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Abstract. We propose a new qualitative economic model based opti-
mization approach to compose an optimal set of infrastructure service
requests over a long-term period. The economic model is represented as
a temporal CP-Net to capture the provider’s dynamic business strate-
gies in qualitative service provisions. The multidimensional qualitative
preferences are indexed in a k -d tree to compute the preference ranking
of a set of incoming requests. We propose a heuristic based sequential
optimization process to select the most preferred composition without
the knowledge of historical request patterns. Experimental results prove
the feasibility of the proposed approach.

1 Introduction

An Infrastructure-as-a-Service (IaaS) provider offers Virtual Machines (VMs)
as services in a cloud market [2]. An IaaS service (VM) is a configuration of
functional or resource attributes, such as CPU, memory, and network units, and
Quality of Services (QoSs) attributes, such as availability, throughput, response
time and price [2]. Typical IaaS providers, such as Amazon, Windows Azure
and Rackspace preconfigure their services and set the prices of those services
[2]. However, there exists a different IaaS model where consumers are allowed to
create custom IaaS requests (custom configurations of the functional and non-
functional attributes) [6]. The prices of the services are either set by the provider
[2] or the consumers are allowed to quote their own prices for the services [18].

The long-term IaaS composition is defined as to select an optimal set of
custom consumer requests that maximizes the profit of the provider [10]. In
our previous research, the prices of each unit of resource and QoS attributes are
advertised by the provider. Hence, two identical requests generate the same level
of revenue. However, they can be distinguished from their usage behaviors, such
as under-utilization and over-utilization [11]. We have proposed an quantitative
economic model for the IaaS provider that predicts consumers’ service usage
behaviours and calculates the operation costs of the requests [10].

According to [18], the functional and QoS attributes in a long-term consumer
request are variable over a time period, qualitative in nature and closely related
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with the price. For example, a consumer may prefer an IaaS service that has less
response time in the first year. While in the second year, the consumer may find
response time is less important and quote lower price to save the cost as much
as possible. The proposed quantitative economic models [10] fail to capture the
business strategies of the provider to evaluate such long-term requests.

A qualitative IaaS economic model should capture the long-term business
strategies of the provider. For example, the mobile carrier companies normally
create different plans for different types of consumers [9]. Sometimes they offer
mobile phones in low prices as a business strategy. Similarly in the cloud mar-
ket, if a provider finds its CPU units are more fault-tolerant than the hard
disks, it may prefer CPU-intensive service requests more than the space-intensive
requests to avoid probable Service Level Agreement (SLA) violations. The accep-
tance or rejection of an incoming request should follow an strategy as accepted
requests are committed for the whole period. Partial service provisioning is
treated as a SLA violation. We assume the provider operates with fixed amount
of resources [5]. We focus on the deterministic arrivals of the incoming requests,
i.e., all the requests are known at the start of the composition.

Existing qualitative economic models represent the consumers’ qualitative
preferences [13,15,18]. They do not consider the following issues related to the
long-term composition from the provider’s perspective:

– Dynamic temporal semantic preferences: In a typical short-term compo-
sition, the qualitative preferences remain static during the composition time
[13,15,18]. The relative ordering of the provider’s preferences may vary in the
long-term period. For example, a provider may prefer providing CPU based
services over Network based services in the first year and prefer the opposite
in the second year. It creates a set of temporal segments of preferences in the
economic model. The semantics of preferences may not be static during the
whole period of composition. It is relative to the competitions in the market
[5,9]. For example, 10ms response time is treated as a high QoS in this year,
but it may become a moderate QoS in the next year because of an upgrade of
the hardware in the market.

– Temporal mismatch between the service request and the provider’s
preferences: The long-term service requests may not have exact temporal
match with the temporal segments of the economic model. For example, the
provider has a preference on provisioning CPU intensive services in January
and Network intensive services in February. If a service request spans from the
middle of January to the middle of February, any economic model could not
be applied directly for evaluating the merit of the requests.

