estimated step by step. And in this way, we effectively
solve the optimization problems of infinite states. Secondly, we develop a
candidate-selection heuristic algorithm in the procedure of policy search,
and effectively solve the optimization problems that contain massive deci-
sion variables. Henceforth, we make it possible to conduct time-effective
multi-objective optimizations for SDP problems with extremely large state
and action spaces.

The remainder of this paper is organized as follows. In Sect. 2, we demonstrate
the model of a heterogeneous SaaS cloud, and formulate the scheduling problem
as an SDP problem. Section 3 proposes the Heuristic ADP algorithm. Simulations
and experiments are conducted to make Qos evaluations in Sect. 4. Section 5
concludes the paper.

2 Problem Formulation

In this section, we illustrate models and notions used in this paper, introduce pre-
dictive maintenance strategy, and formulate an SDP problem for task scheduling
issues in SaaS.

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 143

2.1 System Model

Fig. 1. A virtualized and monitoring SaaS
model under predictive maintenance

A virtualized and monitoring
model for SaaS cloud can be
described in Fig. 1 [10]. A cloud
data center is comprised of J het-
erogeneous servers, each of which
is virtualized as I types of VMs to
process the corresponding I dif-
ferent types of tasks. We set Cj

as the processing capacity of the
jth server, which is measured in
(Million Instructions Per Second)
MIPS. Without loss of general-
ity, we assume a server’s process-
ing capacity is fairly distributed
among its I hosted VMs in this
work [10]. Then the processing
capacity of each VM is 1/I of
the total processing capacity of
its hosting server. Each VM is
equipped with a buffer queue, and
we define the queue length of
type-i VM on Server j, Qi,j , as
the total volume of tasks wait-
ing to be processed, and it is
measured in Million Instructions
(MI). R = {R1, . . . , Rk, . . . , RK}
characterizes K independent and
non-preemptive requests. Each
coming task can be marked as a
four tuple, and Rk = (ArrT ime, Type, Size,Deadline)T . ArrT ime means the
arriving time of a task, and Type represents the service type. Size denotes the
length of instructions measured in Million Instructions, and Deadline indicates
the point of time before which the task must be completed.

When no hardware and software failures happen, the normal serving flow is
as follows. Customer requests or tasks are first collected by adjacent front-end
proxies, and then distributed to the relative type of request routing switchers.
A switcher is responsible for distributing a specified type of requests to proper
servers. Then the corresponding type of VM-queues on each server, buffer and
pool the tasks. Corresponding VMs handle the tasks and return results. The
serving flows for each type of tasks are marked with different colors in Fig. 1.
If a task cannot be finished within its deadline, it will be abandoned and result
into a penalty.

144 P. Zhang et al.

2.2 Scheduling with Predictive Maintenance Strategy

In practice, we ought to consider probabilities of various kinds of failures in
SaaS. Currently, modern processors are equipped with sensors that can be used
to monitor CPU temperature, fan speeds, and other parameters [9]. One of the
most commonly used examples is “Lm-sensors” [20]. Operating systems and VM
software can also be monitored by hypervisors [18]. Additionally, many sophisti-
cated patents and products have involved into the network monitoring [12]. These
sensors can be equipped as described in Fig. 1. So the overall health states of
servers can be real-time monitored and predicted by virtue of the comprehensive
analysis of hardware, software and network sensor feedbacks. Specific calculation
procedure for predicting health states of servers is illustrated in [4]. We define
Sa = (Sa1, Sa2, · · · , SaJ)T as the predicted result of server available states, and
each element can be “1” or “0”, respectively denoting a server is available or not
to receive tasks.

Scheduling with predictive maintenance strategy can be summarized in one
phrase: only assigning applications to the servers that are “healthy” enough to
handle and finish the tasks. In other words, after predictions, if one server is
imminent to break down because of hardware, software or network reasons, and
whatever the reason, new tasks are not permitted to be allocated to that server
and it must receive repairs or treatment right away. When the server is fixed out
and all states return to normal, it can receive tasks as before.

2.3 An SDP Problem

A standard SDP problem is usually comprised of 5 ingredients as follows.

Decision Time Epochs. Decisions are executed at the end of each time slot,
i.e., at t = τ, 2τ, 3τ · · · , and τ is the decision time interval.

States. State St can be categorized as two components: endogenous states matrix
Qt, which change with different actions, and exogenous states tuple EXt =
(Rt, Sat, C), which are only determined by external factors, irrelevant to specific
actions. Endogenous state matrix Qt characterizes the queue length of all VMs on
all servers at time t, and it is a matrix comprised of elements Qt,i,j , which means
the type-i VM queue length on server j. Qt,i,j varies over time due to the arriv-
ing tasks and serving rates. Exogenous state Rt denotes the coming tasks during
one time slot. Vector Sat = (Sat1, Sat2, . . . , SatJ)T captures the available state
of each server at each time slot. Vector C represents the processing capacity of
servers mentioned in Sect. 2.1, and it does not change with time.

