
Enriching API Descriptions by Adding API
Profiles Through Semantic Annotation

Meherun Nesa Lucky, Marco Cremaschi(B), Barbara Lodigiani,
Antonio Menolascina, and Flavio De Paoli

University of Milan - Bicocca, Viale Sarca 336, Milan, Italy
{meherun.lucky,cremaschi,depaoli}@disco.unimib.it,

{b.lodigiani,a.menolascina}@campus.unimib.it

Abstract. In recent years several description tools and formats have
been introduced for describing REST Web APIs both in human and
machine readable formats. Although these descriptions provide func-
tional information about the APIs (e.g. HTTP methods, URIs, model
schema, etc.), the information that qualifies the properties of APIs (e.g.
classification of input arguments and response data) is missing. We envis-
age that providing a complete set of information to the users will facili-
tate the composition of APIs to fulfil users’ specific needs.

This paper analyses the current state of the art in Web API Descrip-
tions and Semantic Annotations to show that although there are solutions
with semantic capabilities, most of them fails to add semantic annota-
tions automatically or semi-automatically. Moreover, advanced technical
skills are needed to manage semantics and compose different Web APIs,
which reduce the number of potential users of such solutions. The goal is
to enhance actual API descriptions by creating a simple description format
to annotate properties at semantic level to support semi-automatic com-
position. To achieve this goal, we propose an extension of the Open API
Initiative (OAI) specification to create comprehensive descriptions. The
approach focuses on the emerging concept of API Profiling to add descrip-
tive information of data semantics by addressing Dublin Core Application
Profile (DCAP) guidelines.

1 Introduction

As web-enabled software becomes the standard for business processes, the ways
organisations, partners and customers interface with it have become a critical
differentiator on the market. Therefore, the ability to provide appropriate and
complete Web API descriptions to let users discover applications that satisfy a set
of requirements and compose applications to fulfil more complex users’ needs is
critical for the success of any organisation. Although the process of implementing
APIs has become common practice, meta-level API definition and implementa-
tion have yet to be settled to set widely-accepted standards. Today, description
formats, such as Open API Initiative (OAI) specification1, also known as
1 http://openapis.org/specification.

c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 780–794, 2016.
DOI: 10.1007/978-3-319-46295-0 55

http://openapis.org/specification


Enriching API Descriptions by Adding API Profiles 781

Swagger2, RAML, API Blueprint3, are available to describe implementation
details including resources, access points, status codes and input arguments [7].
These description formats are created by following the API-first approach4 and
using a meta-language based on XML, JSON or YAML. Moreover, a set of tools
have been developed to create API descriptions interactively: such tools can
auto-generate server-side code, testing options for different HTTP methods, or
even fully functional API Clients (e.g. Swagger Codegen5). These formats and
tools are mostly human-driven and lack supports for detailed information that
qualifies the properties of an API (e.g. classification of input arguments and
response data). Moreover, these formats may meet the requirements of develop-
ers to complete simple tasks, but they are inefficient in advanced API discovery or
API composition due to the lack of machine processable semantics [19]. More-
over, such formats should be made easy to understand when the target users
include high-level business experts or specific groups of people (e.g. the elderly,
people with disabilities, etc.) who do not have specific programming expertise.
We name these users as “end-user developers”. Several studies [1,8] show the
need of interactive documentation that provides flexible navigation alternatives
with a comprehensive set of information to support a wide range of users. As
users background influences how they navigate the documentation, there are
barriers for end-user developers, due to inconsistent and very technical terminol-
ogy use. The final goal of our work is to develop descriptions that can be (semi)
automatically composed by developers to support end-user composition of APIs,
therefore we address the following questions:

– Are there widely adopted approaches, tools or standards for creating machine
processable API descriptions with semantics?

– What are the missing features in current API Description formats to aid com-
position?

– How can existing approaches be improved by adding semantics to API Descrip-
tions to facilitate (semi) automatic user-driven composition?

In this work, we consider the composition of REST Web APIs by adding
machine readable semantic descriptions. The approach is to describe properties
with semantic meaning by linking to concepts in shared vocabularies.

