
Towards More Effective Solution Retrieval in IT
Support Services Using Systems Log

Rongda Zhu1, Yu Deng2, Soumitra (Ronnie) Sarkar2(B),
Kaoutar El Maghraoui2, Harigovind V. Ramasamy2, and Alan Bivens2

1 Department of Computer Science, University of Illinois at Urbana Champaign,
Urbana, IL 61801, USA
rzhu4@illinois.edu

2 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
{dengy,sarkar,kelmaghr,hvramasa,jbivens}@us.ibm.com

Abstract. Technical support agents working in the IT support services
field resolve IT problems. They are often faced with the daunting task
of identifying the correct solution document through a search system
from large corpora of IT support documents. Based on the observation
that system logs may contain critical information for identifying the root
cause of IT problems, we explore the idea of automatic query expansion
by using system logs as a bridge to link queries with the most relevant
documents. Given the original query from a user such as a technical sup-
port agent, an intermediate query is first formed by adding key terms
extracted from system logs using domain-specific rules. Based on topic
models, further key terms are selected from corpora of IT support docu-
ments, which are combined with the intermediate query to form the final
query. Our experimental results show that expanding queries using sys-
tem logs together with topic models yields better performance in retriev-
ing relevant IT support documents than using topic models only.

Keywords: Log-aided query expansion · Topic model · Retrieval · IT
support services

1 Introduction

In the IT support services field, technical support agents and system admin-
istrators shoulder the responsibility of troubleshooting and assisting customers
with resolving IT problems. The initial information provided to an agent by a
customer facing IT problems is often incomplete and may not even be particu-
larly useful in resolving the problem other than to inform the agent that some
problem has occurred. Faced with the pressure of resolving customer-reported
problems as quickly as possible, technical support agents use a variety of meth-
ods to improve the problem determination process. In this work, we consider two
methods: (1) the use of system logs to help understand the state of the system
on which a problem has been reported, and (2) the use of search systems to
retrieve the correct solution from large corpora of IT support documents, where
c© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 730–744, 2016.
DOI: 10.1007/978-3-319-46295-0 52

Towards More Effective Solution Retrieval in IT Support Services 731

insights gathered from system logs are used to enhance end user search queries
to improve the quality of search results.

There are many popular, publicly available search frameworks such as Elas-
ticSearch [9], Sphinx [26], Lucene [19], Solr [25], Xapian [29], and Indri [13].
Over time, users of search systems become adept at effective query formulation.
However, in search systems dealing with specialized domains, users often need to
combine search skills with domain-specific knowledge for effective query formula-
tion. For example, IT support services is a specialized domain with huge corpora
of both public and proprietary information. While domain-specific knowledge can
be acquired over time, it represents a barrier that must be lowered for two rea-
sons: (1) high attrition rates for support agents and (2) the pressure to resolve
IT problems in the quickest possible manner.

Various forms of user context have long been used in the field of infor-
mation retrieval for improving information search efficacy. For example, user
location, search history, and implicit user behavior have been used for search
type-ahead and improved search engine ranking and accuracy. However, in spe-
cialized domains, we believe there is an opportunity to go even further. In par-
ticular, we consider log-aided query expansion for the domain of IT support
services, i.e., the use of relevant system (or application) logs as a bridge to link
queries with the most relevant IT support documents. We further enhance the
expanded intermediate query with key terms selected from corpora of IT support
documents through the use of topic models [4,5]. We present early experimental
evidence demonstrating the promise of the approach in lowering the barrier for
effective query formulation and raising the precision of search systems for IT
support. We view this work as a first step towards IT remediation systems that
can automatically leverage search to diagnose and resolve IT problems.

The rest of the paper is organized as follows: Sect. 2 presents an example
which motivates the need for enhancing the search process for IT support.
Section 3 describes the approach designed for log-aided query expansion. Exper-
imental evaluation is discussed in Sect. 4. Section 5 discusses related work and
compares them with our approach. The paper concludes with a summary and
future work in Sect. 6.

