A Skewness-Based Framework for Mobile
App Permission Recommendation
and Risk Evaluation

Keman Huangl’z, Jinjing Han'?, Shizhan Chenhm(m),
and Zhiyong Feng1’2’3(®)

! Tianjin Key Laboratory of Cognitive Computing and Application,
Tianjin, China
{keman. huang, hanjinjing, shizhan, zyfeng}@tju. edu. cn
2 School of Computer Science and Technology,
Tianjin University, Tianjin, China
3 School of Computer Software, Tianjin University, Tianjin, China

Abstract. Mobile ecosystem has penetrated into people’s daily life over these
years and most web services are now using mobile application for service
consumption. Permission system has been developed to protect the sensitive and
valuable information stored in mobile. However, due to the complexity of
permission framework, the permission over-privilege problem has become a
serious problem bringing huge risk for the mobile ecosystem. Therefore, in this
paper, we present a skewness-based framework for permission recommendation
and risk evaluation, intending to facilitate the permission configuration and
identify the risk applications. Specially, the topic model Latent Dirichlet Allo-
cation is presented to build the mapping between app’s functionality and per-
mission. Then a two-phase skewness-based filtering strategy is developed and
combined with the collaborative filtering framework to remove the abnormal
applications and permissions. Finally, the high risk permissions for each
application are identified based on the difference between the malicious appli-
cations and popular applications. The experiments based on the Apps from
Google Play shows that comparing with the state-of-the-art; our approach can
effectively remove the abnormal applications and permissions, identify the
unexpected and risk permissions, as well as generate the recommended per-
mission configurations with better performance to reduce the permission
over-privilege problem.

Keywords: Permission over-privilege - Skewness-based filtering - Unexpected
permissions * Risk permissions - Permission recommendation

1 Introduction

With the rapid development of mobile internet technology, mobile terminals and
mobile applications have penetrated into people’s daily life. The rise of the mobile app
ecosystem has drastically changed the way software and services are produced and
consumed [1]. More and more web services are now used by end-users through mobile

© Springer International Publishing Switzerland 2016
Q.Z. Sheng et al. (Eds.): ICSOC 2016, LNCS 9936, pp. 252-266, 2016.
DOI: 10.1007/978-3-319-46295-0_16

A Skewness-Based Framework 253

apps. As a new and widely accepted approach for service delivery and consumption, it
is important and necessary to carry out related researches in the mobile service domain.
Actually, by the end of December 2015, the number of available applications on
Google Play has been more than 1.87 million. Since more and more sensitive and
valuable information are stored in the mobile phone, attacking mobile system to get
potential benefits is becoming more and more attractive [2]. In order to protect the
mobile system, the permission system has been developed to implement security
mechanism. If the application needs to use some protected resources, it must request
the relevant permissions. However, due to the complexity of the permission framework,
the dialogs based permission framework for end users have been proved invalid [3, 4]:
most users just touch the accept button to approve permission request, no matter at
installation or during runtime because of risk underestimate [S] while many apps will
request unnecessary permissions which brings risk for the use of the apps [6]. Con-
sequently, the permission over-privilege problem becomes an important concern for
both academia and industry.

Many efforts have been strived to improve the performance of the permission
dialogs [7, 8] but fail to lead to the desired effect [4]. Some approaches [6, 9] turn to use
the source code analysis to identify the precise set of permissions, while the technology
used by malware such as repackaging, and update attack causes obvious delay for the
permission detection methods [10]. Therefore, many efforts are shifting towards to a
more promising track which uses the machine learning to automatically recommend the
required permissions and identify the risk ones from the functionality such as category
and description, or similarity with other apps [11-14]. Most of these approaches are
based on the assumption that permissions are well-configured for the popular apps so
that they can be used for permission recommendation. However, conversely, not only
the malware applications but also many popular applications are suffering from the
permission over privilege problem [6, 15]. How to identify the abnormal permissions
and remove the negative-effect becomes important for permissions recommendations
and risk evaluation.

