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Abstract. As a powerful computing paradigm for constructing com-
plex distributed applications, service composition is usually addressed
as a planning problem since the goal is to optimize a path for combining
services to satisfy special requirements. Some planning methods assume
that the state of running environment can be fully observed and moni-
tored. However, the dynamic internet environment and opaque internal
status, such as QoS attributes and invoking results, make the assump-
tion too strict and not generally applicable. In this paper, we introduce
a Partially Observable Markov Decision Process (POMDP) to model a
service composition, which views the environment as partially observ-
able and generates a policy with incomplete information. The partial
observability relaxes the previous assumption and can handle the dif-
ficulties occurring in a dynamic and unpredictable environment. Based
on this model, we propose a reinforcement learning algorithm to com-
pute the optimal strategy. We conduct a series of experiments to verify
the proposed algorithm, and compare it the comparison with other two
algorithms. The results show the correctness and effectiveness of our
algorithm.

1 Introduction

In a Service Oriented Computing (SOC) environment, services that are
autonomous, loosely coupled and self-describing, are leveraged as fundamen-
tal components to develop interoperable distributed applications. Since a single
web service may not satisfy the requirements of complex business requirements,
service composition has attracted extensive attention in service computing [5].

In a service composition process, it mainly faces an uncertain and dynamic
web environment. On the one hand, in most service-oriented systems, there exists
uncertainty in services. For example, some behavior of a service may not be
deterministic (which could depend on the input values) and hence the invo-
cation result of the service may be uncertain. As another example, some QoS
values of a service may not known in advance and others (e.g., response time
and throughput) may change with the dynamic environment. These uncertain
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factors can not be detected precisely and affect the process of a service compo-
sition. On the other hand, considering that the online services may evolve with
the dynamic external environment, a service composition needs to be adap-
tive to these changes [13]. In summary, a viable solution to service composition
should take both the incomplete information and a dynamic environment into
consideration, and provide an effective mechanism to satisfy the uncertainty and
adaptivity.

To address the challenges of dynamic implicit information in service compo-
sition, we propose a novel method that combines Partially Observable Markov
Decision Process (POMDP) with reinforcement learning (RL) for service com-
position. The POMDP refers to a sequential decision-making problem under
uncertainty [1,4]. This model does not assume that the environment is fully
observable. Instead only some of the features are observed.

We use introduce the POMDP to model the service composition process. In
the POMDP service composition framework, an agent does not need the exact
state information, which is unavailable. It perceives the environment and gathers
observations as computational basis at runtime. Then, the goal is adjusted to
find a composition policy that maximizes the reward by the observations and
past records. Inspired by the idea of RL, we present a learning algorithm com-
bining eligibility trace (SARSA (λ)), to compose web services in the POMDP
framework. Hence, our approach can handle the uncertainty issue in service com-
position while achieving the adaptivity and efficiency. The rest of this paper is
organized as follows. An overview of related work is presented in Sect. 2. The
problem formulation and key definitions are given in Sect. 3. The model and
algorithm proposed in this paper are described in detail in Sect. 4. Experimen-
tal results are presented in Sect. 5 to verify the effectiveness of our approach.
Finally, the conclusion is given in Sect. 6.

2 Related Work

In this section, we give an overview of existing approaches that have con-
tributed to service composition, including Markov Decision Process (MDP),
reinforcement learning (RL) and Partially Observable Markov Decision Process
(POMDP).

Gao et al. [6] and Doshi et al. [3] proposed a web service composition approach
based on MDPs. Given the QoS description, Gao et al. described some web
service composition patterns, such as sequential, conditional and iterative, in
an MDP framework. Doshi et al. developed a policy-based method to model
workflow composition to address the issues in classical planning. In [14,16], the
authors extended their previous studies to a multi-agent scenario. By combining
reinforcement learning and multi-agent mechanism, their methods can improve
the efficiency in service compostion.