2 Motivating Example

2.1 Example System Log Files

System logs are used to record events that occur at various layers of a computing
system: firmware, hypervisor, operating system, middleware, and applications.
These error log files are extremely valuable tools for diagnosing and manag-
ing systems. We present two real sample logs from IBM POWER systems [28]
deployed at client sites, representing information that is used by IBM technical
support representatives to diagnose system failures. The customer specific data
in the logs have been altered for privacy reasons.

The first system log we show is an excerpt from the iqyylog file that is gener-
ated from an IBM Hardware Management Console (HMC) [28]. Mid-range and

732 R. Zhu et al.

large IBM POWER servers need a HMC to create and manage logical partitions,
dynamically reallocate resources, invoke Capacity on Demand, and facilitate
hardware control. High-end servers with Bulk Power Controllers (BPC) require
at least one HMC acting as a Dynamic Host Configuration Protocol (DHCP)
server. Typically, more than one HMC is recommended for enhanced availability.
When errors occur at the hardware level, the Flexible Service Processor (FSP)
and/or BPC asynchronously notify the HMC that a platform error log or event
log is available. The FSP is a firmware component that provides diagnostics, ini-
tialization, configuration, run-time error detection and correction functions. The
FSP connects the managed system to the HMC. The HMC then reads the error
log data from the FSP and BPC. Significant HMC events, including platform
logs and problem analysis results, are recorded in the HMC iqyylog. The latter
is a binary file and requires a decoder to view it. This log file among others
is either submitted to IBM’s technical support through an automated system
called Call Home, or manually uploaded by the customer to one of IBM’s FTP
servers for further analysis by support representatives. Figure 1 contains sample
content from a decoded iqyylog file with various events captured from an IBM
POWER 7 system. Each entry in the log file shows a recorded platform event log
(PEL EVENT) along with its timestamp. Some of these events show reference
codes and other error details that are key for problem determination. The entry
also shows information related to the system that generated the event in the
following format: TTTTMMM/NNNNNNN, where TTTT is the machine type,
MMM is the model number, and NNNNNNN is the serial number. The example
shows that problem analysis was triggered at 10:26 (tagged with PA START).
The results of the problem analysis shows the error code: A7001152. The error
reported is a generic error that implies that the platform firmware detected
a timeout condition which caused a reset of the service processor (FSP). For
this particular customer problem, the support agent further examined the FSP
dumps and determined that no action was needed, since the FSP was busy and
slow to respond to the hypervisor, which in turn caused the timeout and hence
a reset.

Another sample log file from an IBM POWER/AIX server is the snap file.
The AIX snap command is used to gather a large amount of system configuration
data and compress it into a snap core file. The file contains information such as
the version of AIX the system is running, what hardware it is running on, what
error messages were recorded, what processes were running when the system
crashed, what is the firmware level, etc. The information gathered is used to
identify and resolve system problems. The snap file can also be automatically
uploaded to IBM’s support repository or manually uploaded by a customer.
Figure 2 shows an example error log entry captured from a POWER server.
The log shows SCSI disk errors reported from hdisk2. Additional analysis of the
diagnostics reported can be used to confirm that hisk2 is failing and needs to be
replaced.

Towards More Effective Solution Retrieval in IT Support Services 733

The examples discussed above illustrate that system log files contain valuable
information that is often used by system administrators and technical support
professionals to understand the root cause of a problem, and to gather enough
data to effectively query existing knowledge sources in search of resolutions.

The key contribution of this paper is the insight that automatic expansion
of support agent queries by analyzing system/application logs and extracting
important search terms from those logs can lead to significant improvement in
precision and recall. The initial agent query typically represents the customer
view of the problem and focuses on the symptom, e.g., “my machine wont boot.”
Search results returned using such queries are not usually effective for problem
resolution since the queries do not represent the root cause. System logs can
complement the agent query in an effective manner, since they contain better
indicators of the root cause, e.g., “SAS controller firmware update failure.”

