autoCEP: Automatic Learning of Predictive
Rules for Complex Event Processing

Raef Mousheimish®?), Yehia Taher, and Karine Zeitouni

DAVID Laboratory, University of Versailles, 78000 Versailles, France
{raef .mousheimish,yehia.taher,karine.zeitouni}@uvsq.fr

Abstract. Complex Event Processing (CEP) is becoming more and
more popular in service-oriented practices, especially to monitor the
behaviour of continuous tasks within manual business processes, such
as in logistics. The inference mechanisms of CEP engines are completely
guided by rules, which are specified manually by domain experts. We
argue that this user-based rule specification is a limiting factor that
complicates the integration of CEP within the realm of Business Process
Management (BPM) in a seamless way. Therefore, we present autoCEP
as a two-phase data mining-based approach that automatically learns
CEP rules from historical traces. In the first phase, complex temporal
patterns are learned using early classification on time series techniques,
then these patterns are algorithmically transformed into CEP rules in the
second phase. Satisfactory results from evaluations on real data demon-
strate the effectiveness of our framework.

Keywords: Complex event processing - Rule learning - Time series data
mining - Violation prediction

1 Introduction

Manual processes are challenging to support as they usually contain continuous
and dynamic tasks such as a Trucking activity in a logistics process. These
tasks require an event-based processing with fine granularity, the thing that is
beyond the reach of current activity-based BPMS. To cope with this challenge,
researchers in the domain have found no solution better than exploiting CEP
techniques to extend BPMS capabilities. Therefore this topic is storming the
research in the area of BPM/CEP recently, and so many approaches [1-3,5,7]
and a European project! are held on the subject.

Despite the noticeable amount of proposals, they have all disregarded the fact
that the current standard way to define CEP rules is by writing them manually,
and human users are in charge of this specification. Depending on the situation
to detect (or predict) rules may become easily complicated, and this will add
extra burden while managing business processes.

! http://getservice-project.eu/.

© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 586-593, 2016.
DOI: 10.1007/978-3-319-46295-0_38

http://getservice-project.eu/

autoCEP: Automatic Learning of Predictive Rules 587

We deem the ultimate fact that experts are in charge of writing rules as a
limiting factor for the prosperity and diffusion of CEP, especially that it holds
the seamless integration within BPMS, and it restrains the jump towards the
next phase of event-driven systems, i.e., proactive complex event processing. To
turn around this limitation and instead of manually defining rules, we stress the
need to step further, where rules could be extracted, learned from histories, and
deployed into engines in an automatic manner with the minimum intervention
of humans.

This paper proposes a novel two-phase framework that relies on data mining
techniques, more specifically early classification on time series. The frame-
work learns historical trends and patterns at the first phase, and then algorith-
mically transforms them into CEP rules at the second one. Thus addressing
the problem of automatic rules generation. In general, the paper makes the fol-
lowing contributions: (1) It is the first approach to integrate time series data
mining techniques within the domain of CEP. (2) Automatic learning of pre-
dictive CEP rules. (3) Any user can now employ an out-of-the-box configured
CEP engine without the requirement of being a technical expert in the domain.
(4) Since no expertise is required to use autoCEP, it could be seamlessly inte-
grated within BPMS.

2 Background

Univariate Time Series: A univariate time series T is a sequence of real values
for one attribute, T = {t1, 1o, ...,tn }. It is attributed a length and a class. The
Euclidean distance is used to measure the similarity between two time series of
the same length, denoted as ||T1, Tz||. In order to calculate the similarity between
two time series of different lengths, e.g., s and T where |s| = n < |T| = N, one
searches for the minimum distance between s and all subsequences ¢; of T' that
has the same length as s, |¢;| = |s|. This distance is called the Best Matching
Distance (BMD).

Shapelets: A shapelet is a new primitive for data mining that emerged
recently [14], it is a temporal pattern that characterizes the time series of the
same class. A shapelet is defined as a triple § = (s, 6, ¢;), where s is the subse-
quence that constitutes the shapelet §, J is the distance threshold that is going to
be used for the run-time classification, ¢ is the class of the shapelet. Taking this
definition into account, new unclassified instances of time series T are labeled
as early as possible with the same class as a specific shapelet §, if the similarity
between them [|§,T|| is less or equal to the distance threshold §.

Complex Event Processing: CEP rules are defined using different CEP oper-
ators like windowing, selection, sequence, etc. These operators are considered
the main enabler to define complex patterns. Regardless of the various concrete
models, we will keep an abstract representation for rules that could be expressed
in any description language. A CEP rule is divided into three blocks. First the
timeframe (or window) of the rule, which is defined using the within construct.