In the real world, if developers want to compose APIs, they may search direc-
tories such as Programmable Web6, and understand the meaning of involved
data, e.g. that address means city and street, or latitude and longitude, but a
machine agent is unable to understand the meaning without a shared represen-
tation of property semantics. The use of links to concepts in shared vocabularies
that allow a machine agent to compare and compose the actual data can address
this issue. We propose to exploit API profiles to provide descriptive information

2 https://www.swagger.io.
3 http://raml.org/, https://apiblueprint.org/.
4 http://www.api-first.com/.
5 http://swagger.io/swagger-codegen/.
6 http://www.programmableweb.com.

https://www.swagger.io
http://raml.org/
https://apiblueprint.org/
http://www.api-first.com/
http://swagger.io/swagger-codegen/
http://www.programmableweb.com


782 M.N. Lucky et al.

about the contents of the response according to the Application Profile7 app-
roach described as a set of metadata elements, policies, and guidelines defined
for a particular application.

In this paper we evaluate the current approaches to create API descriptions
and make a proposal to include additional qualifying information. Our goal is
to enhance interoperability and composition by creating a standard description
format that correlate properties at semantic level. To achieve this goal, we pro-
pose to include API profiles with the API descriptions created by following the
OAI specification.

We adopt the Dublin Core Application Profile (DCAP) guidelines8, to share
data semantics in a specific representation format. We propose the use of a
(semi) automatic method for adding annotation, TableMiner [24], which is a
semantic table interpretation method to extract the most appropriate concepts
from shared vocabularies in a (semi) automatic way by using context informa-
tion. We will explain this technique elaborately in Sect. 2.

We conceived our approach to use existing vocabularies (about 558) indexed
in the Linked Open Vocabularies search engine9. The statistics presented in [10]
and [18] shows that the most used vocabularies are not domain dependent and
as such they may cover different topical categories such as media, government,
publications, life sciences, geographic, cross-domain, user-generated content, and
social networking. However, the above vocabularies may not provide all needed
terms thus, we can rely on additional domain specific vocabularies to get a
practical solution covering a large set of areas. They will be integrated with
existing vocabularies to ensure practicability.

The rest of the paper is organized as follows, Sect. 2 discusses the state of
the art and motivation, Sects. 3 and 4 discusses our proposal, Sect. 5 describes
how the system works and Sect. 6 drives some conclusions.

2 State of the Art and Motivation

Although there are many approaches proposed to enrich Semantic Web, each
one claiming to be better than the others, strict methodologies to compare the
existing description techniques and scientific evidences are missing [20]. In one
hand, there are many works that have been proposed in Semantic Web Ser-
vice community with concrete implementation, on the other hand they lack in
facilitating automation in reality due to: (i) the manual work required to cre-
ate descriptions and, (ii) the lack of standard that limits interoperability. To
analyse the current state of the art aiming to facilitate user-driven API com-
position, we discuss existing approaches that facilitate the use of Web APIs by
machine agents. We also analyse the existing approaches and tools considering
API Descriptions, Semantic Correlation and Composition.

7 http://dublincore.org/documents/2001/04/12/usageguide/glossary.shtml.
8 http://dublincore.zsaorg/documents/profile-guidelines/.
9 http://lov.okfn.org/dataset/lov/.

http://dublincore.org/documents/2001/04/12/usageguide/glossary.shtml
http://dublincore.zsaorg/documents/profile-guidelines/
http://lov.okfn.org/dataset/lov/


Enriching API Descriptions by Adding API Profiles 783

To accelerate the use of Web APIs by machine agents, Semantic-Web
researchers proposed a number of solutions. Paper [20] emphasises on the need
to provide self-descriptive descriptions that include metadata, that can be inter-
preted by machine agents in a bottom up way (i.e. information structure should
be in pieces to whole). Paper [9] proposes a set of best practices to build self-
descriptive RESTful services accessible by both humans and machines. Moreover,
it defines a framework that extracts compliant descriptions from documents pub-
lished on the Web, and makes them available to clients as resources. Paper [5]
develops Hydra, a small vocabulary to describe Web APIs; this approach aims
to introduce a new breed of interoperable Web APIs by breaking the descrip-
tions down into small independent fragments. Paper [6] focuses on facilitat-
ing composition process by reasoning with tailored ontologies that capture user
preferences.

