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Abstract. Services organizations maintain a pipeline of sales opportu-
nities with different maturity level (belonging to progressive sales stages),
lifespan (time to close) and contract values at any time point. As time
goes, some opportunities close (contract signed, or lost) and new oppor-
tunities are added to the pipeline. Accurate forecasting of contract sign-
ing by the end of a time period (e.g., quarterly) is highly desirable to
make appropriate sales activity management with respect to the pro-
jected revenue. While the problem of sales forecasting has been inves-
tigated in general, two specific aspects of sales engagement for services
organizations, which entail additional complexity, have not been thor-
oughly investigated: (i) capturing the growth trend of current pipeline,
and (ii) incorporating current pipeline build-up in updating the predic-
tion model. We formulate these two issues as a dynamic curve-fitting
problem in which we build a sales forecasting model by balancing the
effect of current pipeline data and the model trained based on historical
data. There are two challenges in doing so, (i) how to mathematically
define such a balance and (ii) how to dynamically update the balance as
more new data become available. To address these two issues, we propose
a novel discrete-constraint method (DCM). It achieves the balance via fix-
ing the value of certain model parameters and applying a leave-one-out
algorithm to determine an optimal free parameter number. By conduct-
ing experiments on real business data, we demonstrate the superiority of
DCM in sales pipeline forecasting.

1 Introduction

IT services organizations manage a pipeline of sales opportunities. Such sales
opportunities/deals go through an elaborative process that may take three
months to two years of negotiations and working until a contract is signed or
the opportunity is lost. During this process, deals move from one sales stage
(e.g. qualified) to another (e.g., conditional agreement). In order for an IT ser-
vices organization to manage its sales effectively, they need to have the ability
to forecast services sales revenue one quarter, two quarters, or sometimes up to
a year in advance to harvest new opportunities or make sign/no-sign decisions
on others.
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Existing works for services sales forecasting (e.g., [10,17,24]) fit in one of two
main categories. The first category includes those operating at the opportunity-
level, i.e., predict the revenue by considering which opportunities currently
present in the pipeline may turn as won. Then, projected win values are aggre-
gated to get the estimated sales revenues. More technically, this can be described
as learning/applying a sale conversion factors from historical data to compute
the won value of the pipeline at the end of the target period. The next category
operates at the aggregate pipeline level; i.e., the total value of opportunities at
a given sales stage. They predict the sales revenue for the target quarter mainly
by learning a model from historical aggregated values of pipeline. However, both
categories are concerned only with the current pipeline information, and do not
consider future opportunities that may still end up being won within the remain-
ing time of the target period. In this context, an critical factor is predicting how
much the pipeline may grow from that point in time, referred as “growth fac-
tor”. This factor may be high in the beginning of the time period, where more
opportunities are constantly added to the sales pipeline. From a given point
of time, that varies depending to the type of business, the pipeline does not
monotonically grow throughout the target period. Indeed, after some more time
(e.g., after mid-period), this value may get smaller. This is because no new sales
opportunities with a target closure date of that period are added anymore, and
existing opportunities are identified as loss or their projected closure dates are
transferred to a next target period. Therefore, it is important to consider the
growth factor for a more accurate prediction.

In this paper, we focus on the problem of dynamic modeling of services sales
forecasting in which both current pipeline build-up and the pipeline growth
are considered in making sales forecast for a given target time period. As a
modeling option for this problem, one may think of treating it as a time series
problem [1,3,20,22]. However, the typical assumption of time series does not
hold in this context. The classic time-series model, e.g., ARIMA, focuses on one
single continuous timeline and the goal is to predict future value (e.g., t + k)
based on historical data. In our problem, the sales forecasting data consists of
multiple series of data with varying time lengths, in which sales opportunities get
added with a target closing date at different points in time (e.g., few quarters in
advance), each representing the change of pipeline value during the time period.
These periods can not be simply concatenated to a single one because the life
span of any two periods may overlap with each other. Also, compared to what
a typical time series model expects, the number of data points in the series
is extremely low. For example, in a typical real-world sales data set, it is not
uncommon to have few data points. For instance, in our real-world data set
used in the experiments of this paper, there are only 28 points per period. This
sparse quantity makes it rather hard to apply models such as ARIMA that
assumes large sets of data points in a time series.