588 R. Mousheimish et al.

Second the filter block, which contains the events that are relevant for the rule,
they will be written between two curly brackets {}. Finally the conditions that
need to be met on the captured sequence of events in order for the rule to be
fired, this block is defined using the where construct. In general:

within[window] {relevant events} where[conditions] (1)

3 autoCEP: From History Records to CEP Rules

3.1 High-Level Framework

Figure 1 sheds some light on the proposed two-phase framework from a high-level
perspective.

First Phase: Second Phase:
Shapelets Learning CEP Rules Generation
Input: Classified Input: Shapelets
time series;
Output: CEP
== Output: CEP rules that can i
c!aSSIf_IEd g Best shapelets that ws g dict (i r engine
historical i st ; precict L-=-r
distinguish each early classify) for

time series
class each situation

(i.e., class)

Fig. 1. Two phase high level framework

4 First Phase: Shapelets Learning

This stage contains our learning algorithm that can extract shapelets with the
highest utility scores by learning them from historical time series. This algo-
rithm is the outcome of surveying recent state-of-the-art approaches [4,6,12-14]
regarding this kind of classification problems.

The algorithm that we have implemented to learn the shapelets is a brute
force extraction algorithm [14] because it yields the most accurate results. In
addition to the classified history, this algorithm requires two other input para-
meters, the minimum and the maximum length of the shapelets, i.e., to specify
that the learned shapelets need to be between these two lengths. This is the
place where domain expert knowledge could be exploited in order to guide the
learning process, i.e., if experts have any prior knowledge about the lengths of
the patterns to learn. However, autoCEP offers the capability for users without
knowledge to fill these inputs with default values (the minimum and the maxi-
mum possible). In the evaluation section, we show the effect of these parameters
on the performance of autoCEP.

autoCEP: Automatic Learning of Predictive Rules 589

5 Second Phase: CEP Rules Generation

At this point, the learned shapelets serve as inputs, where they will be automat-
ically transformed into CEP rules to be used later for predictions.

The proposed algorithm in this phase extracts the three building blocks of

the rule from the input shapelets and their parameters. For each shapelet a
CEP rule is created, and thus we overcome the limitation of assuming just one
rule for each composite event, which is the assumption that is made by other
approaches [8].
Given a shapelet § = (s, 0, ¢s), the window parameter win for the within block
is derived directly from the length of the shapelet, win = |s|. Then the relevant
stream of events are of the same type as the elements that constitute the sequence
s of the shapelet. Finally, the condition to be met in order to predict if a stream
of incoming events correspond to ¢s (the same class as the shapelet) is that §
needs to cover the stream within the window win. This is listed in the following
algorithm (Algorithm 1).

Input: A set of shapelets §

Output: A set of CEP rules rules

rules «— 0;

for each shapelet § in S do
/* create an empty cep rule cep x/
win «— |8.s;
cep.setWindow Block(win);

FE «— Extract event types from s;
cep.set BventTypes(E);
cep.setConditionBlock(||8, E|| < §);
cep.setListener(this stream is predicted to belong to the class c¢;);
rules.add(cep);
end
return rules;
Algorithm 1. Transforming Shapelets into CEP Rules

6 Experiments

Interested readers are encouraged to download the programs that we have imple-
mented from GitHub?.

Two of the important factors that we are really interested in are the accuracy
and the earliness of the predictions. To calculate the Avg. f-score (accuracy) we
employed this formula (where C' designates the set of classes):

1 Z 2 x precision(cl) x recall(cl) @)
|C| S precision(cl) + recall(cl)

with precision(cl) = TP?JF% and recall(cl) = %.

2 https://github.com /rmgitting/autoCEP.

https://github.com/rmgitting/autoCEP

590 R. Mousheimish et al.

On the other hand, the earliness is computed from the average percentage of
time points needed to make the predictions (i.e., how much in advance regarding
the whole length of the tested time series). Given a dataset D, a time series T', and
the shapelet 5§ that was matched with T, we calculate the earliness percentage
as (EMT is the point in time when § matched with T'; how much data points
was read from T'):

1 EMT(8,T)

7]] ®)

TeD

Artworks Transportation: In this kind of transport processes, the involved
parties are interested in analyzing temperature readings and predict them in
advance to prevent violations whenever possible (i.e., trespassing a minimum or
a maximum threshold). These violations will eventually affect the qualities of
the transported piece of arts. Table1 presents information about the training
and the evaluation data sets.

