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Abstract. Economy of scale is a key driver behind the Cloud based
adoption of a business process. Typically, the management of business
process variants focuses on design variants, which permit (ideally small)
variations in design (and hence, functionality) for achieving the same
(functional) goal, under different functional constraints (such as the com-
pliance obligations that have to be met in different jurisdictions). Lit-
tle attention has been paid to: (a) variations in process design driven
by non-functional considerations (e.g., performance, reliability and cost
of operation) and (b) variations in process provisioning in Cloud. This
paper seeks to develop means for identifying the correlation between both
design and provisioning alternatives and the QoS of business processes
deployed in the Cloud. Additionally, we explore the role of the context
in determining the performance of a process. We use a set of data min-
ing techniques (specifically decision tree learning, support vector machine
and the k-nearest neighbour technique) to mine insights about these cor-
relations. Proposed approaches are evaluated using a synthetic dataset
as well as a real dataset.

Keywords: Cloud - Process adaptation + Resource + QoS - Context

1 Introduction

Cloud-based deployment of business processes raises several important chal-
lenges. Organizations that deploy business processes in a variety of heteroge-
neous settings have to manage process variants, which modify the original (or
reference) process design to accommodate the compliance requirements of dif-
ferent jurisdictions or varying client requirements but which still achieve the
intended goals of the process [17].

Much of the current literature on the management of business process vari-
ants focuses on design variants, which permit (ideally small) variations in design
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(and hence, functionality) for achieving the same (functional) goal, under dif-
ferent functional constraints (such as the compliance obligations that have to
be met in different jurisdictions). Little attention has been paid to variations in
process design driven by non-functional considerations (such as the improvement
of processing time or the reduction of cost - factors that we shall henceforth
informally describe using the term QoS). Little attention has also been paid
to variations in process provisioning. Sometimes, the same process design can
exhibit very different QoS profiles under different resourcing modes.

Thus, both the design of a process and the resources provided for its exe-
cution determine its performance under various QoS measures. The broader
research program within which this paper is situated seeks to develop means for
identifying and leveraging the correlation between both design and provisioning
alternatives and the QoS of business processes deployed in the Cloud. This paper
focuses on the provisioning aspect of this question.

This paper additionally explores the role of the context in determining the
QoS of a process. We view the context as consisting of exogeneous knowledge
about the operating environment of a process that is neither consumed by a
process nor generated by it (and hence sitting outside the ambit of what is
traditionally described as process data). The role of the context in determining
the QoS of a process is often mediated by the impact the context has on the
resources allocated to a process. For instance, we might find that a process with
a significant proportion of human-mediated steps (such as customer complaint
handling) leads to positive outcomes (as evidenced by a higher proportion of
satisfied customers) when executed earlier in the day. The underlying contextual
phenomenon that manifests in this behaviour could be the higher efficiency of the
customer contact centre workers at the start of the working day. Sometimes, the
context influences process performance in other ways. There is some anecdotal
evidence that insurance claims processes progress to completion faster during
periods when the economic climate is positive (and take longer to complete
when this is not the case). Of particular interest for the purposes of this study
is the load on hardware and software resources that provision a business process
deployed in the Cloud.

There are a number of use cases for the techniques we develop in this paper.
Given a description of a context, we are interested in identifying (or prescribing)
the alternate set of resources with which to provision a process in order to
achieve a set of thresholds on the applicable QoS factors e.g., cost, processing
time, reliability etc. Given a context, and the set of resources being allocated to
a process, we are interested in predicting its QoS. We are interested in answering
these questions both at the start of the execution of a process (where a process
design provides approximate guidance on what tasks are to be executed - the
specific task sequence being determined at run-time) and during the execution
of a process (where we have, in addition to a process design, a sequence of tasks
already executed).

These questions are best answered by using a causal theory that relates
aspects of the context, the process and the resources to the QoS of a process. Such
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a theory does not exist at this time (although preliminary attempts have been
made to use queueing theory to address part of the problem [8]). We therefore
propose to adopt a data-driven approach, by using a history of past process
executions as a proxy for this theory. We make the (realistic) assumption that
we have access to an execution history that records for each executed process
instance: (1) the context (consisting of the load, and potentially other contextual
factors), (2) the process design, (3) the process instance, (4) the resource set
deployed for that instance, and (5) the QoS (in terms of values for a set of QoS
factors).