In this paper, we present a framework based on collaborative filtering to help
developers and users to configure the permissions. The basic hypothesis here is that
“applications with similar functions should request similar permissions” [16]. There-
fore, we combine the Latent Dirichlet Allocation and collaborative filtering framework
to build the mapping between the functionality and the corresponding permissions.
Note that, even the popular applications also request some unexpected permissions [6].
Good news is that if an application request significantly different permissions from
other similar ones, then the permissions configuration is abnormal and the application
is risky. Hence, we develop a two-phase skewness-based methodology to identify the
abnormal candidate applications and permissions to guarantee the performance of the
recommendation. Finally, malicious applications request not only necessary permis-
sions to enable the functionally, but also risk permissions for attack. So we use the gap
between the popular applications and malicious applications to further identify the risk
permissions to evaluate the risk of the application.

Therefore, the main contribution of this paper is the skewness-based collaborative
filtering framework for permission recommendation and risk evaluation, consisting of
the following folds:

254 K. Huang et al.

e A two-phase skewness-based strategy is developed to identify and remove the
abnormal applications and permissions.

¢ A methodology based on the permission request difference between malicious and
popular applications is proposed to evaluate the risk permissions and applications.

e The experiments based on Apps from Google Plays Store shows the effectiveness of
our proposed framework: comparing with the state-of-the-art [17], 83.43 % and
61.61 % improvement in identify unexpected and risk permissions for malicious
applications; 188.49 % and 99.13 % MAP improvement of permission recom-
mendation for popular and malicious applications; as well as 26.00 % and 53.47 %
permissions reductions for and malicious popular applications.

The remainder of this paper is organized as follows. Section 2 defines the problem
and presents the framework’s overview. Section 3 details the permission recommen-
dation and risk evaluation. Section 4 reports the experiments. Section 5 discusses the
related work and Sect. 6 draws the conclusion.

2 Framework Overview

2.1 Problem Definition

As we are focusing on the relations between the requested permissions and the
application’s functionality, we can formally define each mobile application as:

aj = <Fj,P; > ={<tfi1,.. tfix >, <pil,-- -Din, > } (1)

Where F; = <ftfi1,.. .tf;x > refers to the functionality, K is the total number of
different functional domains for all the applications; 0 <#f;; <1 represents the proba-
bility that an application is relevant to a certain functional domain. P; = <p;,...
Din; > refers to the requested permissions, n; is the permissions’ number.

Therefore, the permission recommendation problem can be defined as:

QI: given the application a; and its functionality F;, how to recommend its per-
missions RP;?

The risk evaluation problem can be defined as:

Q2: given the application a, its functionality F; and its requested permission P;,
how to evaluate its risk?

2.2 Framework Overview

In order to solve these two problems, as shown in Fig. 1, we present the overview of
our collaborative filtering variant which combines the collaborative filtering framework
and Latent Dirichlet Allocation to build the mapping between functionality and per-
mission. It consists of the following five processes:

¢ Functionality Topic Detection: The goal for this process is to identify the func-
tionality for all the applications based on their functional descriptions, such as
description, title and category. Here we follow the methodology using in [12], using

A Skewness-Based Framework 255

&
&=
=]
& =]
=]

: 2

: ? Permission
: i Functionality Topic Mappin,

: Detection)

i : ' ; >
i | Functionality Functionality | !

H Description Description |-+ Functionality

i : Topic Feature

Popular Malicious

Permissions Permissions
Mapping Mapping

Functionality H . Nelgh§ors _(Permission LI‘kEthOd . Popular Permission
Description | ! , Functionality | Selection Evaluation Candidate
H - ; TopicFeature | | [“Neighbors Permission Likelihood | Malicious Permission
i : Selection Evaluation Candidate
El IE EI : » Real Request Risk Evaluation » Risk

Permissions

S

Fig. 1. Overview of Skewness-based Framework (SF)

the Latent Dirichlet Allocation (LDA) on the functional description to cluster
applications into different functionality topics so that we can get the probability that
an application is relevant to the certain functionality. Note that the summation of all
the elements for each topic feature vector equals to 1.

Permission Mapping: For each application, we extract its binary APK file with
Apktool' and obtain the requested permission features from its manifest file in the
APK file. As we will use the difference between popular and malicious applications’
permission configurations for risk evaluation, we build the relations between per-
missions, applications and functionality topics for both the popular applications and
the malicious applications separately.

Neighbors Selection: Given an application a;, based on the functionality topic
feature, it is easy for us to get its functionality topic feature F; = <tf;1, .. .tfix > .
Then we can identify its neighbor applications with similar functionality based on
the popular and malicious permissions mapping. We will discuss the detail for the
neighbor selection in Sect. 3.1.