Given the above context, we formulate the growth forecast as the process
of a dynamic polynomial curve-fitting. With all historical records, we propose
learning of a polynomial growth curve. It serves as a basis of the forecast.
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The other issue with the curve-based methods is that the learned model is based
on historical data. However, for any target period, as time goes, more estimated
win contribution values will be available. In this case, the problem is then how
to dynamically update the prediction accordingly. To solve this problem, we pro-
pose a Discrete Constraint Method (DCM). The general idea is to enforce the
similarity between the historical curve and the one that is fitted only on the cur-
rent pipeline data. The key challenge lies in two-folds: (i) how to formulate such
similarity degree and (ii) how to find an optimal similarity degree. Our model
addresses the first one by limiting the number of free parameters, mainly accord-
ing to their impact on objective function. With such design, the second issue is
reduced to determining the optimal number of free parameters. To solve this
latter problem, we apply a leave-one-out algorithm. This algorithm takes turns
to mask one historical pipeline record as a pseudo target period. The optimal
number is the one that achieves lowest prediction error in the validation.

Thus, in summary, the contributions of this work are as follows:

– We formulate the problem of services sales growth prediction as a dynamic
curve-fitting problem, considering both the historical curve and current avail-
able pipeline data points.

– We solve the problem by designing models that control the degree of similarity
between the historical curve and the one learned on current pipeline data.
Particularly, we propose a Discrete Constraint Model which formulates the
degree of similarity by fixing some of the model parameters to have the same
value with the historical one, according to the absolute value of the gradient.

– We propose a leave-one-out algorithm that dynamically determines the con-
straint degree of similarity according to the amount of available data.

– We report the results of experiments on real business data to evaluate the
performance of the model, which shows the superiority of the proposed method
over existing works in terms of prediction accuracy.

The rest of the paper is organized as follows. Section 2 gives a literature
review. Section 3 illustrates the curve-fitting problem. Sects. 4 and 5 give details
of the solution and experiment results, respectively. Finally Sect. 6 concludes the
whole work and describes potential future research.

2 Related Work

The related work can be studied in two broad categories: (i) the opportunity-
level prediction and (ii) the time-series driven sales analysis. The former one
relates to works that train different types of models according to information
about each opportunity (or deals as mentioned in other works). The goal is to
predict the outcome [6,10,23], the health status [18] or monitor the progress [24].
For further details on services in IT service contracts, we refer the reader to our
previous works in [9,16].

From the first category, Greenia et al. [10] presented a quantitative-based
approach for the prediction of deal outcomes and identified a number of key
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factors that are highly correlated to the deal’s final outcome. The prediction
approach is based on a Näıve Bayesian classifier that is trained on these fac-
tors (features). In [6], Carman et al. investigated the problem of comment-based
opportunity outcome prediction. Nezhad et al. [18] presented an text analytics-
based deal outcome prediction approach that integrates a concept clustering
approach, and sentiment analysis, and a set of semantics-based features for deal
outcome prediction. These new features are used to train classifiers to predict
the outcome of each deal. In [23], Yan et al. apply the multi-dimension Hawkes
process to model the probability of deal outcome. In that work, the deal informa-
tion determines a base probability, which is then updated based on the history of
interaction of sellers with the client. Such impact exponentially decays in terms
of the time interval when those interactions happened. In our prior work [24],
we applied multinomial and Dirichlet process to model the progress of a deal.
Given the deal information and update records, the model is capable of predict-
ing the next event type (new update, win or loss) as well as the time interval.
These works provide methods and tools for sales manager on opportunity-level
control. However, they focus on opportunities in the current pipeline and does
not consider the future pipeline growth by the end of the target period.