We use a set of data mining techniques (specifically decision tree, support
vector machines and the k-nearest neighbour technique) to mine insights about
these correlations. The overall strategy is to mine correlations between the con-
text, the process, the resource set and the QoS, and use these correlations to
support the prescriptive and predictive analytics use cases discussed above. We
also leverage an ontology of resource types to describe the resource sets with
which process instances are provisioned. In addition to providing a vocabulary,
this resource ontology also forms the basis for a resource set ontology. We lever-
age the latter to obtain insights about superclasess (of classes of resource sets
that are well-represented in the available datasets) which can then support pre-
scriptive, predictive and diagnostic analytics for other classes of resource sets
(potentially under-represented in the available data).

We evaluate our proposal in the context of two datasets: a synthetic dataset
and real-life dataset drawn from the Business Process Intelligence (BPI) Chal-
lenge [2].

The literature directly related to our proposal is quite sparse. A substan-
tial body of work addresses business process flexibility, but the focus of these
approaches is primarily on the generation of design variants (as opposed to
the generation of variations in resourcing that we focus on). Some recent work
addresses the role of the context in process execution, but not in the kinds of
analytics we have outlined above.

2 The Proposed Framework

We present the conceptual basis for our proposal in this section. Our overall
strategy is to view an execution history as a proxy, or an alternative, for a causal
theory that might inform resource allocation decisions in the given context. We
might view the causal theory of interest providing the functions described below.
These functions will refer to a process P, a resource set R, a context C' and the
QoS of a process, denoted by QoS. The first function of interest is the following:

foos : C x P x R— QoS (1)

This function helps us predict the QoS of a process, given a characterization
of the context, the process and the resources allocated to the process. In much
of our evaluation, we will focus on the load in Cloud-based deployment as the
context C, but it is useful to note that our overall framework is far more general,
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and could be leveraged in settings with a richer description of the context. We
encode a characterization of the process in P. In parts of our evaluation, we use
a fairly coarse-grained characterization of a process (in terms of number of tasks,
in settings where it is reasonable to assume that the resource requirements of
the tasks in a process are fairly uniform). We also consider a more finer-grained
characterization in other parts of our evaluation, where we take cognisance of the
identities (i.e., task types) of the tasks executed in a process (this characteriza-
tion is useful in settings where tasks have heterogeneous resource requirements).
More generally, we could characterize a process by referring to the actual process
instance (which describes the sequence, and not just the set of tasks executed. We
could make the characterization even richer by referring to the process design.
We use a resource ontology to help characterize the resource sets that are used
to provision each process instance.

Another function of interest is:

fR:CxPxQoS— R (2)

This function helps us predict the resource sets that must be provided to a
process instance, in a given context C, in order to ensure that certain thresholds
on the QoS, given by QoS are met (note that we have over-used the term QoS,
which was used to denote actual QoS measures in the case of function fg.s). C
and P would be characterized as per the discussion above.

Our focus in this paper is to mine execution histories to obtain approxi-
mations of these two functions. We assume a general schema for the execution
history, given by the tuple (C, P, R, QoS) (with the provision that C, P, R and
QoS might be differently instantiated, as discussed above). Our overall strategy
is to use classification techniques such as decision tree learning and support vec-
tor machine (SVM) to learn an approximation of function fg,s and to use the
k-nearest neighbour technique to learn an approximation of function fr (which
would support the prescriptive analytics discussed in the previous section). The
remainder of this paper illustrates the feasibility of our approach via experimen-
tal evaluation using both synthetic and real-life datasets.

3 Evaluation

We evaluate the proposed approach using two types of datasets: (a) simulated
process execution logs and (b) real process execution logs. Using both simulated
and real execution logs, we answer interesting questions around the resource
allocation and QoS.