We propose a novel approach to compose requests using the provider’s long-
term qualitative economic model. We represent the economic model as Temporal
CP-Nets (TempCP-Net), which is a collection of dynamic CP-nets [4] spanning
over the composition time segments. CP-Nets [4] is a compact and intuitive
formalism for representing and reasoning with conditional preferences under the
ceteris paribus (“all else being equal”) semantics. The dynamic semantics of



Qualitative Economic Model for Long-Term IaaS Composition 319

the preferences are indicated using a Conditional Preference Table (CPT) [4] of
the TempCP-Net. The temporal mismatch between the service request and the
provider’s preferences is solved through the semantic temporal segmentation of
the requests which preserves the inherent dependencies among the attributes in
the original long-term request. Moreover, the induced preference graph [15] from
TempCP-Net is indexed in a multidimensional k -d tree [3] to effectively match
with the multidimensional attributes of the consumer requests. We transform the
TempCP-net into a k -d tree as nodes in the preference graph could be considered
as points and k -d tree is widely used for multidimensional point query in different
applications [1]. The k -d tree is treated as an objective function to compute
the global preference ranking of a composition. Hence, we transform the IaaS
composition as a preference maximization optimization problem.

We consider both the global and local optimization approaches to select the
optimal composition considering k -d tree represented TempCP-net as the objec-
tive function. A typical Dynamic Programming (DP) [8] based global approach
considers all the requests at the time of optimization. This may pose a scalabil-
ity issue in the runtime due to comparisons among a large number of candidate
solutions. We devise a heuristic based local optimization approach to accept or
reject requests in each segment so that local decisions are collectively converged
to an acceptable approximate global optimal composition.

2 Related Work

An economic model for profit maximization of cloud service providers is proposed
in [10]. The profit maximization based IaaS composition in stochastic arrival of
requests is proposed in [10]. An economic model of federated clouds is described
in [5]. The model evaluates the cost of using resources from a cloud federation
and develops a resource management core for the profit maximization. A CP-
Net based economic model is proposed for the service composition from the
consumers’ perspective in [18]. The consumer preferences are fine grained using
Weighted CP-Net (WCP-Net) in [16]. Service selection from incomplete user
preferences are proposed in [15]. Such models do not consider temporal changes
in the providers’ preferences for a long-term period.

An integer programming formulation for IaaS composition is proposed in [11].
Heuristic algorithms are proposed to determine whether a new request can be
admitted without impacting accepted requests in [17]. Meta-heuristic optimiza-
tion is proposed for stochastic incoming requests in [10]. In operations research,
the restaurant reservation problem is solved using Dynamic Programming tech-
niques (DP) [8]. The DP is used to optimize the IaaS service scheduling in [5].
Markovian Decision Process (MDP) is used as a machine learning technique to
solve sequential iterative optimization in [14]. As we do not have the history of
previous incoming requests, we devise a heuristic based sequential optimization
technique using only the current set of incoming requests.
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3 Motivation: A Qualitative IaaS Economic Model

Let us assume, a new IaaS provider starts offering virtual CPU services associ-
ated with QoS of availability for simplicity. It can provide maximum 100 CPU
units and 100 % availability. The provider’s qualitative preferences on CPU,
availability, and price can be interpreted into three semantic levels - high, mod-
erate, and low, as shown in Fig. 1(a). The provider now has different preference
ranks based on its annual goals in a three-year period. For the first year, the
provider prefers to provide high quality services with relatively lower prices, to
build its reputation in the market. Hence, the provider decides that “availabil-
ity” of a service is the most important attribute, followed by “CPU” and “price”.
For the second year, the provider expects to provide services with higher prices
and relatively lower resources and QoS to maximize the profit. Thus “price”
decides “CPU” and “availability”. For the third year, the provider considers
that the ageing infrastructure may cause problematic CPUs and lower availabil-
ity. Therefore the provider’s preference is that providing relatively lower “CPU”
has a higher priority than relatively higher “price” and lower “availability”.
The interpretation of the semantic levels remains static in the three years for
simplicity.