There have been a few decades for research in time-series analysis. For a
detailed review of this field, we refer readers to the survey by Gooijer and
Hyndman [7]. As early as 1960, Winters [22] presented an exponential forecasting
model for sales based on moving averages. ARIMA [4] (or its variant) is another
popular method used in time-series sales prediction [2,5,13,21] and multiple
works [8,19] have demonstrated its good performance in “mediate and short-
term forecasts” [3]. Furthermore, artificial neural network (ANN) is a relative
new method that is studied and compared with conventional ones [3,11,12,14].
Finally, a few works [1,3,15] propose to use hybrid methods of conventional
ARIMA and ANN in time-series prediction. These methods work on a single
long time-series data and requires a sufficiently large quantity of data points for
training. In our problem, however, data consists of multiple overlapping time
periods. These periods can not be concatenated to a single one because the life
span of two periods may overlap with each other, and the target time period
may not have the same time scale of the historical ones. Also, the length of each
period is quite short compared to conventional time-series data. For example, in
our experimental data set there are only 28 points for a given period. This small
quantity makes it hard to apply complex model such as ARIMA. Finally, the
number of periods is also relatively small as historical data from far back in the
history may not be relevant to today’s business due to the change of business
strategy, business lines or products or services.

3 Problem Illustration

Services pipeline is building up as time passes and as new opportunities are
arriving with an estimated closing date within the target time period. At any
given point in time, there is a pipeline build up, and also future growth potential
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for the pipeline. Forecasting the period-end sales revenue needs to consider both
current pipeline from the lens of historical model as well as the future growth in
order to capture the full picture of pipeline sales by the end of the target period.

Formally, let D denote historical data and Yn = {y1, · · · , yn} represents the
current data with only n available data points. Suppose T is the total number
of time points for full period, the problem is then formulated as below. Given D

and Yn, find a function f : |D| × n → 1 to make estimation ŷT = f(D,Yn) such
that |ŷT − yT | is minimized.

Although the goal is to predict the period-end pipeline value, we can model
the change of the pipeline build up during the whole life cycle. At any given
time point, there is a record of the pipeline. Connecting all these records models
the growth of the pipeline as a curve and capturing the growth trend can thus
be solved via curve fitting. Consider Fig. 1 as an illustration. In this figure, the
blue line represents the curve fitted on historical data while the green crossing
stands for the estimated win-contribution value of target period. The goal is to
predict where the final green crossing will locate.

On one extreme, we may totally discard the current data and only rely on
the historical curve, i.e., f(D,Yn) → f′(D). Reflecting this method in Fig. 1,
it is equivalent to use the end of blue line to estimate the value. This method
is problematic. As can be seen, the green crosses does not lie closely to the
curve, indicating that the target period growth may have a different pattern.
Relying only on the history may suffer inaccuracy. On the other extreme, we
may simply discard the historical model and fit a completely new curve based
on the current data, i.e., f(D,Yn) → f

′′
(Yn). This method is illustrated in

Fig. 2, which demonstrates a high possibility of overfit. Thus this method is also
problematic.

We argue that a good strategy should combine both history and present,
using current data to fit a new curve while at the mean time applying historical
curve to avoid overfit. In another word, we need to find a balance point between
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Fig. 1. Problem illustration
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Fig. 2. Risk of overfit
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Fig. 3. A reasonable fit
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Fig. 4. Dynamic update on curve

current data and historical model. Figure 3 shows an example of fitting consider-
ing these two factors. Finally, as time goes forward, more and more current data
will be available. In this case, the balance point needs to be dynamically updated
accordingly. Figure 4 displays an example of fitting when more data points are
available. As can be seen, the curve is different from what it used to be in an
earlier time as in Fig. 3.

As can be seen from the example above, there are two key challenges in
the dynamic curve-fitting problem: (i) definition of balance point in combining
current data and historical model and (ii) mechanism of dynamically updating
such balance point as new data becomes available.

One intuitive method is to simply add the current data into historical one and
fit a curve on this combined data. Figure 5 shows the result of this method. As
can be seen, the first part of the fitted curve try to find a tradeoff between current
and historical data. The latter part of the curve overlaps with the historical one.
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Fig. 5. Combine current data
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Since we use the end of the curve as the prediction of period-end value, this
method makes no difference with the one using history data only.

An alternative method is to replace part of historical data with current one
and connect with other historical record. Then a curve can be fit on such hybrid
data set, as shown in Fig. 6. It can be seen that the resulted curve tries fitting
the current data and in later part goes closely to the historical data. Again the
current data does not affect the final prediction in this method.

As can be seen from the two possible methods above, a straightforward way of
combining historical and current data does not help much in forecast prediction.
What is needed is a methodological approach to define the balancing mechanism
in order to achieve a reasonable fit as shown in Fig. 3.