Table 1. Training and evaluation data sets (transport of artworks)

Violated scenarios | Normal scenarios | Longest series | Shortest series
Train | 16 17 451 51
Eval |17 17 460 39

The learning algorithm is implemented following a concurrent computing
methodology, therefore the codes that build the shapelets and calculate their
attributes are distributed over a pool of threads. From another point of view,
the minimum and the maximum lengths of the shapelets that are provided as
inputs for the algorithm may have some impacts on the performance of the
framework as well. To this end, we ran different experiments to study the effects
of the aforementioned factors.

The left side of Fig. 2 illustrates the learning time in minutes regarding two
factors: the number of employed threads and the difference between the provided
maximum and minimum lengths for the shapelets (maxz — min). On the other
hand, the right side of Fig. 2 depicts the average f-score and the earliness of the
framework when given larger spaces to build shapelets (different min and max).

6.1 Discussion

The tests done to predict temperature violations demonstrate that employing
more threads can indeed improve the learning time. The graph in the left side
of Fig. 2 also shows that this time is directly affected by the maximum and min-
imum lengths of the shapelets, because big differences between these lengths
mean bigger spaces to search for patterns. The experience and the prior knowl-
edge of domain experts should be used to calibrate these lengths and guide the

autoCEP: Automatic Learning of Predictive Rules 591

LEARNING TIME EXACTITUDE & EARLINESS
=
E
o 1
£
= N —_
81- — .. _ . i g
13 6= 2 &
1 5 10 5 min=max min=30; min = 10; min=1;
E =40 max =40 max =40 max =51
Number of Threads o
m Avg f-score 91 91 94 94
— —min=max — ' max-min=10 | Earliness 36 38 42 45
max-min=30 max-min=50 max & min

Fig. 2. The results of the experiments

learning phase. Although this is recommended but not required, and the soft-
ware provides non domain experts the capability to set default values for the
maximum and minimum lengths which comes on the expense of slower learning.
A particular strength to note is the classification time (at run-time), which is as
fast as the events in the window are received. This instantaneous run-time clas-
sification is the result of exploiting the processing speed of CEP engines instead
of writing ad-hoc classification algorithms.

The experiments also show that the earliness and the accuracy are affected
by the values of the maximum and minimum lengths (Fig. 2 right side), as giving
the framework more space to search for patterns will eventually help it to detect
more useful and smaller shapelets. The autoCEP framework proved to maintain
high accuracies regardless of the shapelet lengths but with different earliness
percentages.

7 Related Work

Little work exists on the learning of CEP rules, and to the best of our knowledge,
only four related approaches [8-11] have suggested to take the path of integrat-
ing data mining to this end. However, none of them is capable of dealing with
periodic and numeric readings of events or with trends recognition. In addition,
all these approaches focus only on the detection of situations of interest, and not
on the prediction. So as far as we can tell, this is the only work that is done on:
first integrating trend mining techniques with CEP, and second automatically
learning predictive CEP rules.

Authors in [8] proposed the iCEP framework for the automatic learning of
CEP rules. The problem of learning CEP rules in this works is boiled down to
the learning of the operators of these rules. Authors followed a flexible modular
architecture, where they associated each operator with a module. Therefore in
each module, ad-hoc algorithms could be used to learn one specific operator,
and build one part of the rule. Although the followed methodology has its strong
points regarding the rule expressiveness that it tries to achieve, but the most
limiting factor is that it counts on the strict intersection theory that leads to

592 R. Mousheimish et al.

one and only one rule. In other words, the proposals will only work under the
assumption that for each situation of interest there is just one rule that leads
to it. We argue that in real life different rules may indeed lead to the same
situation.

Another approach to integrate data mining techniques is proposed in [11].
The authors have suggested an iterative framework (prediction-correction) to
address the problem of CEP rules learning. The general idea is to first initi-
ate the rule parameters with some arbitrary values, and then tune them after
each iteration depending on human experts’ feedback. To give more details, the
domain of observed events is divided into time-based intervals. Then at the end
of each interval, experts need to highlight the false positives and negatives, so
the parameters of the rule could be tuned and used in the next interval. The tun-
ing relies mainly on discrete Kalman filters. First, we noticed that the approach
cannot learn the rules completely by itself, but experts need to create templates
with placeholders for rules parameters, and then the framework will learn these
parameters. Secondly, it is very user centric, and it requires the intervention of
experts after each interval or window. Thirdly, the interval is not learned but
it needs to be specified by experts, which is not an evident task. In a similar
iterative fashion, the approach proposed in [10] helps experts to refine and tune
the rules parameters, but it lacks the capability to learn rules completely.