Suppose that a data center is comprised of 10000 nodes, each node is in
possession of a buffer queue, and the length of each queue is separated into
1000 discrete values. Suppose there are totally 8 types of requests, and a VM
can be in a binary state of available or not. Then the total number of states
would be (1000 × 2)10000×8, absolutely an astronomical number! Moreover, the
queue length of each VM can take continuous values, so the number of states is
uncountable and infinite.

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 145

Actions. At each system state St, there is a corresponding control action xt(St).
At each time epoch t, considering nt tasks (nt,i tasks of type-i) are coming, and
then the decision (action) is to assign each task to the proper VM among huge
number of nodes. The actions at each time slot comprise a set of nt-dimensional
vector, i.e. (100, 2098, 298, . . . , 3980), and the lth element represents a server
index for assigning the lth task. Under the same assumption of a cloud data
center with 10000 servers, then one task may have 10000 choices, and let nt =
5000. Therefore, for only a time period of 100 time slots, the size of action spaces
would become 100 × 100005000, an astronomical number again!

Transition Function. Genetic transition function can be described as St+1 =
SM (St, xt, Ext+1) and the superscript M stands for “model” [15]. In this work,
we focus on the transitions of endogenous state matrix Qt. The dynamic forward
transition function of each element in Qt can be written as in Eq. (1). If the lth
type-i task is allocated to server j at time t, Rt,i,l,j equals the size of that task,
otherwise, Rt,i,l,j = 0. Equation (1) shows that the queue length at time t + 1 is
associated with both the coming tasks and the processing capacity of each VM
during time t.

Qt+1,i,j = max

{(
Qt,i,j +

nt,i∑
l=1

Rt,i,l,j − Ct,j

I

)
, 0

}
(1)

Rewards and Value Function. Rewards of St means the income or cost when
choosing an action in a given state at time t. Value function of St denotes the
supremum over all policies of the expected total rewards from decision epoch t
onwards [16].

Rewards. The rewards gained by the SaaS cloud can be defined in many ways in
accordance with the engineering requirements in business. Whatever the reward
formula, they all can be applied into our algorithm. In this work, we focus on the
performance benefit, energy consumption, as well as penalty for unfinished tasks.

The performance benefit is in proportion to throughputs and has an inverse
relationship with the response time [14]. At each time epoch, if task l of type i
is handled, throughput equals the size of the task, measured in MIPS. Response
time T can be calculated as Eq. (2). The performance benefit is in proportion
to throughput and in inverse proportion to response time. Performance benefit
of nt tasks in the period of time [t, t + τ] can be expressed as Eq. (3), where nt,i

means the number of type-i tasks, and σ is a constant coefficient.

Tt,i,l,j =
Qt,i,j + Rt,i,l,j

Ci,j/I
(2)

BRt =
I∑

i=1

J∑
j=1

nt,i∑
l=1

σ

(
Rt,i,l,j

Tt,i,l,j

)
(3)

P = Pidle + μ (Pbusy − Pidle) (4)

146 P. Zhang et al.

In addition, power consumption of a server grows linearly with the growth of
the CPU utilization from the idle to fully utilized state, as is found in [5]. It can
be expressed in Eq. (4), where P is the estimated power consumption of one node.
Pidle and Pbusy respectively represent the power consumed when the server is idle
and fully utilized. μ is a parameter in proportion to the CPU utilization. Worth
to mention, there may be some other forms of expressions for the assessment of
power consumption, and they all can be applied to this algorithm after slight
alterations to VFA. In SaaS, when all VM queues of a server are empty, the
server may sleep or hibernate, and then Pidle of this server equals 0. Otherwise,
Pidle is a fixed value and does not change with the number of VMs at work in
the server. As a result, VM consolidation, which refers to aggregating VMs on
minimal physical nodes, provides a good way to save energy. Power consumption
of the jth server at time t, Pt,j can be calculated by Eq. (4). μ can be indirectly
but easily deduced from matrix Qt. The overall energy consumption during the
period of time [t, t + τ] can be calculated as ECt =

∑J
j=1 Pt,jτ .

Finally, the penalty of tasks, which cannot be handled within their deadlines,
should be subtracted. Assume there are nt,fail tasks unfinished during the period
of epoch t, then the relative penalty can be denoted as Eq. (5), where δ can be
both a constant or a function changing with time or throughput.