To analyse current approaches regarding Descriptions, our discussion includes
WSDL, WADL, hREST, RDFa, MicroWSMO, SA-REST, MSM, RESTdesc,
SEREDASj following the discussions in [4,12,19,22]. Also metadata formats like
Swagger, RAML, Hydra and API Blueprint have been discussed following papers
[5,17]. WADL is specifically used for syntactic descriptions of RESTful services,
instead of WSDL, which is used to describe Web Services in general. Both of
them, however, do not support simple links and they appear to be too heavy to
describe Web APIs. hREST and SA-REST are more approachable as they use
microformats which are embedded in the Web page of the API documentations.
Although these two approaches are more useful for the semantic correlation,
they are not focusing enough on the description itself. RDFa follows the same
consideration made for hREST and SA-REST about the specialisation in doing
semantic-annotation, turning out to be even more complex to use [19].

For the purpose of this paper we place great emphasis on the analysis of
previously listed approaches specific to Web APIs. MicroWSMO relies on hREST
offering service property descriptors, but it also focuses on the semantic part
of the descriptions. RESTdesc is a logic-based Web API description method
that captures the functionality of Web APIs, describing an HTTP request and
its preconditions and postconditions expressed in Notation3 (N3), which is a
serialization form for the main Semantic Web language, RDF [22]. However,
RESTDesc requires manual effort to produce the desired specifications [19] and
also there are some complex use cases that cannot be covered, such as cases
in smart environments where RDF or N3 are not providing proper solutions.
SEREDASj provides a way to describe Web APIs with JSON-based method
that is simpler to apply. However, it produces two different documents in order
to provide a complete descriptions, proving to be difficult to maintain.

Although there exist API repositories like Programmable Web where users
can search for APIs, well-structured API documentations enabling effective dis-
covery are missing. Several frameworks have been introduced to create descrip-
tions for REST APIs through user-friendly and easy-to-use description format
editors [7]. Some REST metadata formats have been created to document REST
APIs in a consistent way. These standards offer a way to represent an API by



784 M.N. Lucky et al.

specifying entry point(s), resource paths, methods to access these resources,
parameters to be supplied with these methods, formats of inbound/outbound
representations, status codes, error messages and documentary information.
Some of the most popular standards are the following: Swagger or Open API
Initiative specification, which offers a large ecosystem of API tooling, has a very
large community of active users and great support in almost every modern pro-
gramming languages and allows developers to test the APIs immediately through
easy deployment of server instances. API Blueprints, where an API description
can be used in the Apiary10 platform to create automated mock servers, valida-
tors etc. The Hydra specification, which is currently under heavy development,
tries to enrich current web APIs with tools and techniques from the semantic web
area. RAML is a well-structured and modern API modelling language. Swagger
is obviously the dominant choice at the moment, though all specifications are
promising [17]. We agree with this statement and choose to use Swagger instead
of other formats because of its above mentioned promising features and also
because it has the capability to provide human-readable API descriptions by
using YAML, as well as JSON. Moreover, it defines a standard in the Web API
description method, being partner of OAI specification as opposed to other spec-
ifications. We agree upon the objective of Open API Initiative, creating an open
description format for API services that is vendor-neutral, portable and open
to accelerating the vision of a truly connected world. Although API Description
created by Swagger editor gives the opportunity to create descriptions easily,
they lack detailed information qualifying the properties of an API (e.g. clas-
sification of input arguments and response data), which is relevant to address
automatic discovery and composition performed by machines. To address these
issues, we want to add additional information to the descriptions.

Extensive research has been conducted with the vision to create automatic
integration of Web Services or APIs [11]. But in practice most of these approaches
are having problems in communicating between candidate Web services or APIs
due to the lack of semantic correlation of properties. To automate the interactions
between Web APIs there is a need to describe the exchanged data with seman-
tics. To achieve this there are two possibilities, one is by directly creating Web
service descriptions following specifications defined in a logic based language,
like the Web Ontology Language (OWL) and the second one is by linking exist-
ing descriptions to these ontologies (i.e. aligned descriptions to shared domain
ontologies). As the first approach needs expertise in logic based languages,
its adoption is curtailed. The latter is more approachable because it enriches
the existing descriptions to be remain compliant with other semantic descrip-
tions. Thus, this approach reduces the possibilities to lock out non-semantic
descriptions.