4 Pipeline Build-Up Aware Sales Forecasting

In this section we first introduces the curve-fitting approach. Then, we present
the discrete constraint model. It formulates the problem as the determination
of free and fixed parameters in the model. Also, we introduce a leave-one-out
validation mechanism as a method to determine how many parameters should
be fixed. For easy reference, we list all symbols and their meanings in Table 1.

Table 1. Summary of symbols

Symbol Meaning

w Parameters of the curve

w0 Parameters of the curve learned on historical data

Y The current data

C The constraint matrix

l The number of non-zero diagonal values in C

M The number of historical periods

X1 · · ·XM Historical data

4.1 Curve-Fitting Methodology

Curve-fitting is a special case of regression, one classic machine learning prob-
lem. Given a series of pair data, the goal is to fit a curve that can map the
independent variable value to the dependent one. Particularly in this work we
consider the polynomial curve-fitting where the independent variable is time and
the dependent one is the corresponding sales win value in pipeline.

Formally, let w denote the vector of model parameter, which satisfies a zero-
mean Gaussian distribution. Moreover, suppose the parameters are independent
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of each other but shares the same standard deviation σ, we may construct the
objective function as in Eq. (1).

L(w|Y) = R(Y,w) + log N (w; 0, σ2)

= R(Y,w) + log
(

1
σ
√

2π
e−wT w

2σ2

)
∝ R(Y,w) +

wTw
2σ2

(1)

where wT is the transpose of a vector, Y = {(t1, y1), · · · , (tn, yn)} represents
the current data and R is an objective function evaluating the error of model
fitness with w. Particularly in our problem scenario, this objective function is a
k-order polynomial curve-fitting where w = {w1, · · · , wk}, as shown in Eq. (2).

R(Y,w) =
n∑

i=1

(yi −
k∑

j=0

tjiwj)2 (2)

The second part in Eq. (1) is the penalty of large difference between the
model and zero value. This term is widely used to avoid overfit, especially when
the polynomial order is bigger than the number of available data points.

4.2 Discrete Constraint Method

Given a model trained on historical data and partial data of target period, the
goal is to produce a new model that fits current data and at the same time keeps
consistent with historical model.

Recall that the use of curve for prediction is based on such assumption that
the shape of the pipeline growth is correlated with the final value. In the regres-
sion model, the shape of a polynomial curve is jointly controlled by the parameter
vector w = {w1, · · · , wk}. The change of its value affects the curve. However,
such impact is different among elements wi. For instance, consider a parabola
represented as y = w1 + w2t + w3t

2, the value change of w1 will only move the
curve vertically and has no impact on the shape. On the other hand, the change
of w2 and w3 have different impacts, depending on the value of t. Specifically,
if |t| is bigger than 1, w3 has larger impact. Otherwise, w2 changer curve more
than w3. More generally, given an objective function F (w), the impact of para-
meter on objective value is proportional to the absolute value its corresponding
gradient, i.e., ∂F

∂w .
In last section, the enforcement term in Eq. (1) prefers small parameter value,

i.e., close to zero unless there is strong evidence. Here we adopt a similar form.
Instead of a continuous parameter σ, we put a binary constraint on each parame-
ter. Specifically, parameters that have big impact on the curve shape are forced
to be equal to historical model while those with small impact are free. The ratio-
nale behind is that historical data (or curve) determines the general shape of
growth curve, while the current partial data makes small modifications.

To formulate this principle mathematically, we first define a constraint
matrix, denoted as C. It is a diagonal square matrix whose dimension is the
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same with the order of polynomial curve. The element value has only two types,
i.e., zero or positive infinity. Then given current data Y and historical curve w0,
the objective function to combine the two can be written as below:

Ldc(w|Y,w0,C) = R(Y,w) + (w − w0)TC(w − w0)

= R(Y,w) + (w − w0)T

⎛
⎜⎝

c1 · · · 0
...

. . .
...