In real-world applications, due to the dynamic network environments, uncer-
tain performance of services and opaque QoS values, sometimes we can only
obtain partial descriptions about the current state. The work in [10] described a
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POMDP method to obtain better solutions for QoS-aware service composition,
which utilizes the provenance data to assess POMDP distributions. In [15], the
POMDP was applied to address the self-healing issue in service-oriented sys-
tems. The model works with belief states, which can help determine the best
maintenance policy. In [8], the authors introduced the POMDP to model service
composition as an uncertain planning problem. They also proposed a time-based
learning method to balance the exploration and exploitation. These studies show
the promising trend of using the POMDP in service composition.

3 Problem Formulation

In this section, we briefly present the problem description and some prelimi-
naries, such as Web service composition and the Partially Observable Markov
Decision Process (POMDP) for web service composition.

Definition 1 (Web Service). A Web service can be modeled as a tuple
WS =< ID,Pr,E,QoS >, where

– ID is a unique id of a Web service;
– Pr specifies the preconditions that need to be fulfilled to successfully invoke the

Web service;
– E specifies the effect to the environment after executing the Web service

(including both successful and unsuccessful executions);
– QoS is a n-tuple < attr1, . . . , attrn >, where attri(1 ≤ i ≤ n) represents a

QoS attribute (e.g., Availability, Reliability, Throughput and Response time);

Using MDP to model the service composition process has become popular,
which reduces the computation cost based on the Markov property [3,6,14].
However, this model assumes that the environment information is fully observ-
able and complete, which is too strict and not suitable for practical application
scenarios. As a generalization of an MDP, a POMDP refers to a model for
sequential stochastic decision problems that considers the information of sys-
tem state as uncertain and partially observable [7]. This paper introduces the
POMDP model into web service composition (WSC). The definition of POMDP
in service composition is given as follows.

Definition 2 (WSC-Partially Observable Markov Decision Process).
A WSC-Partially Observable Markov Decision Process(WSC-POMDP) is for-
mally described as a 6-tuple < S,A,R, T,O,Z >, where

– S denotes a finite set of states of an agent;
– A denotes the set of Web services that can be executed;
– R : S × A → R denotes the reward function. When an agent invokes a service

ws ∈ A, the world transits from s to s′, and the agent receives an immediate
reward r from the environment;

– T : S ×A×S → [0, 1] denotes the transition function. When an agent invokes
a service ws ∈ A, the world transits from s to s′ with a probability recorded as
T (s, a, s′) = Pr(s′|s, a);
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– O denotes the observable information received by the agent;
– Z : S × A × O → [0, 1] is the observation function indicating the probabil-

ity distribution of observations. Formally, Z(a, s′, o) = Pr(o|s′, a) means the
probability of observation o after agents invoke a service a and change to
state s′;

An observation history h in a POMDP is defined as a sequence of actions exe-
cuted and observations received that record the whole evolution of the process
[2]. The goal of the agent is to learn a policy π, which maps the observation his-
tory ht into an action at at time t to maximize the expected discounted cumula-

tive reward E[
T∑

t=0
γtrt]. However, such form of memory can grow indefinitely over

time, making it impractical for long planning horizons. Fortunately, we can sum-
marize the unbounded history h1:t−1 into a sufficient statistic that compresses all
the information of the past actions and observations. This compression pattern
has been recognized by numerous studies, and the sufficient statistic is defined
as a belief state [7,11], which is a probability distribution over the state space S.
Therefore, a POMDP can be cast into a framework of a belief MDP, where the
belief states comprise the continuous, but fully observable, MDP state space.

4 Adaptive Service Composition

In this section, we firstly introduce the belief MDP model for web service com-
position. Then, a RL algorithm is presented to compute the optimal policy in
the composition model.