To support automatic composition of Web Services, several approaches have
been proposed focusing on semantic annotations, but many of them are either not
validated or the validation lacks credibility [16]. Moreover, most of the existing
tools are considering Web Services while we are focusing on Web APIs. For the

10 https://apiary.io/.

https://apiary.io/


Enriching API Descriptions by Adding API Profiles 785

purpose of this paper, we analyse two tools SWEET (Semantic Web sErvices
Editing Tool)11 and Karma12, which emphasise on user-driven integration of
Web APIs by enabling semantic annotations. SWEET is a tool that allows the
development of mashup based on linked open data and services, by enabling the
creation of semantic descriptions of Web APIs. The input is the HTML Web page
describing a Web API and the result is a semantically annotated HTML page,
or a RDF MicroWSMO description. Although SWEET allows the definition of
semi-automatic annotations, the users have to make long effort because they
need to find all the parameters to be annotated in Web APIs description pages.
Karma [2,15] is another tool which allows users to integrate data from different
data sources, including databases, spreadsheets, XML, JSON and Web APIs.
The inputs to the process are an ontology, a data source and a database of
semantic type that the system has learned to recognise, based on prior use of
the tool. The system is based on a probabilistic model that is also capable of
learning, with a model named conditional random field (CRF) [3], whenever
users define a new mapping from data source in the ontology.

Both of these tools guide users in the process of composition of Web APIs and
endeavour to suggest the correct annotations, based on the use of ontologies. The
main difference between SWEET and Karma is that SWEET allows the addition
of hREST tags in the HTML page, since it uses only HTML pages as inputs.
Karma, instead, employs a table annotation technique creating a table where,
once properties are input into the header row, API responses are populated
in the columns. These properties are collected dynamically through different
invocations of an API, by defining several different parameters to retrieve the
most accurate representation. However, this tool does not consider the context
outside tables. We therefore propose to use a different technique: TableMiner [24].
TableMiner is an innovative approach to classify table columns and disambiguate
cell contents following different algorithms. This approach considers two types of
contexts, one is defined as “in-table context”, including column header, column
content and row content, and another one is “out-table context”, which could
include semantic mark-up already inserted in a web page, the web-page title,
paragraphs and table captions. The usage of this out-table context and the
previously mentioned algorithms are taking TableMiner a step forward in the
State-of-the-Art:

– first, it adopts a boostrapping, incremental approach to interpret columns with
at least 51 % of non-empty rows and with mostly named entities;

– then, a forward-learning process uses an incremental inference with a stop-
ping algorithm that makes a first semantic association with the contents of
columns, followed by a process of disambiguation of the contents in the cells
and the searching of the highest scoring entities which could represent the
right concepts;

– at this point, a backward-update step kicks in to make an interpretation of
the remaining data, guided by previously obtained results. This phase could

11 http://sweet.kmi.open.ac.uk/index.html.
12 http://usc-isi-i2.github.io/karma/.

http://sweet.kmi.open.ac.uk/index.html
http://usc-isi-i2.github.io/karma/


786 M.N. Lucky et al.

modify the columns classification since there are new disambiguated entity
content cells;

– finally, classifications and disambiguated entities are updated again with a
mutually recursive pattern until they can be considered stabilised.

Another strong point in favour of TableMiner is the usage of predefined incre-
mental inference with stopping algorithm, which does not require to analyse all
the rows of a column, instead it stops when it feels confident, reducing consider-
ably the computation time. Finally, TableMiner is adaptable to any knowledge
bases.

Fig. 1. The APIs descriptions created following OAI specification

3 API Descriptions

To analyse how we can enrich the existing REST description formats, let’s dis-
cuss OAI descriptions that follow the Swagger format by providing an example
involving end-user developers. Assume that a couple of tourists, John and Mary
just arrived at one of the airports near Milan to visit the city. To move around
they have different alternatives: (i) public transports, or sharing services for
(ii) cars or (iii) bikes. Mary and John want to choose one of them according
to preferences and/or context (e.g. weather, time, location, accessibility, etc.).
Unfortunately, they have to invoke different information services to collect data
before making an informed decision. Moreover, data are often not easily compa-
rable or complete: for example, in the descriptions of bike sharing and weather
APIs (Fig. 1) spatial references are in different formats and with different mean-
ing (e.g., longitude/latitude versus area by points). Furthermore, most of the



Enriching API Descriptions by Adding API Profiles 787

API descriptions are available only as HTML web pages, yet this is not ade-
quate to support (semi) automatic comparison and composition of properties.
We propose to extend OAI descriptions by mapping properties using DCAP to
deliver API profiles, and defining a method for automatic extraction of concepts
from shared vocabularies.