We propose an Automated Query Expansion (AQE) system which can iden-
tify a set of log file terms to complement the query terms submitted by an agent.
In the above example, the AQE would automatically identify terms associated
with the controller firmware update issue. That would improve the chances for
problem resolution, especially if the machine boots from a remote SAS drive
over a storage area network (SAN). While support services agents can perform
this task manually, it takes years of experience and training to do it well; thus
the value proposition of a systems log-aided AQE system that can perform the
task automatically regardless of agent skill.

Fig. 1. A sample iqyylog events log

734 R. Zhu et al.

Fig. 2. A sample system error log file

2.2 Example System Log-Aided Query

We present a real-world example that illustrates the value added by log-aided
query expansion. We consider a typical query used by support agents as part
of their standard problem determination procedure. Error codes such as System
Reference Codes (SRC) are often used to construct queries while troubleshooting
hardware problems. An SRC code is a sequence of eight characters that identifies
the name of the system component that detects the error and the underlying con-
dition. The first 4 characters indicate the error type, while the last 4 characters
provide additional information such as the underlying error condition.

Figure 3 shows search results returned when an IT support agent chose the
SRC code “10009028” as the query term. What the agent did not know at
the time of issuing the query was that this error code was being reported by a
POWER7 system. The results obtained show documents that pertain to various
versions of IBM POWER systems, with the relevant result appearing third from
the top. Figure 4 shows the results from an expanded query formed based on the
system’s log data. The exact platform version (namely, POWER7) is extracted
from the log data and the following expanded query is formed: “10009028
POWER7”. The top search result in this case is the correct document which
describes how to resolve the error. The relevant document appearing ranked
first versus third has the potential to cut down problem resolution time from
hours to minutes, which in turn may significantly impact customer satisfaction.

Towards More Effective Solution Retrieval in IT Support Services 735

Fig. 3. Search results from the support agent’s original query

Fig. 4. Improved search results from the log-aided expanded query

736 R. Zhu et al.

3 Log Aided Search

Our approach is based on the observation that effective handling of an IT prob-
lem requires understanding the symptoms and causes of the problem and then
identifying the relevant solution(s). In the IT support services context, infor-
mation about symptom(s), cause(s) and solution(s) are usually obtained from
diverse sources. Search queries submitted by end users experiencing IT problems
(or by technical support agents on behalf of such users) often focus on the symp-
toms. System logs typically contain messages that are useful in understanding
the underlying causes or the broader context of problems. Relevant solutions
may be documented or described in corpora of knowledge sources.

The problem we are addressing is: how to guide the search engine in retriev-
ing the most relevant IT support documents containing the solution(s) to the
problem (as identified by its symptoms), taking into account the underlying
cause(s) or broader context of the problem. Our solution consists of two func-
tionally independent parts: (1) analysis of system logs and (2) topic modeling
on the corpora of IT support documents. Implementation of the solution com-
bines the two parts to help formulate more effective queries to the search system.
Parsers are used to extract key information from log files, and topic modeling is
used to discover hidden “themes” in the corpus. We expect each theme (topic)
to be about three aspects of a single type of error, namely: symptom, cause and
solution. After clustering corpus terms together into one topic, we expect to find
terms related to solutions in the documents, using the symptom terms from the
query and the causal terms from the system logs.

The system consists of two different modules, one offline and the other online.
Two steps are performed in the offline module. First, documentation of the
different types of logs for a domain of interest are analyzed, and parsers are built
for each type of log files. The parsers take log files in raw text form as input and
output critical information about the error messages in the log. This information
can be about root causes, component names, or even possible solutions. Second,
a topic model is built on the corpus. Our corpus consists of all the documents
indexed in the search system. These documents represent different knowledge
sources and cover most of the problems encountered by customers. Therefore,
we expect to find words relevant to solutions in the topic model.

The online module is executed when a new query is submitted. It consists
of three steps. When an agent submits a query, a case number is also provided
to the system. The first step consists of fetching the log files for the case using
the case number, and parsing the files to extract key information from each one.
The log files may contain information about system profiles and events. We have
implemented parsers to extract information from these log files. The extracted
information is used to expand the original query, resulting in an intermediate
query. The second step is to select terms from the corpus using a topic model-
based generative process, forming an expanded query. In the third step, the
terms in the expanded query are re-weighted to form the final query.