4.1 Belief MDP for Web Service Composition

Based on the above discussion, we convert a WSC-POMDP to a WSC-belief
MDP by introducing the concept of belief state, which can be defined as follows:

Definition 3 (Web service composition belief MDP(WSC-belief
MDP)). A WSC-belief MDP is defined as a 5-tuple< B,A,O, Γ, ρ >, where

– B is a set of belief states in the continuous space;
– A is a set of Web services;
– O is a set of possible observations;
– Γ : B × A × O → B is the belief transition function;
– ρ : B × A → R is the reward function in the belief space, derived from the

original reward function on world state, ρ(b, a) =
∑

s∈S

b(s)R(s, a);

When an agent executes a service a and perceives observation o, the belief
state b will be updated to b′ based on Bayes rule as follows:

ba
o(s′) = Pr(s′|b, a, o) = ηPr(o|s′, a)

∑

s∈S

Pr(s′|s, a)b(s) (1)
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where η = 1/Pr(o|b, a) denotes a normalizing constant with Pr(o|b, a) =∑

s′∈S

Pr(o|s′, a)
∑

s∈S

Pr(s′|s, a)b(s).

The policy is a function mapping belief state b(b ∈ B) into service a(a ∈ A),
i.e., π(b) → a. A policy π(b0) can be characterized by the value function V π(b0)
that is defined as the expected sum of discounted rewards received by following
policy π starting at belief b0:

V π(b0) =
h∑

t=0
γt

∑

s∈S

bt(s)R(s, π(bt)) (2)

where π(bt) represents the action specified by policy π at belief bt. Based on
above definition, it can be derived that an optimal policy π∗ is a policy that
can maximize its value function V ∗(i.e., V ∗(b) ≥ V π(b) ∀(b)). It prescribes the
optimal action for each belief b to execute on time t and assumes that the agent
will also act optimally in the future. The optimal value function V ∗ satisfies the
Bellman′s equation

V ∗(b) = max
a

[ρ(b, a) + γ
∑

o
Pr(o|b, a)V ∗(ba

o)] (3)

where Pr(o|b, a) =
∑

s′∈S

Pr(o|s′, a)
∑

s∈S

Pr(s′|s, a)b(s), ρ(b, a) =
∑

s∈S

b(s)R(s, a) as

defined above. ba
o is the updated belief after performing action a and gathering

observation o that is defined by Eq. (1).

4.2 SARSA(λ) Algorithm Based on Belief MDP

As a popular machine learning algorithm, RL assumes that an agent has no
perfect knowledge of the environment. It demands the agent to interact with the
dynamic environment and learn the optimal strategy with the reward value by
the means of trial-and-error. There are many RL algorithms for MDP problems
[14,17], such as Q-learning, SARSA, Monte Carlo and Temporal Difference(TD).

SARSA(λ) is a fast multi-step on-policy learning algorithm that introduces
eligibility trace into SARSA(0) [9,12]. The basic concept of SARSA(λ) is to
apply the TD(λ) prediction method to a state-action pair. It uses experience to
learn estimates of an optimal Q-value function. Besides improving the learning
efficiency, SARSA(λ) can make full use of past decisions and observations to
optimize the current action and obtain the optimal strategy.

In the belief MDP problem, the available transition information at time step
t is < b(st), at, rt, b(st+1) > and the Q-value in a belief MDP can be represented
as Qt(b(s), a). Then, the Q-value update formula in SARSA(λ) with belief state
is given by.

Qt+1(b(s), a) ← Qt(b(s), a) + α ∗ δt ∗ et(b(s), a) (4)

where 0 ≤ α ≤ 1 denotes the learning rate, δt = rt(b(s), a)+γQt(b(st+1), at+1)−
Qt(b(st), at). rt denotes the immediate reward received by an agent after invoking
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service a and making the environment transfer from state st to st+1. In addition,
the eligibility traces are initialized to 0, and then are updated as follows:

et(b(s), a) =

⎧
⎪⎨

⎪⎩

γλet−1(b(s), a) if b(s) 	= b(st)
0 if b(s) = b(st) and a 	= at

1 if (b(s), a) = (b(st), at)
(5)

where γ(0 ≤ γ ≤ 1) denotes the discount factor and λ(0 ≤ λ ≤ 1) denotes the
decay factor.