PEt = nt,fail · δ (5)

To sum up, the overall rewards in the period of [t, t + τ] can be calculated as
Rt = BRt − ECt − PEt.

Objective Value Function. Let xπ
t (St) denotes the decision made in state St

under policy π. π = (x0, x1, x2, . . .) specifies a series of decisions made at one
time slot. Then our objective is to find the best policy π∗ ∈ Π with the largest
expected total discounted rewards over the infinite horizon [16]:

V π∗
= maxEπ

{
lim

N→∞

T∑
t=1

γt−1Rt(St, x
π
t (St))

}
. (6)

γ ∈ [0, 1) is a discount factor, which measures the value at time t of one unit
reward received at time t+τ [16]. Therefore, one unit of reward received t periods
later, only has the present value of γt and it is discounted. Equation (6) can also
be expressed by the recursive Bellman Equations:

Vt(St) = max
xt∈Xt

{
Rt(St, xt) + γE{Vt+1(St+1)|St}

}
. (7)

Altogether, if different types of tasks are assigned to as least number of servers
as possible, there would be more servers that can hibernate, and then the overall
Pidle will be low. However, in that case, the queue length of each VM at work
will be long, which leads to high response delay and low profit of performance.

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 147

Algorithm 1. Outline of H-ADP algorithm
INPUT: Sample path ω, server available states Sa, CPU processing capacity of servers C, an
iteration number T , feature basis functions φf (S), a discounted factor λ.
OUTPUT: Recursively estimated parameter θT .

1: Initialize θ1, V (S) andφf (S) for all states.
2: Choose an initial state S1.
3: for t = 1, 2, . . . , T do
4: if t > 1 then
5: Derive φf (S) from Qt.

6: Calculate V
x
t (S

x
t−1|θt−1) by Eq. (9).

7: end if
8: Solve Eq. (8), and let x′

t the value of xt that solve the maximization problem.

9: Change PDSV Sx
t by substituting x′

t into Sx
t = St+1 = SM (St, xt, Ext+1).

10: Compute v̂t(St) using Eq. (8).
11: Update θt using Eq. (11).
12: Choose ωt+1 and update St+1 with Eq. (1).
13: end for
14: return θT .

Accordingly, to jointly arbitrate the tradeoff between performance and energy
efficiency is a daunting and arduous work especially when the number of servers
is large. Besides, exogenous probability distributions of state Rt and Sat may
not be known beforehand in practice, so the expectation in Eq. (7) cannot be
calculated directly. Thus, we put forward H-ADP algorithm in the next section.

3 Heuristic ADP Algorithm

In this section, we first introduce the framework of H-ADP, as is shown in
Algorithm 1. Then the VFA approach by virtue of basis functions is illustrated.
At last, we elaborate the candidate heuristic (C-H) method.

3.1 Outline of the Algorithm

Firstly, in order to take advantage the time-sequenced sample data path ωt,
which represents exogenous values at time t, the algorithm should step forward
in time. In classical dynamic programming, it proceeds by stepping backward in
time, and Eq. (7) has to be solved for each state St, such as in MDP. But the
states are infinite in this paper, and an exhaustive algorithm does not work. Thus,
we first extract features (a term widely used in the field of artificial intelligence),
and construct an approximate value function to appraise the value of all states.
We then propose a heuristic method to find the global optimal action in line 8 of
Algorithm 1 under each sample. These are the two important steps to simplify
the computation, which are separately illustrated in Sects. 3.2 and 3.3.

Secondly, to conveniently compute the expectation in Eq. (7), we introduce
concepts of post-decision states variables (PDSVs) Sx

t . Sx
t means the system

state at time t immediately after making decision x, but before time t+1. After
a decision is made in line 8, then PDSV is equivalent to the state value at the
next time slot, Sx

t = St+1. With PDSVs, the hard-to-calculate expectation in
Eq. (7) can be eliminated, and Bellman equations can be rewritten as Eq. (8).