Permission Likelihood Evaluation: Based on the selected neighbor applications,
similar to the user-based collaborative filtering recommendation, we can calculate
the permission’s likelihood for the given application to generate the recommended
permission candidates. Detail will be discussed in Sect. 3.2.

Risk Evaluation: Given the recommended permission candidates, including the
popular permission candidates and the malicious permission candidates, we can
calculate the difference between them and the real request permissions to evaluate
the risk of the given application. Detail will be discussed in Sect. 3.3.

! http://ibotpeaches.github.io/Apktool.

http://ibotpeaches.github.io/Apktool

256 K. Huang et al.

3 Permission Recommendation and Risk Evaluation

3.1 Skewness-Based Neighbors Selection

As we use LDA to map the applications into the functionality space, each application is
represented as a topic feature vector. Therefore, we can calculate the correlation dis-
tance between two applications a;, a; as follow:

K
Dist(a;, a;) = Z (fix — frjx)’ (2)
k=1

Then, we can calculate the similarity between two applications a;, a; as follows:

1
m(ai, 4j) = e S 3
Sim(a;, a;) 1 + Dist(a;, a;) ;

Therefore, we can get a list of related applications with similarity to the given
applications. It is well known that using a subset of applications for recommendation
can gain a better performance in the collaborative filtering framework because of the
noise in the dataset. Therefore, we use the threshold method which obtains a subset of
appropriate applications with similarity larger than the given threshold 6,,.

Further, just as we discuss above, the permission over-privilege problem is com-
mon for the applications, no matter for the malicious apps or the popular ones.
Therefore, we need to remove the abnormal applications to reduce the negative effect of
the permission over privilege. In fact, if an application request unusually large or small
number of permissions comparing with the majority, then it can be considered as
abnormal application that we should remove it in further processes.

The metric “Skewness” is a measure to evaluate the symmetry of a given distri-
bution. If the distribution is symmetric, which means the left side is exactly the same to
the right side of the center point, the skewness will be 0. A negative skewness indicates
that there is a long tail on the left side that some data are very small while a positive
skewness means that some data are very large comparing with the others. Therefore, we
can use skewness to identify the abnormal candidate applications for the given
application.

Given the candidate applications with similarity larger than the given threshold
Oim» we sort these applications based on its requested permission number and get the
permission distribution, NP(a;) = <np(a;1),...np(ain,) > where F(a;) = <a;y, ...
a;n, > are the candidate application list, Sim(a;, a;x) > Ogim, | <k <n;; np(a;x) refers
to the number of request permissions for application a;x, np(aix) <np(ai;),1<
k<1< n;. Its skewness is computed as follows:

A Skewness-Based Framework 257

sk(F(a;)) = =l (4)

n;

Where p1 =1 3" np(a;) refers to the average number of the request permissions.
k=1

If sk(F(a;)) = 0 then no abnormal applications are included in F(a;) that we use it
as the final candidate applications F*(q;). Otherwise, if sk(F(a;)) > 0 which means
F(a;) contains the abnormal application with too many request permissions, then we
remove the applications with the largest number of permissions in F(q;); if
sk(F(a;)) <0 which means F(a;) contains the abnormal application with too few
request permissions, then we remove the applications with the smallest number of
permissions in F(a;). This filtering process will be continue until it reaches symmetry
that sk(F(a;)) = 0, or only a given percent of neighbors Oy, are retained. In this paper,
we set Oys = 80 %.

3.2 Skewness-Based Permission Likelihood Evaluation

Given the selected neighbor applications after the skewness-based filtering F*(a;), we
can calculate the recommend permissions based on the combination of their request
permissions. The likelihood that application a; need permission p; is calculated as
follow:

> ayer (ap) Sim(ai, a)l (ax, py)
Zakep (@) Sim(a;, ai.)

lai,pj) = (5)

I(ay,pj) = 1 if application a; requests permission p;, otherwise I(ax,p;) = 0.