3.1 Insights from Simulated Process Execution Logs

Simulated process logs are generated in the domain of Infrastructure-as-a-Service
(TaaS) Cloud and contains a rich variety of Cloud resources. We first describe
the resource ontology considered in this context.
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Resource Ontology. As shown in Fig. 1, infrastructure resources in the Cloud
can be divided into three classes: physical machines (PM), virtual machine (VM),
operating system containers (OC). For each of the above classes, there are three
sub-classes - large, medium and small, which denote the amount of computing
capacity given to a resource instance. For example, a large PM can have 32 CPU
cores, 16 GB of memory and 1TB of disk, while a small PM can have 4 CPU
cores, 4 GB of memory and 256 GB disk. Further, using the resource types (r)
shown in the primary ontology R, in Fig.1, we create a derived ontology Rg.
A derived ontology consists of a number of resource sets Rs. Let ¢; denotes the
cardinality of resource type (r;). The resource set can then be given as:

Rs:{(xvy) :x:rt,y:ct} (3)

Examples of R, are: (i) {3 large PMs}, (ii) {1 large PM, 2 medium VMs}, (iii)
{2 large VMs, 1 large OC} and so on. For tractability of the dataset, we vary the
value of ¢; from 1 to 10. A singular element of R, is called an atomic resource
unit r,. Examples of r, are: 1 large PM, 1 small VM, 1 medium OC and so on.
The universal resource set R, is the power set of Rj.

TaaS Resource

/1\‘

PM VM ocC
Large Medium Small Large Medium Small Large Medium Small

Fig. 1. Primary resource ontology for IaaS Cloud.

Generation of Synthetic Logs. Figure2 shows the conceptual process of
synthetic log generation. For a given sequential Cloud based BP, we randomly
generate n tasks which constitute a BP instance. For each task, we randomly
generate the total number of resources needed (7iptqi). The values of n and
Ttotal are generated by drawing samples from uniform distributions U(3,10) and
U(18,45) respectively. Once the value of 71514 is generated, we draw a resource
set Rs from R, such that the cardinality of R, is same as 74,q;. For instance,
when the value ry1q; is 3, possible resource sets could be: (a) 3 large PMs, (b)
3 small OCs, (c¢) 1 PM, 1 VM, 1 OC etc.

The next step is to generate the task level QoS. To keep things realistic, we
adopt a statistical model to compute QoS from resources as described in [10].
Given an atomic resource unit, a value of load (A), it can be shown that there
is a linear relationship between the throughput and the atomic resource unit.
Response time can then be computed as the inverse of throughput. Note that,
while we adopt a linear model for QoS computation, we randomly vary the values
of slope and y-axis intercept for an atomic resource unit. Let T; and .S; denote
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Fig. 2. Conceptual process showing the generation of synthetic dataset.

the throughput and response time of i-th atomic resource unit. The throughput
of a task is then computed as the sum total throughput of each atomic resource
unit. This is intuitive as we put more resources onto a task, overall task through-
put increases. The response time of a task is computed as the average response
time of individual atomic resource units. Next, we aggregate the task level data
to compute the process instance level QoS. Since we assume that the tasks are
sequential in nature, overall throughput is determined by the slowest (bottle-
neck) task. Thus, process instance level throughput is computed by the minimum
of individual task throughputs. Overall response time is computed as the sum of
individual task level response times. In total, 25000 process instances are simu-
lated and the generated data is used to provide the following insights. We use
the scikit-learn [3] package in Python for all the data mining approaches used
in this paper.

Classification Based Approaches for QoS Prediction. We use two classi-
fication approaches: (1) decision tree based learning and (2) SVM based learning
for answering the two questions related to QoS prediction.

Q1. Given a QoS threshold and a process that is about to start, can we predict
if the process will meet its QoS?

Considering response time as the QoS, we first replace the QoS value in our
dataset to binary variable isQoSsatisfied. For a given process instance, if the
value of QoS is less than or equal to the value of QoS threshold, we set the value
of isQoSsatisfied as True, otherwise, we set it to False. Thus, given isQoSsatisfied
as the target (or dependent) variable, the dataset contains the following indepen-
dent variables (predictor): load (\), #tasks (n), #total resources (rtotar), #small
PMs, #medium PMs, #large PMs, #small VMs, #medium VMs, #large VMs,
#small OCs, #medium OCs, #large OCs. Table 1 shows the feature importance
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Table 1. Predictor importance in synthetic data when QoS is predicted for a process
that is about to start.