148 P. Zhang et al.

v̂t(St) represents the sample values at time t, and V
x

t+1(S
x
t) denotes approximate

post-decision value which equals the state value at the next time epoch. V
x

t+1(S
x
t)

might be captured in the parameter form using the basis functions φf (S). f ∈ F ,
where f is a feature, and φf (S) is a vector of feature values that can be calculated
by extracting feature information from the state Qt. The approximate value
function V

x

t (Sx
t−1) might be rewritten as Eq. (9), where θ is an |F | dimensional

vector. Specific definitions of φf (S) in SaaS cloud are described in Sect. 3.2.

v̂t(St) = max
xt∈Xt

{Rt(St, xt) + γV
x

t+1(S
x
t)} (8)

V
x

t (Sx
t−1|θ) =

∑
f∈F

θtφf (Sx
t−1) (9)

Thirdly, we use a stochastic gradient updating strategy, which stems from
Machine Learning theory, to progressively train vector θ following ωt. Vector θ
represents parameters for estimating feature values. We aim at finding the most
suitable θ∗ that produces the minimum expected squared error (MESE) between
v̂t(St) and V

x

t (Sx
t−1|θ), as is illustrated in Eq. (10). And θ can be updated step

by step to approach θ∗, as is shown in Eq. (11). αt−1 means step size, and ∇
denotes the Nabla Operator for gradient calculation.

θ∗ = arg min
θ

E

{
(v̂t − V

x

t (Sx
t−1|θ))2

2

}
(10)

θt = θt−1 − αt−1

(
v̂t(St) − V

x

t (Sx
t−1|θt−1)

)∇θV
x

t (Sx
t−1|θt−1)

= θt−1 − αt−1

(
v̂t(St) − V

x

t (Sx
t−1|θt−1)

)
φ(Sx

t−1) (11)

Fourthly, we should care more about the step size αt−1. To choose the proper
step size is really an art form which is based on experience and specific problem
structures. A step size that is too large can produce unstable behaviors. However,
if it is small, the procedure of regression may be too slow. In general, it should
satisfy the constraints in Eq. (12) [15]. Several ways of setting the step sizes may
be possible, and we will carefully design it in Sect. 4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
t=1

αt−1 = ∞

∞∑
t=1

(αt−1)2 < ∞

αt−1 ≥ 0

t = 1, 2, . . .

(12)

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 149

Algorithm 2. Candidate-Heuristic algorithm
INPUT: A request Runit, estimated parameter θ, queue state of VMs Q, CPU processing capacity
C, number of candidate Nc, server available states Sa, a discounted factor λ.
OUTPUT: The optimal server index p of the target VM.

1: i = Runit.Type.
2: Create and derive a J-dimensional vector Nen, and Nenj represents the number of VM engage-

ment excluding type i on server j.
3: In server comparisons, set the weighting orders from high to low as Cj , Nenj and Qt,i,j .
4: Find the indexes of top Nc healthy nodes giving priority to severs with the highest Cj .
5: In server comparisons, set the weighting orders from high to low as Qt,i,j , Cj and Nenj .
6: Find the indexes of top Nc healthy nodes giving priority to VMs with the least Qt,i,j .
7: In server comparisons, set the weighting orders from high to low as Nenj , Qt,i,j and Cj .
8: Find the indexes of top Nc healthy nodes giving priority to servers that more VMs are engaged

(with the highest Nenj).
9: Merge the indexes of 3Nc candidates by removing duplication items.
10: Rank the rewards of these candidates with Eq. (8) and (9), and choose the best indexed by p.
11: Return p.

3.2 Value Function Approximation

As is illustrated in Eq. (9), approximated value function of each state can be
derived with live updated θt and φf (S), which are tailored for specific scenarios.
In the task scheduling scenario, rewards during one time epoch, are mainly com-
prised of two parts, performance and energy. Performance benefit for the type-i
tasks is in proportion to the sum of available CPU processing capacity on all
type-i VMs (Avai CPU(i)), and is in negative proportion to the average queue
length of type-i (Ave Q(i)). Energy consumption for the type-i tasks is also in
proportion to Avai CPU(i), and in proportion to the number of all physical
machines that are at work (N PM on). So if there are I type of tasks, 2I + 1
features are needed. Thus φf (S) can be expressed as Eq. (13). Each element in
φf (S) at each time t can be easily derived from endogenous state Qt.

φf (S) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Avai CPU(1)
Avai CPU(2)
. . .
Avai CPU(I)
Ave Q(1)
Ave Q(2)
. . .
Ave Q(I)
N PM on

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

3.3 Candidate Heuristic Algorithm

Generally, there are two ways of finding the optimum decision in line 8 of
Algorithm 1. First, we can compute the complicated rewards of all actions, and
then rank and find the best. However, the action space is extremely large, so
this method is too intricate to implement in practice. The other method is to
equivalently transform it into classical resource allocation problems, using linear
programming (LP) approach. The number of variables is equal to that of servers,

150 P. Zhang et al.

and there are thousands of servers in a large-scale SaaS cloud. Thus, it is also
infeasible to solve this LP in an acceptable time. Accordingly, an elegant and
ingenious method tailored for the task scheduling problem is in urgent need.

