
Time-Aware Customer Preference
Sensing and Satisfaction Prediction

in a Dynamic Service Market

Haifang Wang, Zhongjie Wang, and Xiaofei Xu(&)

Harbin Institute of Technology,
Harbin, Heilongjiang, People’s Republic of China

{wanghaifang,rainy,xiaofei}@hit.edu.cn

Abstract. In the dynamic service market, massive services and variations of
their Quality of Services (QoS) and service contract make it difficult for cus-
tomers to acquire the information of all the services comprehensively and timely.
As a result, customers cannot raise accurte expectations. A customer has to
choose services in terms of the incomplete information of the dynamic service
market to achieve higher Satisfaction Degree (SD) as much as possible. Besides,
because a customer’s preferences vary over time, his SD is also time-aware.
Therefore, for service providers, to accurately recommend services to customers,
it is necessary to sense the customer preferences varying against time and predict
personalized customers’ satisfaction. To address this challenge, we propose a
time-aware customer preference sensing and satisfaction prediction method
based on customer’s service usage history and change history of services. Firstly,
the customer satisfaction model on contract-based services is proposed to mea-
sure customers’ satisfaction for services. Then, we adopt the box-plot method and
the frequency histogram to sense time-aware customer preferences. In addition, a
time-aware personalized SD prediction algorithm called SDPred is presented to
predict the missing values due to information asymmetry. Meanwhile, several
experiments have been conducted based on a released data set, which verify the
effectiveness of our methods. Besides, the impact of parameter settings in the
SDPred algorithm is further studied, which provides more evidences to illustrate
the superiority of our method.

Keywords: Customer satisfaction � Customer preference � Time-aware �
Satisfaction degree prediction

1 Introduction

The increasingly diverse services have been deployed on the Internet, however, facing
massive services with the same or similar functionalities, customers usually feel vacant
while selecting one. Since these services are variable over time in the dynamic service
market, it is impossible for customers to know all the information of services com-
prehensively and propose their expectation clearly. However, customers usually choose
services that approximate to their preferences based on the known information of
services, which makes it difficult to identify the customer requirement for the Quality of
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Services (QoS) and to satisfy their preferences only by reducing overhead blindly.
Therefore, it is becoming vital to confirm the personalized selection rules based on their
preferences. In addition, in real life, our experience tells us that customer preferences to
goods vary against time, for instance, customer A preferred to Air China last year,
nevertheless, he enjoy China Southern Airlines today, which is called customer pref-
erence drift [8, 16]. Besides, the time-aware customer preferences play an important
role in selecting services from a large pool of services with same or similar func-
tionalities. Therefore, a novel issue can be summarized as RQ1 shown in Fig. 1, which
takes a customer as an example: How can we acquire the time-aware customer
preference sensing based on customers’ service usage history? For instance, for
customer A, his time-aware preferences to airline companies can be sensed based on his
service usage history, which will affect his future selection.

While depicting customer preferences, it is easy to discover that conventional
functional properties and QoS are not enough to describe the individual customer
requirements as well as the characteristics of the services offered by the broker, e.g.
payment method, etc. Therefore, service contract [1] is introduced into services in this
paper to describe the individual customer requirements and the characteristics of ser-
vices. Service contract is the agreement between providers and customers while
invoking a specific service in given conditions [15], which may meet the actual
demands. However, the traditional customer satisfaction measurement methods based
on QoS cannot satisfy the demand. Thus, RQ2 presented in Fig. 1 is identified as
following: How do we measure the customer satisfaction degree for contract-based
services? For customer A, he focused on QoS preferences before, e.g. the response time

Fig. 1. Issues to be solved in this paper
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of the app or website to reserve plane tickets should be no more than 20 s. However,
today he raises another preference that the payment method should be Alipay, which
cannot be described by QoS and measured by the conventional methods.

In addition, customer preferences affect their Satisfaction Degree (SD) for goods,
which means that the SD values change over time. Similarly, the SD values of cus-
tomers for services vary against with time as well. Given a set of services with same or
similar functionalities, Fig. 2 illustrates a toy example of the SD changes we study in
this paper. In this figure, customer C1 has invoked several services S1, S2, etc. in the
past. C1 has different preferences to them with specific invocation time, which means
these services correspond to the distinct SD values during different time intervals.
Likewise, other customers keep diverse preferences to various services with corre-
sponding SD values called time-aware personalized SD values. The premise of the
issues above is that customers can make their requirements clearly and they are pro-
vided all the information of services. However, in reality, due to information asym-
metry, they cannot raise their requirements distinctly for services in the dynamic
service market, which also leads to the loss of parts of the time-aware personalized SD
values. As a result, a critical challenge is formed, which is defined as RQ3 shown in
Fig. 1: How can we predict the missing SD values? For the example above, customer
A keeps different SD values for the China Southern Airlines at diverse time intervals,
however, due to information asymmetry that the QoS and contracts of services are
fuzzy at some a time interval, his satisfaction for the China Southern Airlines cannot be
measured at the time interval, e.g. T1: 0.71, T2: 0.69, T3: null, T4: 0.75, etc. Then, RQ3
focuses on the SD prediction at T3 based on the known SD values and time-aware
personalized SD values of other customers.