0 · · · ck

⎞
⎟⎠ (w − w0)

= R(Y,w) +
k∑

i=1

ci(wi − woi
)2 where ci ∈ {0,+∞}

(3)

As can be seen, when ci = 0, the corresponding wi goes with no constraint
and is free for any value. On the other hand, when ci = +∞, there is such a
strong constraint that wi can only be equal to w0i

.
The key challenge for this method is how to determine the value of ci in

constraint matrix C. Firstly, without loss of generality, we assume elements of
the parameter vector w are sorted in a non-descending order according to its
impact on curve shape. Now the question is transformed to how to set the proper
value for l. Heuristically if all data are available, then we do not need historical
model (l = 0). On the other hand, if no data is available, we can only rely
on the historical model (l = |w|). However, it is unclear how the value to be
set for a common case between these two scenarios. To solve this problem, we
formulate it to an optimization task on historical data. Let Cl denote that the
first l diagonal values are 0 while the other k − l are set to +∞. The objective
function to determine the optimal l is defined as in Eq. (4).

Γ(l|X1, · · · ,XM ) =
1
M

M∑
m=1

{R(Xm,w∗)}

where w∗ = arg min
w

Ldc(w|Xn
m,wm−

0 ,Cl)

where wm−
0 = arg min

w

1
M − 1

M∑
j=1,j �=m

R(Xj ,w)

(4)

Equation (4) defines a discrete search space for l and the space volume is
equal to the number of parameters in the model. Specifically for polynomial
curve fitting, it is an integer ranges from 1 to the polynomial order plus 1.

Algorithm 1 shows the specific steps. Given M historical data {X1, · · · ,XM},
number of available points n and polynomial order k, we take turns to remove
one from the historical records and treat it as a pseudo “current data” with
only n data points known (line 6). Then a historical model w0 is trained on
the subset of historical data (line 7). After that, a new model w∗ is obtained
on partial data and w0 (line 8). Prediction error is evaluated on the full pseudo
“current data” and is associated with corresponding parameter number (line 9).
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Algorithm 1. Leave-one-out
1: procedure FindL({Xi|1 ≤ i ≤ M}, n, k)
2: l∗ ← 0, err∗ ← +∞
3: for l ← 1 to k + 1 do
4: err ← 0
5: for i ← 1 to M do
6: D ← {Xj |1 ≤ j ≤ M ∧ j �= i}
7: w0 ← arg minwEXj∈D(R(Xj ,w))
8: w∗ ← arg minwLdc(w|Xn

i ,w0,Cl)

9: err ← err + R(Xi,w
∗)

M

10: end for
11: if err∗ > err then
12: l∗ ← l, err∗ ← err
13: end if
14: end for
15: return l∗

16: end procedure

Finally the proper l is the one with the minimum error of prediction (line 12).
We name this method leave-one-out algorithm.

5 Evaluation

In this section, we present the results of some experiments that we performed
on real-world business data set to evaluate the performance of our proposed
method. The evaluation is done based on the effectiveness metric; that is, the
prediction accuracy on the target-period’s predicted revenue. We next describe
our data set and experimental setup.

5.1 Data Set Description

The data set we use consists of 11 periods of real business pipeline data. The
period here refers to a fiscal quarter. For each period, we are given aggregated
deal records whose target closing date is the end of the particular quarter. Each
period spans 13 weeks before the target quarter starts and goes forward until 2
weeks after the quarter ends, making the total of 28 weekly data for each period.

As mentioned earlier, a deal may go through several stages throughout its
lifecycle in the pipeline. In the given data, each weekly record consists of total
deal values for each stages (denoted as current pipeline value) as well as the value
that turns out to be in won (denoted as win contribution value) by the end of the
quarter. The prediction task is to predict, for any given week given this week’s
current pipeline value, the win stage’s pipeline value of the final week.
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5.2 Experimental Setup

From the 11 available quarters, we use the first 9 historical ones as training data
and the remaining two as testing data. Testing is conducted for each weekly
record, where only the current value of the pipeline is given. Note that the
method we propose aims at predicting the growth curve of each week’s win
contribution value to the final win value. Thus, we apply two methods to estimate
the win contribution value from the current pipeline value.

The first method we use is to compute the average rate of training data and
then apply it to the testing data for prediction. Specifically, for a particular week,
we check the training period data of the same week. For each stage, a conversion
rate can be calculated via dividing the contribution value by the current pipeline
value. Then the average rate is used to convert the testing period’s pipeline
current value to win contribution value. Finally, the DCM is applied to predict
the period-end win value. The combination of this average ratio and our two
models are denoted as Avg-DCM.