5 Experiments and Analysis

In this section, we conduct a series of experiments to evaluate our service com-
position approach. To demonstrate the effectiveness of our approach, we also
compare with other similar RL algorithms.

5.1 Experiment Setting

In the experiments, we assign each service node with random QoS values that
follow the normal distribution. The algorithm proposed in this paper, i.e.,
SARSA(λ) for belief MDP, is referred to as b-SARSA(λ). We conduct compara-
tive experiments with Time-based Learning method (referred to as TL) [8], and
a multi-agent SARSA algorithm (referred to as multi-SARSA) [14]. A number
of key parameters are set as follows. The learning rate α is set to 0.6 similar to
the study in [14]. The discount factor γ is set to 0.9 and the ε-greedy exploration
strategy value is set to 0.6. The experiments are conducted on an Intel i3-2120
3.30 GHz PC with 4 GB RAM.

5.2 Result Analysis

5.2.1 Validation of Effectiveness
In the first experiment, we mainly verify the effectiveness of b-SARSA(λ). The
number of successful explorations of an algorithm is used as the standard to
compare their convergency rate. The discount cumulative reward received by
each algorithm is counted to represent the learning effect.

As shown in Fig. 1(a), b-SARSA(λ) has several superiority compared with
other two algorithms. Compared to multi-SARSA, the b-SARSA(λ) algorithm
has higher cumulative reward value. The multi-SARSA learns in the MDP model
that judges the current state of environment without comprehensive understand-
ing of the environment, while the POMDP computes and analyzes the environ-
ment based on belief states. Although multi-agent mechanism can accelerate the
convergency rate in multi-SARSA, it obtains less reward value than b-SARSA(λ)
in POMDP. On the other hand, in the same POMDP environment, b-SARSA(λ)
has faster convergence rate than TL. The reason mainly lies in the introduction
of eligibility traces in b-SARSA(λ), which can optimize current action with expe-
rience from past decisions to accelerate the learning rate.
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Fig. 1. (a) Validation of effectiveness (b) Validation of adaptability

5.2.2 Validation of Adaptability
Service QoS attributes may change in a dynamic web service environment. There-
fore, this experiment mainly studies the adaptability of b-SARSA(λ). We allow
10 %, 15 % and 20 % of changes on the QoS values of a fixed number of candi-
date services during the learning process to simulate the dynamic environment.
Also, we set QoS fluctuations between the 2000th episode and 2500th episode
to enhance comparison. Figure 1(b) presents the experiment results. We can see
that the b-SARSA(λ) algorithm converges finally in spite of the changes of the
QoS, with just different convergence time. Even for huge QoS fluctuations, the
reward values temporary decline, but the algorithm will relearn the current strat-
egy and generate a new optimal strategy for the new environment. Therefore,
the b-SARSA(λ) algorithm can handle the changes and find the optimal strategy
adaptively.

6 Conclusions and Future Directions

In a dynamic service composition environment, the services’ internal states and
their QoS behaviors may be unpredictable and opaque. As a result, the avail-
able information for agents can be implicit. Therefore, this paper presents a
reinforcement learning algorithm based on a POMDP model to address the non-
observability issue in service composition, which utilizes the partially observed
information to make decisions. By introducing the belief state, which presents
the probability distributions over all states, the POMDP model can be converted
into a belief MDP model. We also introduce the SARSA(λ) algorithm to run in
a belief MDP, which combines the on-policy SARSA algorithm with the concept
of multi-step prediction from eligibility traces. The algorithm can achieve better
learning efficiency while enhancing the adaptability. The experiments validate
the effectiveness and superiority of our approach in an incomplete information
environment.
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