Towards More Effective Solution Retrieval in IT Support Services 737

The five steps (two offline and three online steps) are outlined in an algorithm
as follows. In this section, we use the domain of mid-range storage systems1 to
illustrate our solution.

Algorithm 1. System Log Aided AQE Algorithm
Parameter: Number of terms selected from topic model N , number of topics in topic
model K, weight for expanded terms from system logs λ
Offline Steps:

– Log Analytics: select set of terms {w1, w2, . . . , wL} from system logs
– Topic Modeling: get probability p(w|ti) for term w, where ti is the ith topic

Online Steps:

– Form the intermediate query: expand the original query with terms from the
logs

– Corpus term expansion: using the probability of a term given the intermediate
query to select the terms from the corpus

– Term weighting and generating the final query

Output: Final query

The process is also illustrated in Fig. 5.

3.1 Offline Step 1: Log Analytics

In order to effectively analyze system logs, we have leveraged the expertise of
our agents and incorporated their knowledge in the form of rules for extracting
information from log files. Key pieces of information extracted include error
messages, machine types, and names of components in abnormal states.

The agents documented 17 unique representative error types that appear in
mid-range storage logs. These error types cover failures in five different com-
ponents: Controller, Enclosure, Drive, Logical Drive, and Arrays. These compo-
nents consist of many subcomponents which can fail. We have implemented a
parser and analyzer to find evidence related to different types of subcomponent
failures that appear in the log files. The common errors that the parser can iden-
tify in the log files include, but are not limited to, the following: Controller Fail-
ure, Controller Reboot, Path Redundancy Loss, Impending Drive Failure, Cache
Disabled, Insufficient Cache Backup Capacity, Bypassed Drive, Batteries Near
Expiration, Batteries Not Available, ESM Failure, Power Fan Failure, and Indi-
vidual Drive Degraded Path.

The above error types can be very informative with regard to root cause
analysis of a failure whose symptoms are observed by a customer. If this infor-
mation can be incorporated into a query, the new (expanded) query will be more
1 A mid-range storage system’s performance and cost lies between expensive, high-end

enterprise-class and cheap, low-performance storage systems.

738 R. Zhu et al.

Fig. 5. Solution overview

powerful than the original in its ability to retrieve the most relevant documents
which contain the solution to the problem that the customer is experiencing. For
example, as we have shown in Sect. 2.2, adding the term “POWER7” from the
log to the query “10009028” helps improve the search results.

3.2 Offline Step 2: Topic Modeling

In the first offline module, we incorporate the log terms which are mostly about
errors or their root causes. In the second offline module, we further include select
terms from the corpus of documents which describe solutions.

The goal of the second offline step is to help find information relevant to the
case from the corpus to add to the query, so that the rank of relevant documents
can be improved. As discussed above, topic modeling is expected to uncover
solutions pertaining to specific types of errors given symptoms and root causes.

Specifically, we run the topic modeling algorithm Latent Dirichlet Allocation
(LDA) [4] on all of the knowledge source documents in the corpus. The output is
a set of topics, where each topic t is a probability distribution over all the terms
in the vocabulary V . Using the topic model, we can get the probability p(w|t),
where w ∈ V .

3.3 Online Step 1: Intermediate Query

The online steps are performed each time a new query is processed. Inputs to
this step include the text of the original query and system log files for the case.

Towards More Effective Solution Retrieval in IT Support Services 739

The log files are fed to the log parser, the output of which identifies (log) terms
to be added to the original query for forming an intermediate query. The terms
identified from the log files are selected based on rules defined by experienced
support agents. The intermediate query contains information from the original
query as well as the log files. For example, for a case of mid-range storage systems,
the key terms “path redundancy lost 1726” may be selected from the log files,
where “1726” is the machine type and “path redundancy lost” is the error.
The newly added terms from the logs are weighted, the procedure for which is
described later in Sect. 3.5.