As for REST APIs, we should consider the use of HTTP OPTIONS method13

to make REST APIs self-descriptive. Currently, the OPTIONS method is basi-
cally used to retrieve simple information about a resource, like the available
HTTP methods that can be used in the communication with the specific API;
however, since there is no standard response to an OPTIONS request, a full
description could be returned in the response-body. With our approach API
descriptions can be edited using the tool we developed, as explained in Sect. 5,
and retrieved by invoking OPTIONS method. Other approaches that make the
most of HTTP OPTIONS method are [13,21].

3.1 API Profiles

As defined in RFC690614 “a profile is not to alter the semantics of the resource
representation itself, but to allow clients to learn about additional semantics
(constraints, conventions, extensions) that are associated with the resource rep-
resentation, in addition to those defined by the media type and possibly other
mechanisms” [23]. Given this definition it can be stated that API profile docu-
ments can offer a view of what is supplied by an API, and how clients and servers
can expose features in a machine-readable format. The Dublin Core Metadata
Initiative15 (DCMI) released the DCAP format to describe profile metadata
defining the constraints on how the RDF vocabularies are used to create pro-
files by linking properties. DCAP has been developed following the concept of
Metadata Profile16 that supports additional descriptive information about the
contents of the response (e.g. useful indexing properties of the document, terms
of use, etc.). For example in Fig. 2, line 8 and 12 link spatial data to concepts
of latitude (lat) and longitude (long) from shared vocabularies. The approach
is to enrich existing descriptions (Fig. 1) with such explicit references to shared
vocabularies (Fig. 2) to facilitate automatic composition.

4 Semantic Annotations in API Descriptions

As standard description formats are missing, we propose to add semantic annota-
tions in API descriptions through API profiles by linking properties to concepts
in shared vocabularies. To show how the proposed approach works, let’s go back
to our example: Mary and John may save time and effort if we can provide
all information related to useful services (e.g. public transport in Milan) in an
13 https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.
14 https://www.ietf.org/rfc/rfc6906.txt.
15 http://dublincore.org/.
16 https://www.w3.org/TR/html4/struct/global.html.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.ietf.org/rfc/rfc6906.txt
http://dublincore.org/
https://www.w3.org/TR/html4/struct/global.html


788 M.N. Lucky et al.

Fig. 2. An example DCAP profile

Fig. 3. Adding API profile using DCAP specification in OAI specification

aggregated way by composing descriptions. For example, if they can compare
weather forecast information with available mobility services, they can make
informed decisions like using bike sharing service in case of a sunny day, or a
car sharing service in case of rain. To improve the descriptions in Fig. 1, we pro-
pose to add API profile information by means of DCAP specifications, as shown
in Fig. 3 that specifies a definition of a bike. The resulting description consists
of a comprehensive set of information that facilitate composition of responses.
For example, in order to identify the best solution for Mary and John, car and
bike sharing API responses can be enriched with contextual information such
as weather forecast, traffic congestion, accessibility for disabled or elders, etc.
In Fig. 4, the position of a bike is uniquely identified by concepts geo:lat and
geo:lng. Similarly, information about the weather have been linked to concept
schema.org/geo. In this way, it is possible to compare the responses of the two
APIs and find the weather conditions in the area in which the bike is located.
Similarly, when the visitors want to use a car, they need to know if a parking
place is available near their destination. They may use Google Places API by
giving the value parking in the types filter for parking place searches. This API



Enriching API Descriptions by Adding API Profiles 789

Fig. 4. Mapping of properties between responses of Bike sharing and Weather APIs

provides responses with the address property that shows geocoding results with
a precise position. By correlating the semantics of properties of Weather API,
schema.org/geo, and Google Places API, schema.org/address, the visitors can
get required information to take a decision such as whether to book a open or
closed parking place.

From the discussion in Sect. 2, we find an issue that developers often have to
manually define the mappings between the information consumed and produced
by Web APIs to shared vocabularies. In the following section we define the
architecture of the tool that can address the discussed issues.

5 The Architecture - How the System Works

We have developed a system that target both professional developers, who have
technical expertise in developing applications, and end-user developers that may
not be familiar with the technologies discussed in the previous sections. There-
fore, the aim is to create an abstraction layer to hide the technological complexity
to the end-users and make the task of composing descriptions and services eas-
ier. The resulting system makes available a composition process through a REST
API, which is provided by the API Provider component (Fig. 5).

Fig. 5. The system architecture



790 M.N. Lucky et al.

The system architecture (Fig. 5) consists of three layers: Presentation layer,
Business logic layer and Data layer. Both Presentation and Business Logic lay-
ers consist of components dedicated to different group of users: Professional
Developers and End-User Developers.