The CP-Net can elegantly represent these qualitative preferences. For exam-
ple, an arc from “CPU” to “availability” means the preference of “availability”
depends on the preference of “CPU” units. The provider’s economic preferences
are captured in a Temporal CP-Net denoted as TempCP-Net, which is a collec-
tion of time-period based CP-Nets. As the provider has annual preferences, the
three-year TempCP-Net is a set {(CP1, Year 1),(CP2, Year 2) (CP3, Year 3)},
in which each subcomponent corresponds to an annual preference (Fig. 1(b)).
CP1 captures the first-year reputation building strategy in Fig. 1(b). Hence, the
“high” availability has a higher priority than the “moderate” availability, i.e.,
A1 � A2. Note that, the “low” availability (A3) is not in the provider’s pref-
erence in CP1. The choice of availability dictates the choice of CPU units. If
the “high” availability (A1) is chosen, the provider prefers to provide the “high”
CPU units than the “moderate” CPU units (C1 � C2). However, if the “moder-
ate” availability (A2) is chosen, the provider prefers to provide the “moderate”
CPU units than the “high” CPU units (C2 � C1). This is because a moderate
QoS may not increase the reputation as expected, thus packaging it with lower
CPU units may increase the probability to reduce SLA violations than packag-
ing with higher CPU units. Finally, the price of the service is chosen based on
the selection of the levels of availability and CPU units. As this is a reputation
building phase, the provider will not charge “high” price (P1) while providing
“moderate” CPU units (C2 : P2 � P3). In CP1, the most preferred service pro-
vision is (A1, C1, P1) and the least preferred choice is (A2, C1, P3). Similarly,
CP2 and CP3 capture the profit maximization and risk management strategies
in the second and third years respectively. In CP2, the most preferred service
provision is (P1, C3, A3) and the least preferred service is (P2, C2, A2) express-
ing the preference on the higher price. In the third year, the most preferred
service provision is (C3, P1, A3) and the least preferred service is (C2, P3, A3).



Qualitative Economic Model for Long-Term IaaS Composition 321

Fig. 1. (a) Semantic representation of preferred service attributes, (b) A TempCP-Net,
(c) Incoming requests, (d) The preference ranking table

Let us assume, four different requests, {R1}, {R2}, {R3}, and {R4} arrive at
the beginning of the composition (Fig. 1(c)). For simplicity, a request is specified
in annual segments. In Fig. 1(c), (C : 80, A : 90, P : $800) is the first year segment
of {R1}, which means that the consumer requires a VM with 80 CPU units
and 90 % availability and is able to pay $800 for this service in the first year.
The annual requirements of {R2}, {R3} and {R4} are described in the same
way. As there are four requests, the optimal composition will be selected from
24 = 16 combinations of the requests in the brute-force approach. The TempCP-
net (Fig. 1(b)) provides the objective function for the optimal IaaS composition
selection. The preference ranking (lower values indicate higher preference ranks)
of the combinations of the requests is retrieved through the matching between
the TempCP-net and the combinations of the requests. For example, the first
year segment of {R1} falls into the “high” CPU units, “high” availability, and
“moderate” price in Fig. 1(a). It is the 2nd ranked preference in the first year.
However, the second year segment of {R1} requires the “high” availability in
the “moderate” cost, which is out of the preference (N/A) in CP2. The total
preference rank of each request is tabulated under “Total” in Fig. 1(d). As two
segments of {R1} are out of the preference ranking, its total rank is N/A. {R3}
and {R4} are combined into a request {R3, R4}. We cannot consider the other
combinations due to the constraint of maximum 100 CPU units. According to
the total qualitative ranks, {R3, R4} is the optimal composition.

A heuristic based sequential optimization process may produce the global
solution in fewer number of comparisons. Let us assume, the sequential opti-
mization operates in the right to left year sequence (3rd, 2nd and 1st). In the
3rd year 23 = 8 comparisons are performed and only the highest ranked R3 is
accepted. The 9th ranked R2 violates the constraint of maximum 100 CPU units
when it is combined with R3. As R1 (N/A ranking) and R2 are already rejected,
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they are not considered in the subsequent optimization. The local optimizations
in the 2nd and 1st year accepts the remaining R4 in the solution. Hence, the
optimal solution {R3, R4} is produced in 10 comparisons.

4 The Temporal CP-Net Based Economic Model

We require not only an intuitive tool for structuring the provider’s preferences,
but also a support for an efficient optimization process. We assume a set of
functional and non-functional attributes V = {X1, ...,Xn} with finite domains
{D(X1), ...,D(Xn)} and semantic domains {S(X1), ..., S(Xn)}. Typical func-
tional attributes are CPU (C), Network bandwidth (NB), and Memory (M),
and QoS attributes are Availability (A), Response time (RT ), Throughput (TP )
and Price (P). The numerical value xn in D(Xn) is mapped into a semantic value
sn in S(Xn) using a mapping table, sn = Sem Table(Xn, xn). Figure 1(a) is such
a semantic table that maps 70–100 units of CPU as a “high” CPU value. In the
long-term, the preference order and related semantics of V remain constant for
a time period, but they may get changed in the next period. Let us assume,
the total composition time, T is divided into m intervals {I1, I2, ...., Im} where,
T =