3.4 Online Step 2: Expanding Query with Corpus Terms

The goal of this step is to expand the intermediate query further by selecting
terms from the corpus. Assume that the intermediate query is q. The approach
is similar to that of query language models, i.e. we rank each of the corpus
terms according to its probability of being generated by the intermediate query.
Specifically, we use the following two-step generative process:

– Use the query q to generate a topic t
– Use the topic t to generate a word w

In this way, the probability of a word w ∈ V , given a specific query q can be
computed as:

p(w|q) =
∑

i

p(w|ti)p(ti|q)

where each ti is a topic produced by running LDA on the corpus.
In this formula, the probability p(w|ti) can be computed directly from the

output of LDA. Probability p(ti|q) is the topic mixture inferred by treating the
query as a new short document, which can also be acquired directly by LDA
inference using the corpus topic model. Therefore, all the probability terms in
the right hand side are available from the topic model over the corpus. In this
way, the words in vocabulary V can be ranked based on the above probability.
Empirically, we choose to add only the top five words. For example, for the mid-
range storage case mentioned in Sect. 3.3, the top terms “drive module array
host” may be returned from the topic model.

3.5 Online Step 3: Term Weighting and Final Query

The procedure used to weight the terms is also very important. Since the terms
from the original query are still the ones best characterizing the user’s infor-
mation need, they are each given a weight of 1. The terms added to form the
intermediate query are from the system logs, which should also be directly and
equally relevant to the information needed. Therefore, they are each assigned
identical weights λ. The third part of the expanded query consists of terms from

740 R. Zhu et al.

the documents, and they are ranked by the probability after the query is seen.
Intuitively, they are not so directly relevant to the query, so we just use the
ranking probability as the weight. Therefore, we compute the weight of the word
w, μw as the following:

μw =

⎧
⎨

⎩

1 if w ∈ qo
λ if w is from the log
p(w|q) if w is from the corpus

Here qo is the original query and q is the intermediate query.

4 Experiments

This section describes the verification of our approach using real world data. The
data set used is a set of real query sessions by technical support agents using
an IBM search system built on top of Indri [13]. A complete session consists of
a piece of query text, a case number, a ranked list of returned documents, and
the agent user’s vote for the query. A vote, submitted by the user, is one of the
returned documents that the user believes to be the most relevant to their case.
These votes can be used as ground truth for the evaluation. The log files used
to form the intermediate query are retrieved by the case number in the session
from IBM’s Enhanced Customer Data Repository (ECuRep2). Our first test
data set consists of 18 such complete query sessions. The second test data set
has 50 incomplete sessions where the log files are missing, but the query text,
ranked list of results and votes are available. Note that these two data sets are
completely separate from each other. We have used MALLET LDA package [20]
in our implementation.

In the experiments, we measure the average rank of voted documents, and the
percentage of the query sessions where the voted documents are ranked in the
top five (GAIN@5) and the top ten (GAIN@10). For the first test set which has
18 complete sessions, we compare the above metrics using the original query, the
expanded query with only the terms from the topic model, the expanded query
with only log terms, and the final query expanded using both log terms and the
terms from the topic model. For the second set which has 50 incomplete sessions,
we only compare the performance of the original query with the expanded query
using terms from the topic model.

In Table 1, we show the metrics of the first test set. The expanded queries,
using either log terms or terms from the topic model or both, have better per-
formance than the original queries for all three metrics. It also shows that using
system logs in retrieving solution documents is critical in IT support services.
In addition, it shows that expanding queries with both system logs and topic
model can further boost the performance.

Table 2 shows the results for the second test set. The comparison here is
between the original queries and the queries expanded with only terms from the

2 http://www.ecurep.ibm.com.

http://www.ecurep.ibm.com

Towards More Effective Solution Retrieval in IT Support Services 741

Table 1. Retrieval performance on complete sessions

Metrics Original AQE with AQE with AQE with system

query topic model system log log and topic model

Average rank 8.44 6.88 5.06 4.88

Gain@5 38.9 % 50.0 % 50.0 % 55.6 %

Gain@10 66.7 % 66.7 % 72.2 % 72.2 %

Table 2. Retrieval performance on incomplete sessions

Metrics Original query AQE with topic model

Average rank 8.26 6.36

Gain@5 48.0 % 56.0 %

Gain@10 72.0 % 82.0 %

topic model. In practice, the incomplete sessions represent situations where the
log files are not sent by customers, or the log files are in an internal representation
which is not easily parsable. As shown in the table, expanding queries using terms
in the topic model has helped improve the performance consistently across all
three metrics.