After analyzing the optimal choices of servers for tasks, target VMs usu-
ally possess three characteristics: (1) with high processing capacity to diminish
response time and increase profits, (2) with low queue length for the same reason,
(3) on servers where more different type of VMs are at work. Here are illustra-
tions for (3): If three types of requests are assigned to VMs on three distinct
servers, all servers will be on. Yet, if they are allocated to VMs on only one server,
the other two can hibernate. It is similar to the reason of VM consolidations.

Therefore, in order to find the optimal nodes, there are mainly three strate-
gies, each focusing on one characteristic mentioned above. In each strategy, we
can choose Nc candidates for comparisons. Then we merge the indexes of 3Nc
candidates by removing duplication items. Nc should be set according to spe-
cific circumstances. If Nc is large, there will be more chances of finding the best
candidate, but higher computation complexity, and vice versa. Usually, Nc = 5
is enough. At last, we compute and rank the rewards of all these candidates in
order to choose the best. In this approach, for every task, we reduce calculating
the complex rewards of thousands of nodes into computing rewards of only a few
candidates. As the number of requests accumulates with time, the computation
complexity can be greatly reduced. We compute the state values with Eqs. (8)
and (9), simultaneously considering current and future circumstances.

The whole algorithm is demonstrated in Algorithm2. It is worth noting that,
in line 4, 6 and 8, only “healthy” nodes (indicated by Sat,j = 1), can be listed
and selected. Besides, we do the task scheduling in consideration of the deadline
of each request, and if all VMs are unable to finish a task before its deadline,
the request will be marked and rejected. Of course, unhandled tasks will bring
additional losses, which can be calculated in Eq. (5).

4 Qos Evaluation

In this section, we conduct simulations in Matlab 2012a, on a PC with i5 proces-
sor at 3.5 GHz and memory size of 4GB. After steps of approximations in Sect. 3,
complicated scheduling procedure of each task is simplified into comparing met-
rics of only a few candidates with elementary operations. Computation complex-
ity is reduced from O(J2) to O(3Nc), and J = 10000, Nc = 5 in this work. It
is obvious that scheduling speed is no more a problem with modern comput-
ers. Due to space limit, demonstration for scheduling speed is omitted here. We
focus on evaluating scheduling quality of the “oversimplified” H-ADP. We make
evaluations based on both random synthetic workloads and Google trace-logs of
real-world data. Due to the large scale of servers, many classical multi-objective
algorithms are unavailable. Thus, we conduct comparisons of our approach with
two commonly used algorithms in task scheduling of data centers, and they are
load-balancing (L-B) and randomized-selection (R-S) algorithms.

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 151

4.1 Simulations on Random Workloads

In order to testify the generality and versatility of H-ADP algorithm, we conduct
simulations under various input parameters in high throughputs.

Rules of Generating Main Input Parameters.

Number of servers: Due to characteristics of large-scale SaaS cloud, we set the
number of nodes J = 10000 throughout this paper.
Task type: In most cases, the task type I is an integer not more than 10.
Task count : The number of coming tasks per unit of time is assumed to conform
to Poisson distribution with a mathematical expectation λ ∈ [103, 5×103]. Then
the total number of tasks arriving during time t is λt.
Task size: The task sizes of all types are assumed to conform to exponential
distribution, each with the expectation ER ∈ [5 × 104, 105] MI.
Task deadline: The deadline of all types of tasks is designated as d = fb + v
[19], where fb is a fixed base value, and v conforms to exponential or uniform
distribution. We may set fb = 15, and set E(v) = 20.
Server available state: According to [17], we assume that the mean time to
failure (MTTF) of each server conforms to Weibull distribution. We set the shape
parameter as 0.8, and scale parameter as 500. In [17], it also argues that repair
time is better modeled by a lognormal distribution. Thus, in this simulation,
we assume the mean and standard deviation of the variable’s natural logarithm
respectively equal 4 and 0.9. Thus, as time goes by, the available state of each
server may alternatively change along with its MTTF and repair time.
Server capacity : In this work, as in most data centers, we assume that servers
are divided into several categories of servers, and servers of the same category
possess the same processing capacity. Then the capacity of each server can be
chosen from a set of configurations.
Step size: Three methods [15] of setting the step size are used in this paper.
(1) In a constant rule, αt−1 takes a fixed value all the time. (2) In a harmonic
way, αt−1 is large at the beginning, but gets smaller with the increase of t. Step
size αt−1 = b/(b + t) at time t, where b is a fixed base value. (3) In a search-
then-converge (STC) learning rule, it produces delayed learning compared with
harmonic step size. Step size can be calculated as αt−1 = α0(a

t +b))/(a
t +b+tϕ).