∑m
i=1 Ii. In an interval Ik, the IaaS provider can specify a preference rank-

ing of service configurations over complete assignments on V with the semantic
domain Sem DIk(V ). The set of all service configurations is denoted as OIk for
the interval Ik. A preference ranking is a total order (�) over the set of service
configurations: o1 � o2 means that a configuration o1 is equally or more pre-
ferred than o2. We use o1 � o2 to denote the fact that provisioning service o1 is
more preferred than o2 (i.e., o1 � o2 and o2 � o1), while o1 ∼ o2 denotes that
the provider’s preference is indifferent, i.e., o1 � o2 and o2 � o1.

Direct assessment of a long-term preference relation is generally infeasi-
ble due to the exponential size of OIk | ∀k ∈ [1,m]. We represent the long-
term economic model in a Temporal CP-Net (TempCP-Net), which is a set
of CP-Nets and semantic mapping tables over different intervals defined as
TempCP-Net = {(CP Ik , Sem TableIk , Ik) | ∀k ∈ [1,m]}. A CP-Net can con-
cisely specify a preference relation in a graphical structure. A CP-net in the
interval Ik, CP Ik is a directed graph G over V whose nodes are annotated with
conditional preference tables CPT (Xi) for each Xi ∈ V . In this paper, we focus
on only acyclic CP-Nets. Each conditional preference table CPT (Xi) associates
a total order �i

u with each instantiation u of Xi’s parents Pa(Xi) = U [13].
For example, in CP1, A = Pa(C) and the CPT (C) contains {A1, A2} while
preferences are made over {C1, C2} (Fig. 1(b)). The preference o � ó is a con-
sequence of TempCP-Net, iff o � ó holds in all preference orderings consistent
with the ceteris paribus preference statements (“all else being equal”) encoded
by the CPTs of the TempCP-Net [16]. The set of consequences o � ó of an
acyclic TempCP-Net constitutes a partial order over the service configuration.
This partial order can be represented by an acyclic directed graph, referred to
as the induced preference graph. The nodes of the induced preference graph cor-
respond to the complete assignments to the variables of the network. There is
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Fig. 2. (a) The induced preference graph of CP1, (b) The k-d tree representation,
(c) Temporal semantic segmentation of a request, (d) Some sequential orders for local
optimization

an edge from node ó to node o iff the assignments at ó and o differ only in the
value of a single variable X. Given the values assigned by ó and o to Pa(X), the
value assigned by o to X is preferred to the value assigned by ó to X. Figure 2
depicts the induced preference graph of CP1. There is no outgoing edge from
(A1, C1, P1) as it is the most preferred request configuration. Similarly, there is
no incoming edge to (A2, C1, P3) as it is the least preferred configuration. As the
CPT (CP1) states A1 � A2, there is an edge from (A2, C1, P1) to (A1, C1, P1)
considering the ceteris paribus preference statements. The induced preference
graph (total ordering) of all the configurations is created using pair wise compar-
ison (ordering queries) of the configurations [13]. If n is the number of attributes
in the TempCP-net and q is the number of output configurations in an interval,
the time complexity for ordering queries in an interval is O(nq2).

4.1 The k-d Tree Indexing of the Induced Preference Graph

Given a semantic request configuration Sem Req = (s1, ..., sn) | where si ∈
S(Xi), and Xi ∈ V , the induced preference graph enables searching the pref-
erence ranking of (s1, ..., sn). Such a graph based searching approach requires
linearly traversing over the graph (time complexity O(n)) [13]. Considering the
tuple (s1, ..., sn) as a multidimensional vector, we improve the search process
using the k -d tree [1]. The k-d tree is a binary tree in which every node is a k-
dimensional point (Fig. 2(b)). Every non-leaf node can be thought of as implicitly
generating a splitting hyperplane that divides the space into two parts, known as
half-spaces. Points on the left and right sides of this hyperplane are represented
by the left and right subtree of that node respectively. We use the canonical
method to construct the k -d tree [3]:
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– The selection of splitting planes follows a cycle as the construction algorithm
moves down on the tree. For example, in Fig. 2(b), the root is an “Availability-
aligned” plane, the root’s children both have “CPU-aligned planes”, the root’s
grandchildren have “Price-aligned” planes, the root’s great-grandchildren have
again “Availability-aligned” planes, and so on.