5 Related Work

Query expansion is the general process of reformulating a seed query to improve
retrieval performance. A query is the primary statement of a user’s information
need. However, users don’t always provide the most optimal queries due to limi-
tations in their scope of knowledge, limited time for query formulation, intrinsic
ambiguity of their information need, or the difference between the terms used
by users and content providers. Therefore, an enhanced query can improve the
performance of the retrieval system.

There have been many studies on the problem of automatic query expansion
(AQE), which aims at expanding query terms automatically to better meet the
user’s information need. One of the most straightforward approaches is to per-
form linguistic analysis such as stemming [3,12,15], finding synonyms on thesauri
such as WordNet [21] and applying other forms of semantic association [18,27].
However, such methods depend largely on the quality of the thesauri and can
only utilize the semantic ties between the terms.

Other methods using corpus and query specific techniques utilize statistical
features such as co-occurrence information, mutual information, or more com-
plicated measurements of the corpus or query context [17,23,30]. A popular
approach is the Relevance-based Model proposed by Lavrenko and Croft [17]
along with its variants [6,10,16]. Lavrenko and Croft [17] present a method of
estimating the probability of observing a word in the documents relevant to a

742 R. Zhu et al.

query (relevance model) when no training data is available. The idea is to learn
the parameters of a relevance model based on the fact that a query is a random
sample from the model. The authors also investigate whether topics discovered
in the corpus can be used for query expansion. The Relevance-based Model is
followed by calculating a topic model based relevance model:

p(w|q) =
∑

i

p(w|ti)p(ti|q)

Lavrenko and Croft show that p(w|q) is a very good approximate measure-
ment of the relevance of terms without training data. We borrow this idea in
our work, with the key difference being that in our approach, an intermediate
query is used in the above equation, which is an expansion of the original user
query using terms from system logs. That expansion proves to be crucial for
performance improvement in the IT support domain. Other approaches include
utilizing information from various sources, such as tagging recommendations
based on Wikipedia pages [22].

Another important category of methods is search log analysis, where the
idea is to mine associations between different query sessions by a user. Different
sessions can be associated chronologically, i.e. two adjacent queries will be asso-
ciated, or semantically, i.e. two queries sharing terms or semantic overlap will be
associated. After queries are associated, both the associated queries themselves
[11,14,31] and the results retrieved based on the queries [1,2] can be used to
enhance the original query. Previous work has also explored the use of clicked
results of associated queries to extract search terms (e.g., [8,24]).

Though there has been extensive research on AQE, to the best of our knowl-
edge, no previous work specifically targets the AQE problem in IT support ser-
vices and utilizes system logs. A relatively close work is [7] on the use of LDA for
web service clustering. However, there is no use of system logs as an important
source of information for problem determination, which is a key focus of our
work.

6 Conclusion

We have presented a novel systems log-aided method for the domain of IT sup-
port services for automatic query expansion, which can identify a set of terms
from log files to complement the query terms submitted by an agent address-
ing a customer problem. Normally, this task is performed manually by support
services agents, and they have to acquire years of experience and training to
do it effectively. Our experimental results indicate that the systems log-aided
method can improve retrieval performance significantly, and yield even better
results when combined with topic modeling on the corpus.

In the future, we plan to explore techniques to perform key term selection
from log files that are more flexible and domain independent. In addition, we
plan to experiment with other topic modeling techniques and compare their
performance with LDA.