The presentation layer dedicated to professional developers includes compo-
nents that provide a user-friendly interface to enrich the descriptions of Web
APIs, and manage semantic annotations. These tasks have been accomplished
by extending the Swagger Editor, both for descriptions and annotations. In par-
ticular, the description process is semi-automatically managed by augmenting
existing API descriptions, which can be retrieved from existing repositories (e.g.
ProgrammableWeb), services registry, or by exploiting the HTTP OPTIONS
method, as discussed in Sect. 3. Note that the OPTIONS method is also exploited
by the system to support maintenance and evolution of descriptions already
known by the system. If it is not possible to retrieve any initial description,
the developer can insert a new API description manually using the Description
Editor. These descriptions are represented in JSON or YAML format. For each
resource, all relevant information such as available HTTP operations (e.g. GET,
POST, PUT, DELETE, OPTIONS, HEAD, PATCH), the list of parameters
for each operation, possible responses are collected. The process of creating a
description is detailed in Algorithm 1.

The Business Logic Layer allows developers to semi-automatically add
semantic annotations to inputs and outputs by following the approach discussed
in [24,25]. The system automatically builds a table by putting properties in the
header row, and filling up columns with API responses. These responses are
collected dynamically by the API Connector component through multiple invo-
cations of the involved APIs. The use of different input values allows the building
of an accurate description of the APIs. In case of failure, the developer is asked
to provide valid inputs to proceed. For the Bike sharing API example presented
in Sects. 3, and 4, the header rows include input (e.g., “id station”) and output
(e.g., “station name”, “lat”, “long”, “free bikes”, “total slots”) properties, and
the cell contents will be incrementally filled with data of each API invocation.
So, the system is able to break up the response code (e.g. JSON, XML) in order
to identify the output properties and their values.

Algorithm 1. Retrieve or create API description
Result: API description

1 if description is available then
2 retrieve description from existing repositories, services registries or via

OPTIONS method;

3 else
4 create it manually using the Description Editor;



Enriching API Descriptions by Adding API Profiles 791

Algorithm 2. Create and add API profiles to API descriptions
Data: API description
Result: API description with API profile

1 Detect all resources’ end-point;
2 foreach end-point do

// collect data

3 repeat
4 generate input parameters following the API description;
5 if input parameters cannot be generated then
6 take input parameters from the user

7 invoke API with input parameters;
8 collect results;

9 until at least N results are collected /* default N=10 */;
// create tables

10 foreach results do
11 create a header row with API properties;
12 fill content-cells with values from inputs and responses;

// add semantic annotations

13 foreach tables do
14 apply TableMiner technique;
15 show table to the user;
16 if table annotation is not complete then
17 show related vocabularies and/or alternatives to the user;
18 ask the user to manually add links;

19 if the user wants to review the annotations then
20 show related vocabularies to the user;
21 let the user confirm or modify the links;

22 insert API profile in API description;

In the Mary and John example, lat, lng and area are in the header row; values
like “45.523”, “9.219” and “[[45.524902, 9.216672], [45.526398, 9.218571], ...]”,
which is an array of spatial points, fill up the column cells.

Algorithm 2 defines the process, which extends the one proposed by Karma
[14] with the use of TableMiner technique to analyse the semantic properties
of the resulting table. The TableMiner annotation technique is applied by the
API Analyzer component that follows the steps described in Sect. 2 to set the
meaning of properties by automatically linking them to concepts in the shared
vocabularies. However, if the semi-automatic process fails, the developer is able
to provide semantic annotation manually using the editor. Moreover, the sys-
tem can support the developers by showing shared domain vocabularies and
annotation alternatives.

Finally, the Data and Business Integration component stores the data to
support the analysis of the APIs, and the produced descriptions and semantic



792 M.N. Lucky et al.

annotations, to support the creation of an ecosystem of services. This ecosys-
tem is an open set of services that could be automatically retrieved and linked
each others to be able to follow the evolving user needs. The descriptions are
retrievable by the OPTIONS method, as already discussed, to support use and
evolution. In the context of this paper, we consider Mary and John as infor-
mation seekers who want to know some information to facilitate their mobility.
They are representative of generic users who wants to know more information
about specific services (e.g., mobility) and related services. They are provided
with descriptions to select and compose APIs according to patterns that have
been pre-defined by professional developers.