– As all the n points are available from the induced preference graph, we insert
points by selecting the median of the points being put into the subtree, with
respect to their coordinates in the axis being used to create the splitting plane.
This would result in a balanced k -d tree construction in O(n log(n)) times
[3]. Each node in the k -d tree is annotated with its respective preference order
from the induced graph. For example, the root node (A2, C2, P2) is annotated
with the preference ranking 6 in Fig. 2(b).

Starting with the root node, the searching algorithm moves down on the tree
recursively, in the same way that it would if the search point was being inserted. If
the search point is matched with a node, it returns the annotated ranking value.
For example, the search for the request (A2, C1, P3) returns rank 10 using only
4 comparisons. A non-matched search point is discarded in the composition. The
time complexity in k -d tree searching of an interval is O(log(n)).

4.2 Ranking of the Consumers’ Requests Using the TempCP-Net

Let us assume, a consumer divides its service usage time in n intervals and
service requirements in the intervals vary from each other. We define the request
of consumer u over the composition time T as Ru = {(xi, Ij) | xi ∈ D(Xi),Xi ∈
V, and T =

∑m
j=1 Ij}. A set of N requests is represented as R̄ = {R1, ....., RN}.

We combine the requests in R̄ using the composition rules [10]:

Summation rule: x̄i =
N∑

i=1

xi,where Xi ∈ {C,M,NB,RT, P} (1)

Maximization rule: ȳi = max(yi),∀i ∈ [1, N ] where Yi ∈ {A, TP}

For example, the combined first year request {R1 : (C : 80, A : 90, P : $800), R2 :
(C : 85, A : 95, P : $850)} in Fig. 1(c) is (C : 165, A : 95, P : 1650).

Note that, the intervals in consumer requests may be different from the inter-
vals in the provider’s TempCP-Net. In the first case, the starting time and the
ending time of an inclusive request segment are from the same temporal seg-
ment of the TempCP-Net. For example, if a CP-Net in TempCP-net operates
between 1st January and 31st January, a request spanning from 4th January to
25th January is an inclusive segment. As a single CP-Net is operating over the
request, the request could be directly matched with the induced k -d tree from
Sect. 4.1. In the second case, the starting time and the ending time of a overlap-
ping request segment are from different temporal segments of the TempCP-Net.
As more than one CP-Nets are operating over the request, we divide an overlap-
ping request, R (interval [T0, Tm]) into smaller inclusive segments. In Fig. 2(c),
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a request R is divided into R1 and R2 to match with corresponding CP1 and
CP2. Note that, only attributes with temporal semantics require such a segmen-
tation. For example, “Price” has temporal semantics in the consumer requests. If
the consumer requires 100 units of CPU in 12 months for $120, it still requires 100
units of CPU in every month but the monthly cost will be $10. If the attribute
X in R has temporal semantics and the segmentation is applied in [Tj , Tk], the
new value for X is calculated as follows:

x
[Tj ,Tk]
i = x

[T0,Tm]
i × |Tk − Tj |

|Tm − T0| (2)

We define Pref(TempCP-Net, R̄) : V → [1, n] as the ranking function that
finds the preference order of R̄ in the k -d trees of the TempCP-Net. As the
TempCP-Net is constructed in semantic domains, we transform R̄ into the
semantic ´̄R = {(si, Ij) | si ∈ S(Xi),Xi ∈ V, and T =

∑m
j=1 Ij} using the

Sem Table in the TempCP-Net. Each temporal segments in ´̄R is matched with
the corresponding temporal k -d tree using the matching process in Sect. 4.1. We
denote the matching process in interval i as M i(si). Hence, ranking function can
be defined as follows:

Pref(TempCP-Net, R̄) = M1(s1) + ..... + M i(si) + ... + Mm(sn) (3)