Under the constant rule, we set the step size as 0.01, simultaneously ensuring
the convergence rate and stability of the algorithm. Under the last two rules, we
can adjust parameters along with arriving tasks, and if we get divergent results,
it demonstrates that the step size is so large that we should adjust parameters
to diminish the step size, and vice versa.

A Typical Simulation and Analysis. In our first experiment, we set λ =
3 × 103, I = 6 and ER = 8 × 103 MI. The corresponding step sizes changing
with iterations under three rules are depicted in Fig. 2. Under each rule of step
sizes, we can recursively get the convergence of all the 13 elements in vector θ.
Random examples, θ(Ave CPU(1)), θ(Ave Q(2)) and θ(N PM on), are sepa-
rately plotted in Figs. 3, 4 and 5. In the constant step-size rule, as the step size

152 P. Zhang et al.

0 30 60 90 120 150 180
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Iterations

S
te

p
 s

iz
e

 v
a

lu
e

Constant step size

Harmonic step size

STC step size

Fig. 2. Evolvement of three
step sizes

0 30 60 90 120 150 180
0

1

2

3

4

5

6

Iterations
θ(

A
va

i_
C

P
U

(1
))

Constant step size

Harmonic step size

STC step size

Fig. 3. Convergence of
θ(Avai CPU(1))

0 30 60 90 120 150 180
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

x 10
−3

Iterations

θ(
A

ve
_

Q
(2

))

Constant step size

Harmonic step size

STC step size

Fig. 4. Convergence of
θ(Ave Q(2))

0 30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iterations

θ
(N

_
P

M
_

o
n

)

Constant step size

Harmonic step size

STC step size

Fig. 5. Convergence of θ
(N PM on)

0 30 60 90 120 150 180
0

0.1

0.2

0.3

0.4

0.5

0.6

Iterations

S
ta

n
d

a
rd

iz
e

d
 R

e
w

a
rd

s

H−ADP

C−H

L−B

R−S

Fig. 6. Rewards changing
with iterations

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Cases

S
ta

n
d

a
rd

iz
e

d
 R

e
w

a
rd

s

H−ADP

C−H

L−B

R−S

Fig. 7. Overall rewards in
all cases

does not diminish with iterations, all the curves may slightly oscillate in the end.
Meanwhile, in the harmonic and STC step-size rules, the curves are steep at the
beginning and the peaks are pretty high especially under the STC step size, but
both curves are relatively flat in the end.

What can be summarized from these figures are as follows: (1) All parameters
(elements) in vector θ experience similar evolving processes; (2) Our approach
can quickly extract information from raw data, and only after 30 iterations,
all the curves oscillate around relatively fixed values; (3) Each parameter in θ
respectively converges into consistent values, despite of the different processes
under three different step sizes; (4) The convergence results of each parameter
under three step sizes are slightly different.

Under different step-size rules, each element converges into similar results,
which demonstrates the validity and correctness of our algorithm. Besides, due
to the different convergent values under three step-size rules, we always set the
final result of θ as the average value in practice. In this simulation, θ is a 13-
dimentional vector expressed in Eq. (14). All elements are different due to various
incoming workloads of each task type.

θ = (1.54292, 1.65964, 1.76832, 1.64586, 1.45819, 1.69651,

0.00057, 0.00062, 0.00066, 0.00059, 0.00058, 0.00046, 0.10530)T (14)

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 153

Utilizing the trained vector θ, we can conduct H-ADP algorithm for task
scheduling. Meanwhile, the C-H algorithm can be used standalone in schedul-
ing tasks as a kind of myopic or greedy algorithm. There are also two com-
monly used algorithms, load-balancing and randomized-selection. For the same
incoming workloads, we simultaneously run four algorithms. Four overall rewards
changing with iterations are respectively depicted in Fig. 6.

We can clearly see that all rewards are approximately in linear growth over
time but with different slopes. Rewards of H-ADP and C-H are remarkably
higher than L-B and R-S at each time epoch. H-ADP is in pursuit of long-term
profits, and it takes into consideration of outcomes for both current and future
decisions. Meanwhile, the C-H algorithm makes decisions only in accordance
with immediate circumstances. Therefore, the overall reward of H-ADP in the
long term is superior to that of C-H, and the gap between them cumulates with
time. For a SaaS cloud that is in service day after night, the incremental benefit
of H-ADP over the other three approaches will be quite substantial.