Predictor Importance (decision tree) | Importance (SVM)
Load (\) 0.591 4.236
#tasks (n) 0.226 —3.132
#resources (T'total) 0.013 0.002
#small PMs (PM-small) 0.010 0.345
#medium PMs (PM-medium) | 0.010 0.392
#large PMs (PM-large) 0.013 0.441
#small VMs (VM-small) 0.073 —1.256
#medium VMs (VM-medium) | 0.027 —0.429
#large VMs (VM-large) 0.013 —0.099
#small OCs (OC-small) 0.007 0.107
#medium OCs (OC-medium) |0.006 0.217
#large OCs (OC-large) 0.009 0.288

for both decision tree and SVM based approaches. The weights of a linear SVM
can have both positive and negative values because the result of a linear SVM
is a hyperplane that separates the classes as best as possible. The weights form
the coordinates of a vector which is orthogonal to the hyperplane. The values
of the weights/coeflicients relative to the other ones give an indication of how
important the feature was for the separation.

The accuracy of decision tree and SVM based approach is 94.52 % and
97.32 % respectively.

Q2. Given a QoS threshold and a partially executed process log, can we predict
if the QoS will be met at the end of process execution?

For answering this question we have a similar data set as used for Q1. Instead
of using aggregated resource set, we have introduced task level resource sets. So
the independent variables are: load (\), #tasks (n), #total resources (riotar),
resources required for a task, i.e., #small PMs, #medium PMs, #large PMs,
#small VMs, #medium VMs, #large VMs, #small OCs, #medium OCs, #large
OCs and task response time. To construct the target (dependent) variable, we
transform the process level QoS (i.e., process response time) to a binary vari-
able isQoSsatisfied indicating a response time threshold. For an instance of the
dataset, isQoSsatisfied is set to True if the underlying process met its QoS else
it is set to False. The training dataset consists of the history of complete exe-
cutions of process instance along with the task related information. The test
dataset consists of partial executions of the process instance, i.e., a set of tasks.
The developed model (decision tree or SVM) predicts if the underlying process
can meet its QoS or not when the tasks are submitted to the model. Since the
process model consists of sequential tasks, the test tasks are fed to the model
one after another. If the prediction is False, subsequent tasks for the test process
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Table 2. Predictor importance for synthetic data when QoS is predicted for a partially
executed process.

Feature Importance (decision tree) | Importance (SVM)
Load () 0.679 1.649
#tasks (n) 0.183 —1.196
#resources (T'total) 0.041 0.019
#small PMs for a task 0.005 0.016
#medium PMs for a task | 0.004 0.021
#large PMs for a task 0.003 0.007
#small VMs for a task 0.002 —0.046
#medium VMs for a task | 0.004 —0.0.013
#large VMs for a task 0.004 0.002
#small OCs for a task 0.004 0.006
#medium OCs for a task | 0.005 0.008
##large OCs for a task 0.005 0.016
Task response time 0.056 —0.481

are no longer fed to the model. Table 2 shows the predictor performance for both
decision tree and SVM based approaches. The accuracy of decision tree and SVM
based approach is 88.44 % and 92.46 % respectively.

Clustering Based Approach for Resource Prediction. Using kNN, we
answer the three questions related to resource prediction. For all the questions,
we replace the QoS value in our dataset to binary variable isQoSsatisfied. The
value of isQoSsatisfied is set to be 1 in case the QoS is met w.r.t. a given
threshold, otherwise it is set to 0.

Q3. Given a process instance that met its QoS, can we predict an alternate
resource set such that it meets the QoS?

There are several motivations behind such a question including reducing the
cost of resource procurement [9], lack of availability of certain types of resources
etc. Using response time as the QoS, we leverage the full process logs from the
historical data to answer this question. The attributes of the dataset are in the
following order: (load, #tasks, #total resources, #small PMs, #medium PMs,
#large PMs, #small OCs, #medium OCs, #large OCs, #small VMs, #medium
VMs, #large VMs, isQoSsatisfied). We use the given process instance as a test
data, where isQoSsatisfied is set to 1 (as the process instance met the QoS).
From historical data, we then determine the process instances that are closest to
the test process and for which isQoSsatisfied is set to 1. For example, consider
the test process instance z:

2 =(537,4,11,1,1,0,2,0,2,1,3,1,1) (4)
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This instance has 4 tasks which got executed on 2 PMs (1 small, 1 medium),
4 OCs (2 small, 2 large), and 5 VMs (1 small, 3 medium, 1 large). Using kNN
approach, the top 2 closest process instances which meet the QoS are given by:

2 = (535,3,10,1,1,0,2,0,1,2,3,0,1), 20 = (535,4,12,0,3,0,1,0,2,1,3,2,1)

Without compromising the QoS target, these resource sets of these alternate
process instances can then be opportunistically used by a Cloud provider.