The second method, instead of computing the average, uses regression to
predict the conversion rate. Specifically, to predict the conversion rate of a par-
ticular week, we fit a curve on the same week of all historical periods. Then, this
curve is used to predict the next point, which is the conversion rate of the target
period. This method combined with ours is denoted as CF-DCM.

Lastly, instead of using our models, we can purely apply curve-fitting in pre-
dicting the final win value. Firstly, we use curve fitting to predict the conversion
rate as described above. Then, for each week, a growth rate can be calculated
by dividing the final win value by that week’s win contribution value. Now,
applying the same curve-fitting technique, we can predict the growth rate of the
target period. Finally, the sales win value is estimated by multiplying the current
pipeline value by estimated conversion rates and growth rates. This method is
denoted as CurveFit.

In evaluation, we use the relative error rate as our metric. Formally, let y
denote the real value while y′ denote the predicted value. The relative error is
defined as erel = |y−y′|

y .

5.3 Results

In this section, we present the experiment results. Particularly, two sets of exper-
iments are conducted and reported. In first one, we aim at evaluating the perfor-
mance of the proposed models in a scenario where the actual win-contribution
value (with 100 % accuracy) is provided. In second case, the goal is to evaluate
the performance in a scenario where the win-contribution value is predicted by
some other method. We next discuss the two scenarios in more detail.

Scenario I: Win Rate Is Given. As mentioned in Sect. 1, the pipeline value
forecast consists of two steps: (i) win-contribution prediction (conversion predic-
tion) and (ii) win-value growth prediction. Our model focuses on the second part.
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In this experiment, we use the real win-contributions and testify its performance
in growth prediction.

There are four baselines used for comparison. The first one uses only the
historical data and completely ignores the current data, denoted as History-only
(HO). The second baseline, denoted as History-combine (HC), simply adds the
new data into the historical one, and fits a curve on this merged data set. The
third one, denoted as History-replace (HR), replaces the old data of the same
time unit with the newly available ones. Thus, the combined life cycle consists
of new data by current week and historical data for unknown weeks. Then a
polynomial curve is fitted. Finally, we apply the curve-fitting method, denoted
as Ideal-CurveFit (ICF).

Table 2 shows the average error rate for different departments. Because of
data confidentiality, we anonymize the real department name, and call depart-
ments Dept X instead, where X is a number. As can be seen, our DCM method
outperforms all other methods in all departments except for Dept 3. In dept 3,
all history-based methods achieve the top-3 performance. In this department,
although the target period has a similar final win value, its early data points are
different, which misleads the DCM and let it give a wrong prediction. Neverthe-
less, the difference is quite small. Apart from the department’s impact, we next
explore the impact of time in the prediction accuracy. Figure 7 shows the error
rate of all evaluated methods with regards to different times. As can be seen,
the error of DCM decreases as time proceeds. This scenario can be expected
and justified for two reasons. Firstly, when the time is closer to the period end,
there is less fluctuations in the data, and thus it is easier to predict. Secondly,
as time moves forward, more data is available, and thus the prediction can be
improved. Also, we observe that the curve-fitting has an error curve far above
other methods, and the error fluctuates a lot. This scenario suggests the vul-
nerability of curve fitting to data noise. Another observation is that the three
history-based methods (HO, HC, HR) display a stable performance that is inde-
pendent of time. As shown earlier in Sect. 3, the latter part of the curve is based
on history only and therefore the prediction does not change too much as time
goes forward.