The Composition Editor component is devoted to create compositions of ser-
vices. The first step is to search for Web APIs that are already stored in the
system by using the Search component. All relevant results and their possible
combinations are loaded and showed in the interface to let the user select the
APIs that match a set of given requirements. The second step is to create com-
positions either by directly linking the outputs and inputs of selected APIs, or by
including transformation services that transform and make outputs compatible
to inputs according to the semantic relations hold in the annotations. The Trans-
former component has the task of managing the set of transformation rules that
make properties compatible. Composition patterns are then stored and provided
to users such as Mary and John that have the task to populate such patterns
with the services of interests.

The Mary and John example can provide a general understanding of how
these transformation rules work: after lat becomes geo:lat, and lng becomes
geo:lng to build the augmented description (shown in Fig. 4), it is possible to
identify which area includes the given pair of geo:lat and geo:lng values by apply-
ing the transformation rules. In such a way, it is possible to identify the weather
conditions in the area in which a bike station is currently located. If the system
cannot identify the appropriate rules to manage some annotated properties, the
developer can insert new ones to enrich the system and ensure its evolution. In
other words, the system provides end-users with synthetic information to accom-
plish a given task, anyway, if they are interested to see more details they can
explore the process of transformation and composition. Moreover, if the user has
the needed skills, he or she can contribute to the system evolution by adding
transformation rules and/or composition patterns. One of the major advantage
of the proposed system remains the separation of the annotation activities, which
requires skills on semantic technologies, from the transformation and composi-
tion activities, which requires basic programming skills, or even no particular
skills to just use the system as it is, like in the case of Mary and John.

6 Conclusion

Today, Web APIs are associated with textual descriptions that are not under-
standable by machines and cannot be composed (semi) automatically. There
exist approaches, including WADL, WSMO Lite, Resource-Oriented Service



Enriching API Descriptions by Adding API Profiles 793

Model (ROSM) and RESTdesc, that provide rich semantic descriptions, but
they are not widely adopted because of the required expertise in Semantic
Web Languages (e.g. RDF, SPARQL, N3) as well as in-depth domain knowl-
edge [19]. Although machine-readable descriptions (e.g. MicroWSMO, Minimal
Service Model, SA-REST) have been introduced to support additional semantic
information, tools for creating automatic or semi-automatic semantic annota-
tions are missing. Such shortcomings motivate our work and our long term goal
of defining an abstract layer on top of API descriptions and profiles to hide the
intrinsic complexity to the end-users.

The current contribution is an extension to Open API Initiative (OAI) Speci-
fication following the Dublin Core Application Profile (DCAP) guidelines. Target
users are technology experts and professional developers that can understand the
involved concepts and drive the semi-automatic tool we developed. The next step
is to introduce high-level concepts that target specific requirements (e.g. com-
mon needs and requirements of specific groups of users), and are understandable
by generic users. Such concepts will be implemented in visual interfaces that can
support actual user evaluation tests.

References

1. Danielsen, P.J., Jeffrey, A.: Validation and interactivity of web API documentation.
In: 2013 IEEE 20th International Conference on Web Services (ICWS), pp. 523–
530. IEEE (2013)

2. Gupta, S., Szekely, P., Knoblock, C.A., Goel, A., Taheriyan, M., Muslea, M.:
Karma: a system for mapping structured sources into the semantic web. In:
Simperl, E., Norton, B., Mladenic, D., Valle, E.D., Fundulaki, I., Passant, A.,
Troncy, R. (eds.) ESWC 2012. LNCS, vol. 7540, pp. 430–434. Springer, Heidelberg
(2012)

3. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic
models for segmenting and labeling sequence data, pp. 282–289 (2001)

4. Lanthaler, M., Gütl, C.: A semantic description language for restful data services to
combat semaphobia. In: Digital Ecosystems and Technologies Conference (DEST),
2011 Proceedings of the 5th IEEE International Conference on Digital Ecosystems
and Technologies, pp. 47–53. IEEE (2011)

5. Lanthaler, M., Gütl, C.: Hydra: a vocabulary for hypermedia-driven web APIs. In:
LDOW 996 (2013)

6. Mayer, S., Inhelder, N., Verborgh, R., Van de Walle, R., Mattern, F.: Configura-
tion of smart environments made simple: combining visual modeling with semantic
metadata and reasoning. In: Internet of Things (IOT), 2014 International Confer-
ence on the Internet of Things, pp. 61–66. IEEE (2014)