We also study another variant of this question when different types of tasks
are considered within a process. In this case, the dataset has an additional
attribute: #tasks for a given type. We re-generate our synthetic dataset consid-
ering 5 types of tasks. The attributes are then given by: (load, #tasks, #tasks
for type 1, #tasks for type 2, #tasks for type 3, #tasks for type 4, #tasks for
type 5, #total resources, #small PMs, #medium PMs, #large PMs, #small
0OCs, #medium OCs, #large OCs, #small VMs, #medium VMs, #large VMs,
isQoSsatisfied). For example, consider the test process instance y:

y = (986,12,3,3,3,1,2,34,1,2,7,4,4,2,3,7,4,1) (5)

This instance has 3 tasks for type 1, 2, and 3 each, 1 task for type 4, 2 tasks for
type 5. Using kNN approach, the top 2 closest process instances which meet the
QoS are given by:

y1 = (989,11,3,2,1,3,2,34,1,3,5,3,6,4,5,2,5, 1),
ys = (986,10,3,2,1,1,3,30,4,3,6,1,2,4,2,4,4,1)

Q4. Given a process instance that did not meet its QoS, can we predict alternate
resource set such that it meets the QoS?

The analysis carried out for this question is similar to that of Q3. The main
difference is that, when a process instance is considered as a test data, isQoS-
satisfied is set to 0 (as the process instance did not meet QoS). From historical
data, we then determine the process instances that are closest to the test process
and for which isQoSsatisfied is set to 1. For example, consider the test process
instance t¢:

t =(343,6,21,3,3,1,2,3,2,1,4,2,0) (6)

This instance has 6 tasks which got executed on 7 PMs (3 small, 3 medium, 1
large), 7 OCs (2 small, 3 medium, 2 large), and 7 VMs (1 small, 4 medium, 2
large). Using kNN approach, the top 2 closest process instances which meet the
QoS are given by:

t1 = (348,5,17,2,1,2,1,5,2,0,2,2,1), t5 = (342,5,15,1,1,4,2,3,4,0,0,0,1)

The resource allocation in any of these neighboring process instances can be used
as an alternate resource set for the test process instance to meet the QoS.

When different types of tasks are involved within a process instance we run
an analysis similar to the variant described in 3. Consider the test process
instance w:

w = (397,13,3,3,2,2,3,40,7,4,3,1,1,7,6,4,7,0) (7)
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This instance missed its QoS target and has 3 tasks for type 1, 2, and 5 each,
2 tasks for type 3 and 4 each. Using kNN approach, the top 2 closest process
instances which meet the QoS are given by:

wy = (399,11,2,2,1,3,3,37,5,3,8,3,3,3,3,2,7, 1),
woy = (396,11,2,2,2,2,3,34,3,3,7,4,2,5,1,6,3,1)

Q5. Given a partially executed process instance, can we predict an alternate
resource set such that it can meet the QoS at the end of entire process execution?

To answer this question, instead of using aggregated resource set, we have
introduced task level resource sets. So the features are: load, #tasks, #total
resources (Tiotal ), resources required for a task, i.e., #small PMs, #medium PMs,
#large PMs, #small OCs, #medium OCs, #large OCs, #small VMs, #medium
VMs, #large VMs, task response time, value of isQoSsatisfied. In this case, a
sequence of tasks belonging to the same process are considered as the test data.
The goal is to determine the similar tasks with alternate resource allocations
that can meet the QoS. Consider the following two test tasks:

v1 = (259,6,18,0,0,0,1,1,0,0,0,0,0.504,0),
vy = (259,6,18,0,1,0,0,0,1,0,0,0,0.300, 0)

Both tasks belong to a process instance for which load is 259 requests/sec, #tasks
is 6, #total resources is 18 and the QoS is not met (i.e., isQoSsatisfied = 0).
Task vy requires 1 small and medium OCs and has a response time of 0.504 ms.
Task vy requires 1 medium PM and 1 large OC and has a response time of 0.300
ms. Using kNN approach, the top 2 closest process instances v; which meet the
QoS are given by:

v = (261,6,17,1,0,1,1,0,0,0,0,0,0.357,1),
v12 = (261,6,17,0,0,1,0,0,0,0,1,0,0.555,1)