Scenario II: Win Rate Is Predicted. In this experiment, we aim at eval-
uating its performance in the real scenario, i.e., do the forecast with estimated
win-contribution/conversion values. We apply two methods for estimating the
win-contribution values. First, we compute the average rate of training data and
then apply it to the test data for prediction. Specifically, for a particular week,
we check the training period data of the same week. For each stage, a conver-
sion rate can be calculated via dividing the contribution value by the current
pipeline value. Then, the average rate is used to convert the testing period’s
pipeline current value to win contribution value. The second method applies
the curve-fitting to estimate the current one. Particularly, we denote the first
method as Avg-DCM and the second one as CF-DCM.
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Table 2. Evaluation results in Win-Rate-Given Scenario

Department Method

DCM HO HC HR ICF

Dept 1 0.162 0.292 0.292 0.293 0.241

Dept 2 0.256 0.423 0.423 0.422 1.120

Dept 3 0.421 0.402 0.403 0.408 0.835

Dept 4 0.335 0.384 0.384 0.387 0.804

Dept 5 0.089 0.227 0.227 0.226 0.132

Dept 6 0.114 0.200 0.200 0.201 0.313

Dept 7 0.114 0.143 0.143 0.142 0.487

Dept 8 0.732 1.094 1.094 1.100 0.837

Dept 9 0.115 0.240 0.240 0.239 0.395

Dept 10 0.194 0.416 0.416 0.416 0.231

Dept 11 0.305 0.689 0.690 0.692 0.305

Dept 12 0.171 0.284 0.284 0.285 0.396

Total 0.251 0.399 0.400 0.401 0.508

Table 3 displays the experimental results. For the sake of completeness, we
also report the performance of DCM in Scenario I where the win rate is given
(denoted as WRG-DCM ) here. As can be observed, the CF-DCM method
achieves the lowest error rate in all departments among all methods in the real
scenario. The better performance of CF-DCM compared to Avg-DCM suggests
the contribution of curve fitting in predicting conversion rates. Averaging over
all departments, the Avg-DCM has a better performance than CurveFit, indicat-
ing the higher importance of growth prediction than conversion-rate estimates
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Table 3. Evaluation results in Win-Rate-Predicted Scenario

Department Avg-DCM CF-DCM CurveFit WRG-DCM

Dept 1 0.186 0.105 0.192 0.162

Dept 2 0.347 0.287 1.370 0.256

Dept 3 0.539 0.315 0.850 0.421

Dept 4 0.423 0.413 2.213 0.335

Dept 5 0.191 0.134 0.097 0.088

Dept 6 0.159 0.248 0.389 0.114

Dept 7 0.115 0.117 0.439 0.114

Dept 8 0.863 0.352 0.710 0.732

Dept 9 0.151 0.140 0.350 0.115

Dept 10 0.259 0.150 0.207 0.193

Dept 11 0.382 0.224 0.416 0.305

Dept 12 0.105 0.101 0.270 0.171

Total 0.310 0.215 0.625 0.251

in forecasting pipeline value. Another interesting observation is that the WRG-
DCM outperforms the CF-DCM in half of our departments, and only achieves
the second lowest error in all departments. A possible reason is the “noisy bump”
in the data. In the records, the real win-contribution value may suddenly increase
in some time and then decrease for the next time period. The can be attributed
to either a data entry error or to the change of target closing date for some big
opportunity/opportunities. In either case, such sudden jump misleads the ideal
DCM, resulting in a higher prediction value and thus lets it end ends with a
worse performance on average.

We also show the time impact on the forecasted performance in Fig. 8. Again,
we can see the decreasing trend of all three methods with the proceeding of time.
The CF-DCM shows the lowest error in the whole time line. We do observe that
the CurveFit’s relatively high error, especially at early stages. This demonstrates
the robustness of our method in handling highly uncertain data.

6 Conclusion and Future Work

Services sales forecasting is different from traditional one as the pipeline is
dynamic. At any given time point, some opportunities in the pipeline may reach
an outcome (win or loss) and new ones may be identified and added. For more
accurate prediction, a forecasting method should not only consider predicting the
conversion/wining of current opportunities, but also need to predict the future
pipeline growth. In this paper, we formulate the sales growth prediction as a
dynamic curve fitting problem that combines historical data with the currently
available data. The key challenge lies in how to combine the two aforementioned
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data sets to capture future pipeline growth. We introduced a discrete-constraint
method (DCM) that enforces similarity of the new model to the historical one
by keeping some parameters fixed during learning. As our experiments showed,
the DCM achieved best performance among multiple methods.

The current method treats all historical pipeline data equally. For future
work, we may add different importance factors to different records simulating
the possible seasonality. Alternatively, it may be a good approach to collect
more data about the context and use the contextual similarity to determine
such importance factors.
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