In the work discussed in [9], authors proposed an extension for the hidden
Markov models, called noise Hidden Markov Models or nHMM. These extended
models could learn sequences of events but they could also discard the noise.
More specifically, when a noisy event is received, the Markov model stays on the
same state, and does not proceed to the next one. In general the work is more
concerned with the exclusion of noisy events rather than learning a complete rule.
In addition the approach is demonstrated to work just on sequence patterns, but
it cannot take windowing constraints into account.

8 Conclusion and Future Work

The main goal of our work is twofold. First we targeted the problem of automatic
CEP rules learning in certain fields, and so sparing domain experts from this
tedious task. Second, we tackled the learning of predictive rules and thus adding
proactivity to the domain of CEP. Therefore, autoCEP paves the way for non-
expert users to easily exploit the predictive capabilities of CEP engines, and it
allows for a seamless integration within BPMSs.

We introduced a novel two-phase framework that efficiently tackles the auto-
matic learning of CEP rules. It is well suited to work in application fields where
primitive events are observations made periodically over time. The framework
exploits the latest advancements in the domain of early classification on time
series to learn accurate and predictive rules. Shapelets, which constitute a new
primitive in the data mining field are learned at the first phase, and effectively
transformed into CEP rules at the second one.

autoCEP: Automatic Learning of Predictive Rules 593

In the near future, we project to adopt our algorithms to favor multivariate

time series, and thus support the processing of simultaneous events and the
prediction using multidimensional temporal patterns.

References

10.

11.

12.

13.

14.

Baumgrass, A., Ciccio, D., Claudio, C., Dijkman, R., Hewelt, M., Mendling, J.J.,
Meyer, A.A., Pourmirza, S.S., Weske, M.M., Wong, T.: GET controller and UNI-
CORN: event-driven process execution and monitoring in logistics. In: CEUR
Workshop Proceedings (2015)

Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards
the enhancement of business process monitoring for complex logistics chains. In:
Lohmann, N.; Song, M., Wohed, P. (eds.) BPM 2013 Workshops. LNBIP, vol. 171,
pp. 305-317. Springer, Heidelberg (2014)

Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task moni-
toring for business processes. In: Sadiq, S., Soffer, P., Vélzer, H. (eds.) BPM 2014.
LNCS, vol. 8659, pp. 424-432. Springer, Heidelberg (2014)

Ghalwash, M.F., Obradovic, Z.: Early classification of multivariate temporal obser-
vations by extraction of interpretable shapelets. BMC Bioinf. 13(1), 1 (2012)
Herzberg, N., Meyer, A.: Improving process monitoring and progress prediction
with data state transition events. In: ZEUS, pp. 20-23 (2013)

Lin, Y.-F., Chen, H.-H., Tseng, V.S., Pei, J.: Reliable early classification on mul-
tivariate time series with numerical and categorical attributes. In: Cao, T., Lim,
E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS,
vol. 9077, pp. 199-211. Springer, Heidelberg (2015)

Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457-472. Springer, Heidelberg (2014)

Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated
rule generation for complex event processing. In: Proceedings of the 8th ACM
International Conference on Distributed Event-Based Systems, pp. 47-58. ACM
(2014)

Mutschler, C., Philippsen, M.: Learning event detection rules with noise hidden
Markov models. In: 2012 NASA /ESA Conference on Adaptive Hardware and Sys-
tems (AHS), pp. 159-166. IEEE (2012)

Sen, S., Stojanovic, N., Stojanovic, L.: An approach for iterative event pattern
recommendation. In: Proceedings of the Fourth ACM International Conference on
Distributed Event-Based Systems, pp. 196-205. ACM (2010)

Turchin, Y., Gal, A., Wasserkrug, S.: Tuning complex event processing rules using
the prediction-correction paradigm. In: Proceedings of the Third ACM Interna-
tional Conference on Distributed Event-Based Systems, p. 10. ACM (2009)

Xing, Z., Pei, J., Dong, G., Philip, S.Y.: Mining sequence classifiers for early pre-
diction. In: SDM, pp. 644-655. STAM (2008)

Xing, Z., Pei, J., Philip, S.Y., Wang, K.: Extracting interpretable features for early
classification on time series. In: SDM, vol. 11, pp. 247-258. SIAM (2011)

Ye, L., Keogh, E.: Time series shapelets: a new primitive for data mining. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 947-956. ACM (2009)

	autoCEP: Automatic Learning of Predictive Rules for Complex Event Processing
	1 Introduction
	2 Background
	3 autoCEP: From History Records to CEP Rules
	3.1 High-Level Framework

	4 First Phase: Shapelets Learning
	5 Second Phase: CEP Rules Generation
	6 Experiments
	6.1 Discussion

	7 Related Work
	8 Conclusion and Future Work
	References