Table 1. Workload parameters
in all cases

Case λ I ER (MI)
1 103 5 104

2 1.5 × 103 3 8 × 103

3 2 × 103 4 8 × 103

4 2.5 × 103 10 9 × 103

5 3 × 103 6 7 × 103

6 3.5 × 103 7 7.5 × 103

7 4 × 103 5 6.5 × 103

8 4.5 × 103 9 8.5 × 103

9 5 × 103 4 5.5 × 103

Comparative Experiments and Analysis.
Next, we do simulations under different λ that
increases from 1000 to 5000 with steps of 500.
Meanwhile, we randomly set the number of
task types and expected size of requests in
their respective ranges mentioned above in this
section. Thus, there are 9 cases altogether, and
the main parameters are depicted in Table 1.

In each case, we conduct H-ADP algorithm
under three step sizes, and get similar conver-
gence curves of all elements in θ as Figs. 3,
4 and 5. Besides, all the four algorithms pos-
sess similar reward changing curves that increase
with iterations as in Fig. 6. As space is limited,
both θ and reward curves changing with itera-
tions are omitted here. We only care about the total rewards after 200 iterations.
Figure 7 shows that the overall rewards of the four approaches keep an ascend-
ing trend with the increase of λ (task count per unit of time). The comparison
results and the causes are in accordance with the previous experiment analyzed
above. A group of experiments demonstrates that our approach is superior in all
circumstances. We can also discover that with the increase of λ, the gaps between
the rewards of H-ADP and C-H are becoming more apparent. Meanwhile, the
rewards of L-B and the rewards of R-S are alternately higher than each other,
and which is higher depends on specific random data of Rt and Sat in each case.

4.2 Evaluation Based on Google Trace-Logs

The group of simulations above demonstrates the Qos improvement and strong
applicability of our approach in random synthetic workloads. In order to ver-
ify the feasibility of H-ADP in practical use, we further conduct experiments

154 P. Zhang et al.

0 5,000 10,000 15,000 20,000
0

50

100

150

200

Time(s)

R
e

s
o

u
rc

e
 R

e
q

u
e

s
ti
n

g

Type1

Type2

Type3

Type4

Fig. 8. Resource requesting
statistics for Google trace-
logs

0 5,000 10,000 15,000 20,000
0

2

4

6

8

10

12

Time(s)
θ

(A
v
a

i_
C

P
U

(1
))

Constant step size

Harmonic step size

STC step size

Fig. 9. Convergence of
θ(Ave CPU(1)) with Goo-
gle trace-logs

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

S
ta

n
d

a
rd

iz
e

d
 R

e
w

a
rd

s H−ADP

C−H

L−B

R−S

Fig. 10. Rewards chang-
ing with time with Google
trace-logs

with Google cloud trace-logs [6]. The trace-logs describe workload information
of 25 million tasks that span 29 days. It is particularly difficult and not essential
to utilize all the log data, so we select the data set of TraceVersion1, which
recorded a 7-h period of traces containing 4 type of 3,535,031 tasks. Each task
is marked with arriving time, type, normalized resource consuming and so on.
Total standardized resource requesting of each type of tasks at each time epoch
are depicted in Fig. 8. We can see clearly that the coming tasks of each type
are not evenly distributed and accompanied with bursty requests. Therefore, it
is hard to discover any distribution law of the trace-logs, and we need to take
advantage of Machine Learning theory.

With H-ADP, we can also recursively get the convergence curves of all the
9 (2 × 4 + 1 = 9) elements in vector θ under three rules of step sizes. As real
workloads are disordered and unpredictable, the curves fluctuate more acutely
but they all converge in the end. Convergence for θ(Ave CPU(1)) with three
step sizes is plotted as an example in Fig. 9. We can then calculate the average
θ for H-ADP and do algorithm comparisons.

Our approach does not rely on pre-knowing the probability distribution func-
tion (PDF) of requests, and H-ADP can learn recursively from unpredictable and
bursty requests, but myopic algorithms can not. Therefore, H-ADP is remark-
ably superior to C-H in terms of rewards as time accumulates, as is demonstrated
in Fig. 10. Again, these two approaches significantly outperform L-B and R-S.

5 Conclusions

In this paper, we tackle the real-time task scheduling problems in SaaS cloud.
We first construct an SDP problem and analyze the ingredients. With reference
to Machine Learning theory, we put forward an ADP algorithm combined with
candidate-heuristic method. Comprehensive experiments and comparisons are
conducted to evaluate the algorithm. Results demonstrate that the proposed
work provides an elegant and effective approach to handle complex scheduling
problems in large-scale heterogeneous SaaS.

Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud 155

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (No. 61472199 and No. 61370132).