Therefore we can get the likelihood vector for the given applications L(a;) =
<l(ai7pil)7 .. .l(ai,piM) > where l(a,-,pij) > l(a,-,pik) > 0NP, 1 S]<k <M, ()Np is the
likelihood threshold. Similarly, we can calculate its skewness as:

L3 (lap) 7
sk(L(a;)) = k;;l (6)

(ﬁkg,] (l(ai, pr) — 17)2)3/2

iM
Where fi = 5 > I(a;, pr) is the average of the likelihood for each permission.
k=1

Note that, if sk(L(a;)) <0, then all the permissions have a relative small likelihood
value that these permissions should not be considered as the recommended permis-
sions. Additionally, the larger the likelihood value is the higher possibility that the
permission is needed for the application. Therefore as detailed in Algorithm 1, when

258 K. Huang et al.

sk(L(a;)) > 0, we get the permission p;; with the largest likelihood value from L(a;)
and add it into the recommended list, then we revise its likelihood value as . This
process will be ended until the skewness value equals to or smaller than O.

Algorithm 1. Skewness-based Permission Filtering
Input: L(a,): likelihood vector of permissions for g,

Output: R(a,) : recommend permission list for g,
Procedure:

01. R(a,)<«¢

02. FOR 1<j<M

03. IF L(a,)# ¢ AND sk(L(a,)) >0

04. R(a,) < R(a,)U p,
_ l iM
05. l(aiﬂpgj)&#:_zl(aﬂpk)
M=
06. ELSE
07. BREAK;
08. ENDIF
09. ENDFOR

3.3 Gap-Based Risk Evaluation

The candidate permissions based on the framework represent the expected permissions
considering the similar applications’ functionality. Then the real request permissions
which are not included in the candidates can be considered as the unexpected per-
missions for the given training dataset. Therefore, given the applications «;, its request
permissions P; = <pi1,...Pispa) > and the candidate permissions RP*(q;) =
<Ppirl,--- Pin, > , the unexpected permissions UP(a;) can be formally defined as:

pi € UP*(a;) < p; € P(a;) — RP*(a;) N P(a;) (7)

Where * € {P, M} refers to the training datasets to get the candidate permissions. P
means the candidates are generated based on the popular applications while M means
the malicious applications.

Note that the candidate permissions RPY(a;) will contain not only the necessary
permissions but also the high risk permissions. On the other hand, most of the can-
didate permissions RP"(a;) are supposed to be necessary. Then, the permissions belong
to the gap RPY(a;) — RPM(a;) NRP"(a;) between the malicious candidates and the
good candidates can be considered as the risk permissions RiP(a;) for the given
application:

A Skewness-Based Framework 259

pi € RiP(a;) < p; € RPM(a;) — RPM (a;) NRP" (a;) (8)

Therefore, if an application contains an unexpected permission which also belongs
to the risk permissions, then we can consider the application is in risk.

a; € Risk «— 3p; € P(a;), s.t.p; € UP"(a;) N RiP(a;) 9)

Finally we can calculate its risk as follow:

Risk(a;) = Zp'E(UPP(ai)ﬁRiP(ai)) r(pj) (10)

Here r(p;) refers to the risk of the permission based on its protection level. The
android platform defines four protection levels: normal, dangerous, signature, signa-
tureOrsystem and we assign their risk as 1, 2, 3, 4 respectively. For example, if an
unexpected permission belongs to dangerous level, then its risk will be 2. Obviously,
the more risky permissions requested by the application, the more risk the application
will be, so that the user should not install it.

4 Experiment and Discussion

4.1 Data Set

Since Android ecosystem is no doubt the mainstream in the mobile ecosystem and
Google Play Store is the most well-known Android application platform, we use the
“app market” dataset from [18] which consists of 1,402,894 unique .apk files and the
metadata such as name, description, version, category, user ratings or downloads. Then
we choose the 22,907 applications with more than 100 downloads and five stars in
Google play store, forming the “Popular” dataset. Furthermore, in order to study the
permissions requested by the malware applications, we get the malware dataset from
VirusShare® which consists of 24,317 malicious applications. Unfortunately, all of
these malicious applications don’t offer functionality information such as title or
description. Therefore we map them into the “app marker” dataset based on the
package identifier and get the “Malicious” dataset consisting of 524 applications.

For the permissions in the Android ecosystem, there exist two kinds of permissions:
system permissions defined by the Android platform and custom permissions defined
by developers themselves. As the custom permissions are only used by the application
itself, we only take the system permissions into account. Furthermore, as the Android
platform has grown into different versions, we consider all the permissions which are
ever defined, no matter deleted in new version or not, for applications, resulting into
285 unique permissions (see Table 1).