Towards More Effective Solution Retrieval in IT Support Services 743

References

1. Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log.
In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2000, pp. 407–416. ACM, New York, NY,
USA (2000). http://doi.acm.org/10.1145/347090.347176

2. Billerbeck, B., Scholer, F., Williams, H.E., Zobel, J.: Query expansion using asso-
ciated queries. In: Proceedings of the Twelfth International Conference on Infor-
mation and Knowledge Management, CIKM 2003, pp. 2–9. ACM, New York, NY,
USA (2003). http://doi.acm.org/10.1145/956863.956866

3. Bilotti, M.W., Katz, B., Lin, J.: What works better for question answering:
stemming or morphological query expansion? In: Proceedings of the Information
Retrieval for Question Answering (IR4QA) Workshop at SIGIR 2004 (2004)

4. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003). http://dl.acm.org/citation.cfm?id=944919.944937

5. Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012).
http://doi.acm.org/10.1145/2133806.2133826

6. Cartright, M.A., Allan, J., Lavrenko, V., McGregor, A.: Fast query expansion using
approximations of relevance models. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM 2010, pp. 1573–
1576. ACM, New York, NY, USA (2010). http://doi.acm.org/10.1145/1871437.
1871675

7. Chen, L., Wang, Y., Yu, Q., Zheng, Z., Wu, J.: WT-LDA: user tagging augmented
LDA for web service clustering. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.)
ICSOC 2013. LNCS, vol. 8274, pp. 162–176. Springer, Heidelberg (2013)

8. Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Query expansion by min-
ing user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003).
http://dx.doi.org/10.1109/TKDE.2003.1209002

9. ElasticSearch: https://www.elastic.co
10. Halpin, H., Lavrenko, V., St, C.: Relevance feedback between hypertext search and

semantic search. In: Proceedings of the Semantic Search Workshop at the World
Wide Web Conference (2009)

11. Huang, C.K., Chien, L.F., Oyang, Y.J.: Relevant term suggestion in interactive
web search based on contextual information in query session logs. J. Am. Soc. Inf.
Sci. Technol. 54(7), 638–649 (2003). http://dx.doi.org/10.1002/asi.10256

12. Hull, D.A.: Stemming algorithms: a case study for detailed evaluation.
J. Am. Soc. Inf. Sci. 47(1), 70–84 (1996). http://dx.doi.org/10.1002/
(SICI)1097--4571(199601)47:1〈70:AID-ASI7〉3.3.CO;2-Q

13. Indri: http://www.lemurproject.org/
14. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In:

Proceedings of the 15th International Conference on World Wide Web, WWW
2006, pp. 387–396. ACM, New York, NY, USA (2006). http://doi.acm.org/10.
1145/1135777.1135835

15. Krovetz, R.: Viewing morphology as an inference process. In: Proceedings of the
16th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 1993, pp. 191–202. ACM, New York, NY, USA
(1993). http://doi.acm.org/10.1145/160688.160718

16. Lavrenko, V., Choquette, M., Croft, W.B.: Cross-lingual relevance models. In:
Proceedings of the 25th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2002, pp. 175–182. ACM, New
York, NY, USA (2002). http://doi.acm.org/10.1145/564376.564408

http://doi.acm.org/10.1145/347090.347176
http://doi.acm.org/10.1145/956863.956866
http://dl.acm.org/citation.cfm?id=944919.944937
http://doi.acm.org/10.1145/2133806.2133826
http://doi.acm.org/10.1145/1871437.1871675
http://doi.acm.org/10.1145/1871437.1871675
http://dx.doi.org/10.1109/TKDE.2003.1209002
https://www.elastic.co
http://dx.doi.org/10.1002/asi.10256
http://dx.doi.org/10.1002/(SICI)1097--4571(199601)47:1<70:AID-ASI7>3.3.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097--4571(199601)47:1<70:AID-ASI7>3.3.CO;2-Q
http://www.lemurproject.org/
http://doi.acm.org/10.1145/1135777.1135835
http://doi.acm.org/10.1145/1135777.1135835
http://doi.acm.org/10.1145/160688.160718
http://doi.acm.org/10.1145/564376.564408