Similarly, the top 2 closest process instances vo which meet the QoS are given by:

va1 = (259,6,18,0,1,0,0,0,1,0,0,0,0.300,1),
a2 = (261,6,17,1,1,1,0,0,1,0,0,0,0.293, 1)

3.2 Insights from Real Process Execution Logs

The real dataset comes from Dutch financial institute provided as part of BPI
challenge 2012 [2]. The event logs are for an application process for a personal
loan or overdraft within a global financial organization. The log contains 2,62,200
events in 13,087 cases. Every process instance starts from a specific event and
ends up in any one of the 13 different end events. Based on this observation we
divide the process instances into 13 different instance types (itype). We calculate
the response time of the process instance as the time difference between the end
event and the start event. We define a threshold for the response time. The target
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(dependent) variable isQoSsatisfied is created using the defined threshold. If the
response time is below the threshold we set isQoSsatisfied to True otherwise
it is set to False. Unlike the synthetic data, this dataset does not have the
richness around resource information. Individual resources are identified by a
unique resource ID. For every resource ID we mark the instance with True if
the corresponding resource participates in the instance. There are 68 unique
resources who work on this process across various instances. We extract the
following predictors from this event log: loan amount, instance type (itype),
#tasks (n), #total resources (7¢ota1), resource ID.

Q1. Given a QoS threshold and a process that is about to start, can we predict
if the process will meet its QoS?

Following a similar approach taken for the synthetic logs, we use decision
tree and SVM to answer this question. Table 3 shows the predictor performance
for both decision tree and SVM based approaches. As the predictor space for
resource ids is large we show the importance of only a subset of resource ids.
The accuracy of decision tree and SVM based approach is 94.32 % and 96.32 %
respectively.

Table 3. Predictor importance for real data when QoS is predicted for a process that
is about to start.

Predictor Importance (decision tree) | Importance (SVM)
Loan amount 0.025 0.045
Instance type 0.027 —0.621
#tasks 0.866 —1.317
#resources 0.022 —0.194
Resource ID 11180 | 0.002 —0.092
Resource ID 11181 | 0.001 —0.048
Resource ID 10929 | 0.000 —0.022

Q2. Given a process instance that met its QoS, can we predict an alternate
resource set such that it meets the QoS¢

The analysis carried out for this question is similar to that of Q3 of Sect. 3.1.
From historical data, we determine the process instances that are closest to the
test process and have met their QoS. For example, consider the test process
instance t (the semicolon separated items are resource Ids):

t = (5862, 3,6,2,112;11019, 1) (8)

The loan amount and instance type for process instance ¢ are 5862 and 3 respec-
tively. In total, 6 tasks are performed by 2 resources with ids 112 and 11339.
Using kNN approach, the top 2 closest process instances which meet the QoS
are given by:

t1 = (5867,4,16,4,112; 11119; 10982; 11202, 1), £, = (5900, 3, 6,2, 112; 10881, 1)
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Q3. Given a process instance that did not meet its QoS, can we predict alter-
nate resource set such that it meets the QoS?

Here, when a process instance is considered as a test data, isQoSsatisfied is
set to 0. From historical data, we then determine the process instances that are
closest to the test process and for which isQoSsatisfied is set to 1. For example,
consider the test process instance t:

t = (5000, 2,23, 4,10609; 10899; 112; 11201, 0) (9)

This type 2 instance has the loan amount of 5000 and has 23 tasks which are
performed by 4 resources with ids 10609, 10899, 112 and 11201. Using kNN app-
roach, the top 2 closest process instances which meet the QoS are given by

t1 = (5000, 2,22,2,112;10629, 1), £, = (5000, 2, 25,2, 112; 10629, 1)