2 http://virusshare.com.

http://virusshare.com

260 K. Huang et al.

Table 1. Ovewview of datasets

DataSet Number of applications
Popular (P) 22,907

Malicious (M) 524

Permissions Number of permissions

System permissions | 285

4.2 Evaluation Metrics
In this paper, we use the following metrics to evaluate the performance:

Mean Average Precision (MAP). Mean Average Precision (MAP) is widely used to
evaluate the performance of accuracy for recommendation algorithm which can take
the relative order into account. It can be formally defined as follow:

[Ly
MAP =2 —Y (11)

Where T refers to the number of applications in testing dataset, N; refers to the
number of the recommended permissions for kth application ay, H; refers to the number
of actually used permissions in the top j recommended permissions, /; = 1 indicates the
permission at jth ranking position is actually used while /; = 0 means it is not used.

Difference Between Recommendations Based on Different Dataset. Note that given
an application, the recommended permissions based on different dataset are different.
Therefore, we can define the following two metrics to represent this gap: DMG refers to
the average difference in recommended permission number while RMG refers to the
average number of the risk permissions:

T

DMG = 3 (RP¥ ()| — |RP" (@) (12)

i=1

T

RMG = 13" [RiP(a)| = 7.3 (RP" (a)| ~ [RP" () NRP¥ (a)]) (13)

i i=1

Obviously, DMG < RMG. The larger the gap between DMG and RMG is, the more
permissions recommended based on the malicious dataset are not included in the
recommended permissions based on the popular dataset.

Ratio of Applications with Unexpected Permissions (AUPR). Here we consider the
percent of applications which have unexpected permissions in the testing dataset,
formally defined as AUPR:

A Skewness-Based Framework 261

AUPR = %il(UPP(a,-)) (14)

i=1

Where I(UPF(a;)) = 1, if |UP(a;)| > 0. Otherwise I(UP"(a;)) = 0.

Risk Application Ratio (RAR). As discussed above, our approach can identify
whether an application is risk or not. Therefore, we can define the ratio of applications
which are considered as risky (RAR) in the datasets as follows:

1< ,
RAR = ?;I(ai,stk) (15)

Where I(a;, Risk) = 1 if a; € Risk; otherwise I(a;, Risk) = 0.

In this paper, we don’t consider the time cost as an evaluation metric. Actually, we
are using 20-threads for parallel computing, sorting the apps based on the functionality
similarity and only considering the related apps, for average, it takes about 0.04 s to
generate the permission recommendations for an app, which is definitely acceptable.

4.3 Parameter Selection for Similiarity Threshold 0,;,

In our framework, we use the similarity threshold 6y, to select the neighbor applica-
tions with reasonal similarity for the given application. Therefore, in order to evaluate
its influence, we randomly select 20 % applications from the popular dataset as the
testing dataset and the consider the four experiments reported in Table 2.

Table 2. Experiments for similarity threshold

Training data base
Rest 80 % popular Malicious
applications applications
Skewness-filtering for abnormal Yes | Popular-Skewness Malicious-Skewness
application filtering filtering
NO | Popular Malicious

Finally, we vary 0y, from 0 to 1 to generate different permission recommendations.
The MAP of the recommendation is reported in Fig. 2. As shown in Fig. 2, it can be
seen that for the popular dataset, if 0y, > 0.6, the MAP is decreasing; similarly, if
Osim > 0.4, the MAP for the malicious dataset is decreasing. This is because that with a
too larger similarity threshold, most of applications can not have enough neighbor
applications to generate a valid recommendation. Therefore, in the rest of this paper, we
will set O, = 0.6 for the popular permission mapping, and 6;, = 0.4 for the mali-
cious permission mapping.

262 K. Huang et al.

Additionally, it can be seen that given the selected threshold, using the skewness to
filter the permissions with low likelihood can gain a relative better performance.
Actually, for the recommendation based on popular applications, it can gain a 14.7 %
improvement in MAP.