5 Optimization Algorithm for IaaS Requests Composition

Given a set of N long-term requests R̄ and the IaaS provider’s TempCP-Net, the
IaaS composition is to find an optimal set r̄ ⊆ R̄ that minimizes the ranking out-
put Pref(TempCP-Net, r̄) in Eq. 3 (a lower value means a higher rank). There
are two approaches to solve the temporal optimization problems: (a) global opti-
mization, (b) sequential local optimization [8]. The global approach considers the
entire time period and the input set at the time of composition. A common way
of global optimization is the brute-force approach, that attempts all the combi-
nations of requests over the entire composition period and finds the minimum
one. The time complexity of this approach is exponential (2N ) which is not
applicable in realtime applications. We formulate a dynamic programming (DP)
approach that solves the optimization in super-polynomial time (NO(N)) [8]. As
the size of the input requests is in proportion to the length of the composition
time, the global DP approach may not be feasible for a long-term composition.
We propose a sequential local approach that divides the total time into segments
according to the corresponding time intervals and each segment optimizes the
requests that only operates in that interval [14]. This approach has a sequential
effect for overlapping requests. Two local optimizations in different intervals may
have different accept or reject opinion for the same overlapping request. As the
quality of the final composition is dependent on the sequence order, we devise a
heuristic based approach to approximate the optimal solution.



326 S. Mistry et al.

5.1 Dynamic Programming Based IaaS Composition

We propose a dynamic programming framework to weigh the benefits of accept-
ing versus rejecting a request. Accepting a request will lead to immediate
revenue, but it is possible that this acceptance will diminish future resource uti-
lization for other requests. Dynamic Programming (DP) is an algorithmic para-
digm that solves a given complex problem by breaking it into sub-problems (over-
lapping sub-problems) and stores the results of sub-problems to avoid repeated
computation (optimal substructure) [8]. We denote R̄(N) as a set of N requests
and i ∈ [1, N ] as the ith request. If C(R̄(N), k) returns the optimal subset of
requests of size k, it either accepts the Nth request (the kth place is already
filled) or rejects it (reduces R̄(N) to R̄(N −1)). We formulate the DP as follows:

R̄1 = {N ∪ C(R̄(N − 1), k − 1)} (4)
R̄2 = C(R̄(N − 1), k)

C(R̄(N), k) =

⎧
⎪⎪⎨

⎪⎪⎩

R̄1, if Pref(TempCP-Net, R̄1) < Pref(TempCP-Net, R̄2)
R̄2, if Pref(TempCP-Net, R̄1) ≥ Pref(TempCP-Net, R̄2)
{i} if k = 1 and Pref(TempCP-Net, {i}) is minimum
∅ if k = 0

In Eq. 4, R̄1 refers to the set that accepts the Nth request and R̄2 refers to
the set that rejects the Nth request. The base case is defined on K = 1 (only
one request output) that performs a linear search to find the highest ranked
request i. The DP can reduce the re-computations of same sub-problems by
constructing a temporary array in the bottom-up manner [8]. The complexity
of finding C(R̄(N), k) is O(Nk). The final optimal subset can have at most N
requests. Hence, we can find the optimal solution (Sol) through the iterative
operation in Eq. 5. The final complexity of the DP based solution is O(NO(N)).

Sol = C(R̄(N), i),where Pref(TempCP-Net, C(R̄(N), i)) is minimum (5)

Fig. 3. The key composition scenarios (a) Almost Disjoint (b) Almost Overlapping
(c) Chain, (d) Hybrid patterns
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5.2 Heuristic Based Sequential Optimization

We use a heuristic based sequential aggregation of local optimizations to approx-
imate the global optimization in reduced time complexity. Each interval in
TempCP-Net only considers the request segments within its range and performs
DP based optimization by using its own CP-Net as TempCP-Net (TempCP-Net
= CPi) in Eq. 4. These local optimizations in the intervals can run in parallel
if there is no overlapping requests. However acceptance or rejection decision of
overlapping requests can not be taken in parallel. Hence, different sequences of
optimization order are performed to produce the optimal composition. For exam-
ple, the left to right sequence first carries out optimization from the left intervals
to the right intervals in Fig. 2(d). Finding the best sequence in sequential opti-
mization is NP-Complete [8]. We build our heuristics by exploring several key
composition scenarios:

– Almost Disjoint Pattern: In this pattern, the requests in an interval are mostly
disjoint and evenly cover that interval (Fig. 3(a)). An interval that contains
such a pattern can be assumed that rejecting an overlapping request may not
affect the global ranking, as the overlapped request can be replaced by one or
more disjoint requests with high possibility.