7. Mitra, R.: Rapido: a sketching tool for web API designers. In: Proceedings of the
24th International Conference on World Wide Web Companion, pp. 1509–1514.
International World Wide Web Conferences Steering Committee (2015)

8. Myers, B.A., Jeong, S.Y., Xie, Y., Beaton, J., Stylos, J., Ehret, R., Karstens, J.,
Efeoglu, A., Busse, D.K.: Studying the documentation of an API for enterprise
service-oriented architecture. IGI Global (2012)



794 M.N. Lucky et al.

9. Panziera, L., De Paoli, F.: A framework for self-descriptive restful services. In:
Proceedings of the 22nd International Conference on World Wide Web Companion,
pp. 1407–1414. International World Wide Web Conferences Steering Committee
(2013)

10. Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best
practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014, Part
I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014)

11. Sheng, Q.Z., Qiao, X., Vasilakos, A.V., Szabo, C., Bourne, S., Xu, X.: Web services
composition: a decades overview. Inf. Sci. 280, 218–238 (2014)

12. Sheth, A.P., Gomadam, K., Lathem, J.: SA-REST: semantically interoperable and
easier-to-use services and mashups. IEEE Internet Comput. 11(6), 91 (2007)

13. Steiner, T., Algermissen, J.: Fulfilling the hypermedia constraint via HTTP
OPTIONS, the HTTP vocabulary in RDF, and link headers. In: Proceedings of
the Second International Workshop on RESTful Design, pp. 11–14. ACM (2011)

14. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Rapidly integrating ser-
vices into the linked data cloud. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012,
Part I. LNCS, vol. 7649, pp. 559–574. Springer, Heidelberg (2012)

15. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Semi-automatically mod-
eling web APIs to create linked APIs. In: Proceedings of the ESWC 2012 Workshop
on Linked APIs (2012)

16. Tosi, D., Morasca, S.: Supporting the semi-automatic semantic annotation of web
services: a systematic literature review. Inf. Softw. Technol. 61, 16–32 (2015)

17. Tsouroplis, R., Petychakis, M., Alvertis, I., Biliri, E., Lampathaki, F., Askounis,
D.: Community-based API builder to manage APIs and their connections with
cloud-based services. In: CAiSE Forum (2015)

18. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalón, M., Vatant, B.: Linked
open vocabularies (LOV): a gateway to reusable semantic vocabularies on the web.
Semant. Web (Preprint) 1–16 (2015)

19. Verborgh, R., Harth, A., Maleshkova, M., Stadtmüller, S., Steiner, T., Taheriyan,
M., Van de Walle, R.: Survey of semantic description of REST APIs. In: Pautasso,
C., Wilde, E., Alarcon, R. (eds.) REST: Advanced Research Topics and Practical
Applications, pp. 69–89. Springer, New York (2014)

20. Verborgh, R., Mannnens, E., Van de Walle, R.: Bottom-up web APIs with self-
descriptive responses. In: Proceedings of the First Karlsruhe Service Summit
Workshop-Advances in Service Research, p. 143. KIT Scientific Publishing (2015)

21. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Vallés,
J.G.: Description and interaction of restful services for automatic discovery and
execution. In: 2011 FTRA International Workshop on Advanced Future Multime-
dia Services (AFMS 2011). FTRA (2011)

22. Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J., Van de Walle, R., Vallés,
J.G.: Capturing the functionality of web services with functional descriptions. Mul-
timedia Tools Appl. 64(2), 365–387 (2013)

23. Wilde, E.: The “profile” link relation type. https://www.ietf.org/rfc/rfc6906.txt.
Accessed 24 May 2016

24. Zhang, Z.: Start small, build complete: effective and efficient semantic table inter-
pretation using tableminer. Under Transpar. Rev.: Semant. Web J. (2014)

25. Zhang, Z.: Towards efficient and effective semantic table interpretation. In: Mika,
P., et al. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 487–502. Springer,
Heidelberg (2014)

https://www.ietf.org/rfc/rfc6906.txt

	Enriching API Descriptions by Adding API Profiles Through Semantic Annotation
	1 Introduction
	2 State of the Art and Motivation
	3 API Descriptions
	3.1 API Profiles

	4 Semantic Annotations in API Descriptions
	5 The Architecture - How the System Works
	6 Conclusion
	References