744 R. Zhu et al.

17. Lavrenko, V., Croft, W.B.: Relevance based language models. In: Proceedings of
the 24th Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2001, pp. 120–127. ACM, New York, NY,
USA (2001). http://doi.acm.org/10.1145/383952.383972

18. Liu, Y., Li, C., Zhang, P., Xiong, Z.: A query expansion algorithm based on phrases
semantic similarity. In: 2008 International Symposiums on Information Processing
(ISIP), pp. 31–35, May 2008

19. Lucene: https://lucene.apache.org/
20. McCallum, A.K.: Mallet: a machine learning for language toolkit (2002). http://

mallet.cs.umass.edu
21. Navigli, R., Velardi, P.: An analysis of ontology-based query expansion strategies.

In: Workshop on Adaptive Text Extraction and Mining, Cavtat Dubrovnik, Croa-
tia, 23 September 2003

22. Oliveira, V., Gomes, G., Belém, F., Brandão, W., Almeida, J., Ziviani, N.,
Gonçalves, M.: Automatic query expansion based on tag recommendation. In: Pro-
ceedings of the 21st ACM International Conference on Information and Knowledge
Management, CIKM 2012, pp. 1985–1989. ACM, New York, NY, USA (2012).
http://doi.acm.org/10.1145/2396761.2398557

23. Park, L.A.F.: Query expansion using a collection dependent probabilistic latent
semantic thesaurus. In: Zhou, Z.-H., Li, H., Yang, Q. (eds.) PAKDD 2007. LNCS
(LNAI), vol. 4426, pp. 224–235. Springer, Heidelberg (2007)

24. Riezler, S., Vasserman, A., Tsochantaridis, I., Mittal, V., Liu, Y.: Statistical
machine translation for query expansion in answer retrieval. In: Proceedings of the
45th Annual Meeting of the Association for Computational Linguistics (ACL2007).
Prague, Czech Republic (2007). http://www.stefanriezler.com/PAPERS/ACL07.
pdf

25. Solr: http://lucene.apache.org/solr/
26. Sphinx: http://sphinxsearch.com/
27. Symonds, M., Zuccon, G., Koopman, B., Bruza, P., Sitbon, L.: Term associa-

tions in query expansion: a structural linguistic perspective. In: Proceedings of the
22nd ACM International Conference on Information and Knowledge Management,
CIKM 2013, pp. 1189–1192. ACM, New York, NY, USA (2013). http://doi.acm.
org/10.1145/2505515.2507852

28. Systems, I.P.: www.ibm.com/systems/power/
29. Xapian: http://xapian.org/
30. Xu, J., Croft, W.B.: Query expansion using local and global document analysis. In:

Proceedings of the 19th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 1996, pp. 4–11. ACM, New York,
NY, USA (1996). http://doi.acm.org/10.1145/243199.243202

31. Yin, Z., Shokouhi, M., Craswell, N.: Query expansion using external evidence. In:
Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS,
vol. 5478, pp. 362–374. Springer, Heidelberg (2009)

http://doi.acm.org/10.1145/383952.383972
https://lucene.apache.org/
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://doi.acm.org/10.1145/2396761.2398557
http://www.stefanriezler.com/PAPERS/ACL07.pdf
http://www.stefanriezler.com/PAPERS/ACL07.pdf
http://lucene.apache.org/solr/
http://sphinxsearch.com/
http://doi.acm.org/10.1145/2505515.2507852
http://doi.acm.org/10.1145/2505515.2507852
www.ibm.com/systems/power/
http://xapian.org/
http://doi.acm.org/10.1145/243199.243202

	Towards More Effective Solution Retrieval in IT Support Services Using Systems Log
	1 Introduction
	2 Motivating Example
	2.1 Example System Log Files
	2.2 Example System Log-Aided Query

	3 Log Aided Search
	3.1 Offline Step 1: Log Analytics
	3.2 Offline Step 2: Topic Modeling
	3.3 Online Step 1: Intermediate Query
	3.4 Online Step 2: Expanding Query with Corpus Terms
	3.5 Online Step 3: Term Weighting and Final Query

	4 Experiments
	5 Related Work
	6 Conclusion
	References