– Almost Overlapping Pattern: The requests in an interval are mostly long-
overlapping in this pattern (Fig. 3(b)). The local optimization at a certain
interval of a sequence may not be changed in other sequences as the acceptance
and rejection of most of requests are decided in the first interval.

– Chain Pattern: In this pattern, the requests are short-overlapped and almost
evenly distributed over the intervals (Fig. 3(c)). Several sequences of local
optimization need to be applied to achieve the optimal result.

– Hybrid Pattern: Both the long-overlapping and short-overlapping requests are
almost evenly distributed in this pattern (Fig. 3(d)). The final result should
also maintain the ratio of different types of requests.

We formulate the following generic heuristics to find out the optimal
sequences of local optimizations for different patterns. We define the overlap-
ping ratio of a request N as follows:

O Ratio(N) =
Number of operating intervals of N

Total number of intervals
(6)

– Heuristic 1: If most of the local optimizations reject a long-overlapping
request independently, the final output should also reject it. If most of the
local optimizations accept the request independently, the final output should
also accept it. This heuristic is common in collective decision processes.

– Heuristic 2: If two set of requests {1, 2, ..., i, .., n} and {1, 2, ..., j, ...., n} pro-
duce the final ranking x and y respectively in an interval, a local optimization
prefers accepting the request i than the request j if O Ratio(j) < O Ratio(i)
and |x−y| < τ . τ is the highest acceptable difference in the ranking set by the
provider. The heuristic prefers disjoint requests to the overlapping requests
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Algorithm 1. The heuristic based sequential optimization
Input: The Request set(R̄), Acceptance window(l) and Maximum additive ranking

(p)
Output: The optimal composition
1: final solution = ∅
2: Run local dynamic programming based optimization in each of the n intervals

in parallel. Store the cumulative appearance frequency of a request in the first l
ranking (the acceptance window will be set by the provider). For example, if l = 5
and A appears in both 1st rank and 3rd rank, the frequency of A is 2. By default
the frequency is 0. Rank the requests based on their frequencies.

3: Add the rankings of a request from each interval. Accept the request and add to
the final solution if its additive ranking is less than p (set by the provider).

4: temporary solution = final solution
5: Generate the left to right sequence of intervals (I1, I2, ...., Im).
6: Start dynamic programming based optimization in the first interval. Add new

requests in the temporary solution by following heuristic 2. Only add requests
if there are available resources. After finishing optimization in an interval, continue
adding new requests in the following intervals of the sequence. If the ranking of
the temporary solution is greater than the final solution, set final solution = initial
solution (update operation).

7: Generate the right to left sequence of intervals (Im, In−1, ....I1) and try to update
the final solution by following step 6.

8: Generate a new random sequence of intervals (Ik, In−1, ....Il) and try to update the
final solution by following step 6. If the ranking of the final solution is improved,
start step 8 again. Otherwise, return the final solution.

when optimizing an interval. It reduces the effect of sequencing by replacing
overlapping requests with disjoint requests without affecting the ranking in
individual optimization.

We devise a two-phase based approach (Algorithm 1) to incorporate these
heuristics. In the first phase, we filter long-overlapping requests for the accep-
tance or the rejection (heuristic 1). The first phase is described in step 1 to 3
in Algorithm 1. It sets the final solution with a set of long-overlapping requests
which are voted by the intervals independently. In the second phase, we add
new requests in the final using heuristic 2 (step 4 to 8). At least three different
sequences are generated and the final solution is updated only when the ranking
of the solution is improved. The random generation of sequences are stopped
when no improvements are made in the final ranking in Algorithm1.

6 Experiments and Results

A set of experiments are conducted to evaluate the efficiency of the proposed
approach. At first we compare the ranking of the sequential optimized composi-
tion with the global dynamic programming based composition. Next we compare
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the time complexity between the two approaches. All the experiments are con-
ducted on computers with Intel Core i7 CPU (2.13 GHz and 4 GB RAM). Java
is used to implement the algorithms.