MAP for Different Similarity Threshold Difference between Popular and Malicious
100 14
L L * + ®DMG]
B . e N ®RMG
8 Py Py Py ‘m 12%
PP ¢ ®
A 4 v A 1
¥ \
60 -
o n 8
< \ L]
= 3 N 6
40 N r e =
y o N
-@ Popular ! e i e
20| m-popular-Skewnes Filtering| | ™. g o 3 =
Malicious ! ! 2 e Sy
-@-Malicious-SkewressFiltering ‘\\\\ ?
% 02 04 06 08 * 052 04 06 0.8
(a) Similarity Threshold (b) Likelihood Threshold

Fig. 2. Similarity threshold selection and gaps between popular and malicious

4.4 Difference Between Popular Applications and Malicious Applications

From Fig. 2 (a), we can see that RP” gains a better performance than RPM. This is
because that we use the 20 % popular applications as the testing dataset and the
malicious applications have a different pattern in permission configuration.

Furthermore, in order to understand the differences between the popular applica-
tions and the malicious applications, based on the given 60y;,, we can calculate the
DMG and RMG for different threshold of the permission likelihood value. As shown in
Fig. 2 (b), it can be seen that DMA and RMG are always larger than 0, which means
that the malicious applications request more permissions than the popular applica-
tions. Additionally, with the increasing of the permission likelihood threshold, these
two metrics are both decreasing while the gap bettwen DMG and RMG is also
decreasing, representing that the permissions with high likelihood value are requested
by both the popular and malicious applications. These permissions are the neccessary
requirements to support the functionality of the applications.

4.5 Performance Comparison

In order to prove the effectiveness of our approach, we consider the state-of-the-art
methodology which has been partially deployed in Chrome Web Store and Google
Play Store:

e Peer-group Model (PGM) [17]: In PGM, given the permission used by the candi-
date application, the applications in the same category, named peer group, are used
to calculate the ratio of applications using the given permission; if the ratio is

A Skewness-Based Framework 263

smaller than a given threshold, then the permission is considered as the unexpected
permissions. The threshold is set as 0.05.

Then we randomly selected 80 % of the popular applications to train the popular
permission mapping, 80 % of the malicious applications to train the malicious per-
mission mapping. The rest of the popular and malicious applications are used as the
training data. The similarity threshold is set as OSm = 0.6, Ogm = 0.4. The likelihood
threshold is set as Oyp = 0.1. Table 3 summarizes the improvement of our framework
comparing with PGM. Here ARISK refers to the average of the risk value for the testing
applications, AP refers to the average number of the real requested permissions, ARP

refers to the average number of the recommended permissions.

Table 3. Performance comparing with State-of-the-art

DataSet/Approach AUPR RAR ARISK MAP AP ARP
Popular SF 0.732 0.191 0.701 0.877 6.77 5.01
P) (=26.00 %)
PGM 0.258 0.105 0.293 0.304 20.20
(+198.38 %)
/ / / 188.49 % /
Malicious SF 0.908 0.543 2.536 0.914 8.94 4.16
M) (=53.47 %)
PGM 0.495 0.336 1.460 0.459 17.20
(+92.39 %)
83.43 % 61.61 % 73.70 % 99.13 % /

As shown in Table 3, comparing with PGM, it can be seen that for malicious
detections, our approach shows that for the malicious applications, 90.8 % request
unexpected permissions and 54.3 % contain risk permissions. However, PGM only
finds 49.5 % malicious applications with unexpected permission, and 33.6 % malicious
applications use risk permission. Additionally, our approach can assign a 73.7 %
higher risk value for the malicious applications, as well as a 99.13 % improvement in
MAP. For the popular applications, we get a 188.49 % improvement in MAP.

Note that our approach also shows that even the popular applications will request
the unexpected and risk permissions, though the RAR is not as high as the malicious
ones. This result is consistent with the observation in [6, 15]. Furthermore, from
Table 3, it can be seen that our approach will recommend a fewer number of per-
missions for both the popular applications and the malicious applications which can
help to reduce the over-privilidge problem. Actually, we get a 26.00 % reductions for
popular applications and 53.47 % for malicious applications, while PGM even rec-
ommends more permissions.

Therefore, comparing with PGM, we can draw the conclusion that our approach
can effectively identify the abnormal usage of permission, generate a better recom-
mended permission configuration to reduce the permission over-privilidge.