4 Related Research

The field of software performance modelling and prediction is vast. A compre-
hensive survey of modelling approaches for performance prediction is presented
in [4]. Important contributions have been presented in [1,18,20,21] reporting sig-
nificant results in the improvement of the software development process, specifi-
cally the use of Software Performance Engineering methods aided by related tools
such as SPE-ED [18]. The techniques and the supporting tools require develop-
ers to create software and/or system models of the application under develop-
ment. These models must have performance parameters such as I/O utilisation,
CPU cycles or network characteristics, specified by the developers in order for
the performance predictions to generate meaningful results. It has been proved
that such techniques and tools like SPE-ED help in achieving performance goals
and reducing performance related risks for general object-oriented systems and
even for distributed systems. However, BPM environments exhibit an inherent
complexity, which analysts find hard if not impossible to quantify even in simple
models. Complex contextual and provisioning details such as resource allocation,
design options, underlying engine requirements, virtualisation and many others
contribute to an improved and at the same time highly unpredictable run-time
environment. It is therefore impractical for the various stakeholders involved
in building and maintaining process based applications to create performance
models where they manually specify the mapping of methods to processes or
instances to processors, I1/O characteristics or CPU utilisation. A related app-
roach to modelling systems in UML is presented in [11]. OAT is a tool that
implements a framework for performance modelling of distributed systems using
UML. It consists of a method for decomposition of models and performance
modelling techniques. UML models, created at different development stages can
be mapped to queuing networks and solved to predict application performance.
UML diagrams, in particular sequence diagrams, can be seen as similar to process
description in BPMN so the approach could provide starting points for process
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performance analysis and prediction. However, users must create and maintain
the models and augment them with performance annotations leading to a similar
disadvantage with that of the SPE-ED [18] approach. In addition, it is not clear
how this approach can be used for large systems, as it does not address issues
such as large-scale model management. Since BPM environments embed com-
plex server software they share similarities with traditional middleware systems.
Predicting the performance of middleware-based systems has been approached
in the past. Among the most common techniques are Petri-Nets [7] and Layered
Queuing Network (LQN) [16,20] models. Similarly to the generic software per-
formance prediction approaches, such work may not scale particularly well to the
complexities of process environments with the rich contextual and provisioning
variability.

Closer to the BPM space there has been a lot of work in monitoring processes
for performance understanding and analysis, while not particularly targeting
QoS correlation with provisioning and design. In [6], authors present potential
openings driven by associating semantics with traditional BPM, which could
potentially be used as further input in the context descriptions; as done in the
approach presented here. Related work that leverages semantic descriptions to
boost process understanding and monitoring includes [15] and the associated
COBRA terminology is presented in [14]. Other monitoring and analysis work
targeting complex and large scale process and service environments is presented
in [13]. These approaches, while comprehensive in the analysis scope in particular
with regard to service dependencies and process structure, do not particularly
target Cloud-based provisioning aspects, nor do they propose QoS oriented per-
formance prediction.

Specifically, in process performance prediction, existing work [19] has looked
at using forecasting techniques to generate dynamic predictive models. The
contribution is certainly useful but does not take into account the correlation
between design, complex contextual data, provisioning and performance in a
unified way that would allow the understanding of the reasons for performance
results, in contrast to the work presented in this paper. In contrast, the authors
in [5] propose a mechanism based on LQN to predict performance of processes
at design time based on an extended BPMN profile called PyBPMN. Such pre-
dictions can be used to quickly simulate overall performance based on expected
characteristics, but it does not take into account runtime information from previ-
ous executions nor does it combine them with provisioning and contextual data.

While not Cloud-specific, previous work in correlative process monitoring
presented in [12] uses domain-specific information to aggregate non-functional
properties extracted from process execution at various levels including BPM
engine and enterprise service bus platforms. This provides an important capa-
bility for better understanding previous executions in terms that are easier to
understand by business stakeholders. As such, this work could provide an addi-
tional layer of interpretation when correlated with the predictive work presented
in this paper. This would allow specification of QoS requirements and match-
ing of predictive results using a consistent terminology related to the business
domain, rendering such data easier to use in practice.
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5 Conclusions and Future Work

In this paper, we develop an approach for identifying the correlation between
both design and provisioning alternatives and the QoS of business processes
deployed in the Cloud. Specifically, we view an execution history as a proxy for a
causal theory that might inform resource allocation decisions in the given context
of a Cloud based business process. Data mining techniques, specifically, decision
tree, SVM and kNN are used to provide an approximation of the underlying
causal theory that helps predicting the QoS or resource requirements in Cloud.
Classification techniques such as decision tree learning and SVM are used to
approximate the function that leads to QoS prediction. For both synthetic as
well as real dataset, one interesting insight that comes out from our analysis
is that, among the classification based approaches, SVM performs better than
decision tree in terms of accuracy of prediction. While this paper focuses on
QoS and resource prediction problems, in future, we plan on developing similar
approach for predicting alternate process variants as well. We believe that similar
approximation model for predicting process variants can significantly improve
the design of business processes from non-functional aspect.
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