References

1. Alahmadi, A., Che, D., Khaleel, M., Zhu, M.M., Ghodous, P.: An innovative
energy-aware cloud task scheduling framework. In: 2015 IEEE 8th International
Conference on Cloud Computing, pp. 493–500. IEEE (2015)

2. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an intro-
duction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit.
8(3), 1–154 (2013)

3. Cheng, C., Li, J., Wang, Y.: An energy-saving task scheduling strategy based on
vacation queuing theory in cloud computing. Tsinghua Sci. Technol. 20(1), 28–39
(2015)

4. Egwutuoha, I.P., Cheny, S., Levy, D., Selic, B., Calvo, R.: Energy efficient fault
tolerance for high performance computing (HPC) in the cloud. In: 2013 IEEE Sixth
International Conference on Cloud Computing, pp. 762–769. IEEE (2013)

5. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: ACM SIGARCH Computer Architecture News, vol. 35, pp. 13–23.
ACM (2007)

6. Google: Cloud trace-logs. code.google.com/p/googleclusterdata/wiki
7. Hosseinimotlagh, S., Khunjush, F., Hosseinimotlagh, S.: A cooperative two-tier

energy-aware scheduling for real-time tasks in computing clouds. In: 2014 22nd
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, pp. 178–182. IEEE (2014)

8. IBM: Predictive maintenance (2015). www-01.ibm.com/software/analytics/
solutions/operational-analytics/predictive-maintenance/

9. Kumar, A., Shang, L., Peh, L.S., Jha, N.K.: System-level dynamic thermal man-
agement for high-performance microprocessors. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 27(1), 96–108 (2008)

10. Liu, F., Zhou, Z., Jin, H., Li, B., Li, B., Jiang, H.: On arbitrating the power-
performance tradeoff in saas clouds. IEEE Trans. Parallel Distrib. Syst. 25(10),
2648–2658 (2014)

11. Mao, Y., Xu, Z., Ping, P., Wang, L.: Delay-aware associate tasks scheduling in the
cloud computing. In: 2015 IEEE Fifth International Conference on Big Data and
Cloud Computing (BDCloud), pp. 104–109. IEEE (2015)

12. Nakamura, H., Matsuda, H., Akazawa, F., Shiraga, M.: U.S. Patent No. 8,195,985.
U.S. Patent and Trademark Office, Washington, DC (2012)

13. O’Brien, J.: Datacenter facilities maintenance (2014). www.datacenterjournal.com/
datacenter-facilities-maintenance-time-change-culture

14. Peterson, L.L., Davie, B.S.: Computer Networks: A Systems Approach. Elsevier,
Amsterdam (2007)

15. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, vol. 703. Wiley, Hoboken (2007)

16. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (2014)

17. Schroeder, B., Gibson, G.: A large-scale study of failures in high-performance com-
puting systems. IEEE Trans. Dependable Secure Comput. 7(4), 337–350 (2010)

http://code.google.com/p/googleclusterdata/wiki
www-01.ibm.com/software/analytics/solutions/operational-analytics/predictive-maintenance/
www-01.ibm.com/software/analytics/solutions/operational-analytics/predictive-maintenance/
www.datacenterjournal.com/datacenter-facilities-maintenance-time-change-culture
www.datacenterjournal.com/datacenter-facilities-maintenance-time-change-culture

156 P. Zhang et al.

18. Tchana, A., Broto, L., Hagimont, D.: Approaches to cloud computing fault toler-
ance. In: 2012 International Conference on Computer, Information and Telecom-
munication Systems (CITS), pp. 1–6. IEEE (2012)

19. Wang, J., Bao, W., Zhu, X., Yang, L.T., Xiang, Y.: Festal: fault-tolerant elastic
scheduling algorithm for real-time tasks in virtualized clouds. IEEE Trans. Com-
put. 64(9), 2545–2558 (2015)

20. Wikipedia: Lm-sensors. en.wikipedia.org/wiki/Lm sensors
21. Zhu, X., Yang, L.T., Chen, H., Wang, J., Yin, S., Liu, X.: Real-time tasks oriented

energy-aware scheduling in virtualized clouds. IEEE Trans. Cloud Comput. 2(2),
168–180 (2014)

http://en.wikipedia.org/wiki/Lm_sensors

	Monitoring-Based Task Scheduling in Large-Scale SaaS Cloud
	1 Introduction
	2 Problem Formulation
	2.1 System Model
	2.2 Scheduling with Predictive Maintenance Strategy
	2.3 An SDP Problem

	3 Heuristic ADP Algorithm
	3.1 Outline of the Algorithm
	3.2 Value Function Approximation
	3.3 Candidate Heuristic Algorithm

	4 Qos Evaluation
	4.1 Simulations on Random Workloads
	4.2 Evaluation Based on Google Trace-Logs

	5 Conclusions
	References