264 K. Huang et al.

5 Related Work

Permission system is one of the most important mechanisms to protect the mobile
ecosystem. Due to the fact that permission dialogs fail to lead to the desired effect [4],
some approaches are turning to identify the risky of the permissions requested by an
application [19]. However, as the application’s functionality is ignored that it often
results into spurious warnings. In order to solve this problem, many efforts are shifting
towards to a more promising track which uses the machine learning to automatically
recommend the required permissions from the functionality such as category and
description, or similarity with other apps [11-14]. Peng et al. [20] uses the similarity
with other applications to evaluate the risk of a given application. Pandita et al. [14]
and Qu et al. [13] build a permission semantic model to determine which sentences in
the description indicate the use of permissions. By comparing the result with the
requested permissions, they can detect gap between the description and requested
permissions. Wang et al. [11] further identifies the minimum set of permissions an app
needs by tailored the requested permissions that are not listed in the semantic per-
missions in the app descriptions. Gorla et al. [12] develops a tool called CHABADA
that uses Latent Dirichlet Allocation (LDA) on app descriptions to cluster Android
applications with similar textual descriptions together. The most similar approach to
our framework is the peer-group model (PMG) introduced by Jana et al. [17], which
has been partially deployed in Chrome Web Store and Google Play Store. In PMG, the
software peer group analysis is developed to identify least privilege violation by the
proportions of permissions requested by applications from peer group. Peer groups are
generated by different information, ranging from pre-defined static categories, list of
other related applications, textual descriptions.

Most of these approaches are based on the assumption that permissions are
well-configured for good applications or the applications developers are all malicious.
By contrast, most of the careless and lazy developers are not actively malicious [17].
Additionally, due to the complexity of the permission system, most of the popular
applications also break the least-privileged principle. Therefore, unlike these approa-
ches, based on the assumptions that the malicious applications will request different
permissions with the good applications and the application with similar functionality
should request similar permissions, we develops a collaborative filtering variant
framework which employs the skewness-based filtering strategy to recommend per-
missions and uses the difference between good applications and malicious applications
to identify the risk permissions.

6 Conclusions

Mobile ecosystem has penetrated into people’s every aspect of life recently. More and
more web services are turning to offer mobile application for users to consume the
services. As the security of the mobile ecosystem becomes an important issue for the
web service community, while permission system is designed to protect the mobile
ecosystem, how to help the developers and consumers to use the permission system is
attracting attentions both from academia and industry. In this paper, based on the

A Skewness-Based Framework 265

collaborative filter framework using LDA to identify applications’ functionality topics,
we develop a two-phase skewness-based filtering strategy to remove the abnormal
application candidates and the low-likelihood permissions to generate recommended
permissions. Furthermore, based on the recommended permissions from popular
applications and malicious applications, we identify the unexpected and risk permis-
sions for each application so that we can evaluate their risk just based on the permission
configurations. The experiment based on the dataset from Google Play Store shows that
comparing with the state-of-the-art:

e For the malicious applications, our approach gains a 83.43 % and 61.61 %
improvement in unexpected permission and risk permission identification;

e We gain a 188.49 % improvement for popular applications and 99.13 % for
malicious applications;

e More importantly, comparing with the real request permissions, we can cut 26.00 %
permissions for popular applications and 53.47 % for malicious ones, which is
helpful for reduce the permission over-privilege problem.

In the future, we will further extend our framework to effectively identify the least
privilege permissions to help the developers and users for permission configuration.
Also we will mitigate the approach to Apache Mahout to guarantee the scalability of
the framework.

Acknowledgment. This work is supported by the National Natural Science Foundation of
China grants 61373035, 61502333, 61572350 and the Tianjin Research Program of Application
Foundation and Advanced Technology grant 14JCYBJC15600.

References

1. Petsas, T., Papadogiannakis, A., Polychronakis, M., Markatos, E.P., Karagiannis, T.: Rise of
the planet of the apps. In: Proceedings of the 2013 Conference on Internet Measurement
Conference - IMC 2013, pp. 277-290 (2013)

2. Leavitt, N.: Mobile security: finally a serious problem? Computer 44, 11-14 (2011)

3. Wijesekera, P., Columbia, B., Baokar, A., Hosseini, A., Egelman, S., Wagner, D.: Android
permissions remystified: a field study on contextual integrity. In: 24th USENIX Security
Symposium (USENIX Security 15), pp. 499-514 (2015)