6.1 Simulation Setup

As it is difficult to find a real world IaaS provider’s business strategies, we syn-
thetically create 10 different yearly temporal CP-Nets with 12 intervals in each
TempCP-Net. Each TempCP-Net has 5 attributes (CPU, Memory Availability,
Response time, Throughput and Price) and dependencies among the attributes
are randomly generated. The values of an attribute are divided into 10 semantic
levels (from high to low). Each CPT is filled with random conditional prefer-
ences, each of which is a random order of the attribute semantic values. We
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create the user requests as a mixure of Google Cluster resource utilization [12],
real world cloud QoS performance [7], and randomly generated availability and
prices. Google Cluster data include CPU and Memory utilization and allocation
time series of 70 jobs over a 1-month period. Real world QoS data [7] include
two time series (i.e., response time and throughput) for 100 cloud services over a
6-month period. We randomly pick 70 Google Cluster jobs and make one-to-one
mapping with the 100 sets of QoS data. A 6-month request is extended to a
12-month request using random duplication of segments. We create 4 different
patterns of the input requests: (a) disjoint pattern: 80 % of the request set is
segmented into requests of 1 to 2 month period. (b) overlapping pattern: 80 %
of the request set is segmented into requests of 8–12 month period. (c) chain
pattern: 80 % of the request set is segmented into requests of 2–8 month period.
(d) hybrid pattern: It is a collection of 35 % disjoint requests, 35 % overlapping
requests and 30 % of requests which spans in 2 to 8 month period. In each of the
patterns, other types of requests are randomly distributed into different intervals.

6.2 Efficiency of the Heuristic Based Sequential Optimization

In the first experiment, we analyse the efficiency of the proposed heuristic based
sequential optimization. As the proposed Algorithm 1 needs an acceptance win-
dow (l) and additive ranking (p) in its first phase (accepting long-overlapping
requests), we use 3 different configurations of acceptance window: (a) conserva-
tive (l = 3, p = 15), (b) moderate (l = 7, p = 30) and liberal (l = 10, p = 45).
Each of the request patterns (disjoint, overlapping, chain and hybrid) is filled
with different numbers of requests ranging from 30 to 70. A request pattern
filled with a certain number of requests is executed in 10 different TempCP-
Nets using the proposed heuristic approach (with 3 different acceptance win-
dows) and the global DP approach. The outputs are averaged and normalized
as ( 1

ranking ) (higher values mean top rankings, lower values mean low rankings).
Figure 4(a),(b),(c) and (d) depict the performance of the approaches in the dis-
joint, overlapping, chain and hybrid patterns respectively. In all of the figures,
the quality of the output is increased when the number of requests is increased.
At least one of the acceptance windows produces close outputs to the DP based
approach in higher number of requests. All three acceptance window configura-
tions of the heuristic based approach perform close to the DP based approach in
the disjoint and hybrid patterns (Fig. 4(a) and (d)). Among the three, only the
output of conservative (l = 3, p = 15) configuration is not performing close to
the DP based approach in the overlapping pattern (Fig. 4(b)). It may refuse too
many possible overlapping requests in the final output composition. In Fig. 4(c),
only the output of the moderate (l = 7, p = 30) configuration is acceptable and
close to the DP approach in higher numbers of requests (Fig. 4(c)).

6.3 Time Complexity Analysis

Although the global DP based approach produces better results than proposed
approach, it is not applicable in runtime. The convergence time of the global
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approach and the proposed approach are close for the smaller numbers of requests
in Fig. 4(e). However, the convergence time of the proposed approach is signifi-
cantly lower than the global approach for a high number of requests (Fig. 4(e)).
Figure 4(f) depicts the time complexity of the proposed approach in different
patterns. It takes relatively higher time to converge in the chain pattern than
the other patterns in Fig. 4(f).

7 Conclusion

We propose the TempCP-Net framework to represent the long-term economic
model of an IaaS provider. The proposed model allows a provider to apply qual-
itative business strategies in composing consumer requests. It is a more natural
and simplified composition process than the quantitative approach which focuses
the composition on complex resource levels, i.e., operation cost calculation and
scheduling. We propose a heuristic based sequential optimization algorithm that
does not require the history of different input patterns and corresponding com-
position decisions. Hence, it will be mostly helpful to start-up IaaS providers.
Experimental results show that the proposed approach is applicable in runtime
and significantly faster than global DP based approaches. The accuracy of the
solution is also acceptable in different input patterns. In the future work, we
want to explore the TempCP-Net with the root causes of their different business
strategies. We will find correlations between the TempCP-Net and different mar-
ket factors, such as peer competitions, the supply and demand of the services,
and the reputation.
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