4. Acar, Y., Backes, M., Bugiel, S., Fahl, S., Mcdaniel, P., Smith, M.: SoK: lessons learned
from android security research for appified software platforms. In: 37th IEEE Symposium on
Security and Privacy, pp. 1-19 (2016)

5. Felt, A.P., Ha, E., Egelman, S., Haney, A., Chin, E., Wagner, D.: Android permissions: user
attention, comprehension, and behavior. In: Proceedings of the Eighth Symposium on
Usable Privacy and Security, pp. 3:1-14 (2012)

6. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demystified. In:
Proceedings of the 18th ACM Conference on Computer and Communications Security -
CCS 2011, p. 627 (2011)

7. Liu, B., Lin, J., Sadeh, N.: Reconciling mobile app privacy and usability on smartphones:
could user privacy profiles help? In: Proceedings of the 23rd International Conference on
World Wide Web, pp. 201-212 (2014)

266

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

K. Huang et al.

Kelley, P.G., Cranor, L.F., Sadeh, N.: Privacy as part of the app decision-making process.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, p. 11
(2013)

. Au Kathy Wain Yee, Zhou, Y.F., Huang, Z., Lie, D.: PScout: analyzing the android

permission specification. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pp. 217-228 (2012)

Zhou, Y., Jiang, X.: Dissecting Android malware: characterization and evolution. In:
Proceedings - IEEE Symposium on Security and Privacy, pp. 95-109 (2012)

Wang, J., Chen, Q.: ASPG: generating android semantic permissions. In: Proceedings - 17th
IEEE International Conference on Computational Science and Engineering, CSE 2014,
pp. 591-598 (2014)

Gorla, A., Tavecchia, I, Gross, F., Zeller, A.: Checking app behavior against app
descriptions. In: Proceedings of the 36th International Conference on Software Engineering,
pp. 1025-1035. ACM (2014)

Qu, Z., Rastogi, V., Zhang, X., Chen, Y., Zhu, T., Chen, Z.: AutoCog: measuring the
description-to-permission fidelity in Android applications. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security - CCS 2014,
pp. 1354-1365 (2014)

Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: Whyper: towards automating risk
assessment of mobile applications. In: 22nd USENIX Security Symposium (USENIX
Security 13), pp. 527-542 (2013)

Wei, X., Gomez, L., Neamtiu, I., Faloutsos, M.: Permission evolution in the Android
ecosystem. In: Proceedings of the 28th Annual Computer Security Applications Conference,
pp. 31-40 (2012)

Liu, R., Cao, J., VanSyckel, S., Gao, W.: PriMe: human-centric privacy measurement based
on user preferences towards data sharing in mobile participatory sensing systems. In: 2016
IEEE International Conference on Pervasive Computing and Communications (PerCom),
pp.- 1-8. IEEE (2016)

Jana, S., Erlingsson, U., Ton, L: Apples and Oranges: Detecting Least-Privilege Violators
with Peer Group Analysis, pp. 1-11 (2015). arXiv:1510.07308

Viennot, N., Garcia, E., Nieh, J.: A measurement study of google play. In: Measurement and
Modeling of Computer Systems — SIGMETRICS, pp. 221-233 (2014)

Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security - CCS 2009, pp. 235-245 (2009)

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Nita-Rotaru, C., Molloy, L.:
Using probabilistic generative models for ranking risks of Android apps. In: Proceedings of
the 2012 ACM Conference on Computer and Communications Security, pp. 241-252 (2012)

http://arxiv.org/abs/1510.07308

	A Skewness-Based Framework for Mobile App Permission Recommendation and Risk Evaluation
	Abstract
	1 Introduction
	2 Framework Overview
	2.1 Problem Definition
	2.2 Framework Overview

	3 Permission Recommendation and Risk Evaluation
	3.1 Skewness-Based Neighbors Selection
	3.2 Skewness-Based Permission Likelihood Evaluation
	3.3 Gap-Based Risk Evaluation

	4 Experiment and Discussion
	4.1 Data Set
	4.2 Evaluation Metrics
	4.3 Parameter Selection for Similiarity Threshold \theta_{sim}
	4.4 Difference Between Popular Applications and Malicious Applications
	4.5 Performance Comparison

	5 Related Work
	6 Conclusions
	Acknowledgment
	References