Based on the customer preferences analyzed and the full filled SD value matrix, we
can recommend the more valuable services to customers precisely, which will be
focused on in our future work.

To answer RQ1, we have sensed time-aware customer preferences by the box-plot
method and colorful frequency histogram according to their service usage history to
show the customer preference distributions. Then, the Customer Satisfaction Model on
Contract-based Services called CMS and the SDCalculation algorithm are proposed
based on the paper [11, 17] to answer RQ2. The SD values are calculated based on the
QoS and contract terms. To predict the missing time-aware personalized SD values, the

Fig. 2. SD values changes for customers with various services at different time intervals
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SDPred algorithm has been proposed, which has answered RQ3. This method collects
SD values of different customers for various services at individual time intervals to
build a customer-service-time tensor. By performing tensor factorization technique, the
unknown SD values will be predicted by the feature matrices.

To verify our methods, several experiments have been conducted based on the data
set WR-Dream released by [19]. Firstly, we extract 1000 services with similar func-
tionalities from the data set. Then, we randomly assign two contract term values to each
customer-specific and time-specific service. Afterwards, according to the generation
customers’ service usage history, time-aware customer preference distributions can be
sensed by our methods. Besides, a customer-service-time tensor can be built by the
SDCalculation algorithm. Then, the missing SD values can be predicted by the SDPred
algorithm. Eventually, several comparison experiments have been conducted, which
adequately illustrate the effectiveness of our algorithm. In addition, the impact of three
parameters in the SDPred algorithm is studied, which provides more evidences to prove
the superiority of our methods.

In summary, this paper makes the following contributions:

• We formally identify the time-aware customer preference sensing issue in the
dynamic service market and adopt statistical method to answer the question.

• We propose a novel customer satisfaction model, which considers service contract
and presents the SDCalculation algorithm to measure the customer satisfaction.

• We define the time-aware personalized SD prediction issue formally, and propose a
novel algorithm SDPred to predict the missing values, which outweighs another
three methods demonstrated by our experiments.

The remainder of the paper is organized as follows. Section 2 presents the customer
satisfaction model on contract-based services. Section 3 introduces the time-aware
customer preference sensing methods. Section 4 presents the time-aware satisfaction
degree prediction. Section 5 discusses the experimental setting and results. Section 6
gives a review on the related work. Finally, Sect. 7 offers some concluding remarks and
overviews the future work.

2 Customer Satisfaction Model on Contract-Based Services

Based on the introduction above, it is clear that service contract focuses on the
non-functional properties and consists of several contract terms. The paper [9] divided
contract terms into five types, namely Provider Obligations, Usage of Information,
Warranties and Liabilities, Delivery Time, Price and Payment terms. However, we
distinguish QoS from contract and describe them respectively. QoS are quantitative
with numeric values associated with specific measurement units, e.g., price = 21$.
Nevertheless, contract terms are qualitative where the values are assumed to be defined
by concepts, e.g., payment method = credit card. According to the research, QoS
mainly includes price, response time, etc. Meanwhile, several terms have been sum-
marized, including payment method, right of privacy, service coverage, etc.

The paper [11] tells us that each service has its own contract. By introducing
contracts to services, we build a novel service moedel S = (FP, QoS, Contract), where
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FP represents the functional properties, and Contract stands for a group of non-
numerical contract terms difined as Contract = <term1, term2, …, terma >. In addition,
each term can be described as termi = (< name, operator, value >), where name says
its identifier, e.g. payment method, and operator mainly includes set operators, e.g.
“all”, “exactlyOne”, etc., and value represents specific values of termi. Meanwhile, QoS
may contain several indicators, which can be expressed as QoS = <q1, q2,.., qb >. And
qi = (<name, operator, value unit >), where name also stands for identifier, e.g. price,
however, operator represents the numeric operators, e.g. <, >, =, etc., and value means
the numeric values, e.g. 200, unit says the measurement unit, e.g. dollar.

SD ¼

1; if QoS1 ^ Contract1
. . . . . .

SD Valuei; if QoSi ^ Contracti
. . . . . .
0; if QoSw ^ Contractw

8>>>><
>>>>:

ð1Þ

Provided that a stack of services has the same or similar functionalities, in the novel
service model above, how to measure the level that a service may satisfy the customer
preferences is becoming a critical challenge. Therefore, a new customer satisfaction
model called CSM is proposed in our paper, which can be defined as Formula (1).

In the formula, SD stands for the satisfaction degree of a service satisfying cus-
tomer requirements. Each set of QoSi ^ Contracti represents the customer expectation
on QoS and contracts. If QoSi ^ Contracti is satisfied, then SD ¼ SD Valuei. In
addition, 8i > j, SD_Valuei < SD_Valuej, and SD_Value1 = 1, SD_Valuew = 0.
81 < i<w, SD_Valuei2(0, 1). Typically, QoSi and Contracti in each set can be defined
as follows respectively, QoSi ¼ \q1;i ^ q2;i ^ . . . ^ qa;i [ , Contracti ¼ \terms1;i^
terms2;i ^ . . . ^ termsb;i [ .

Usually, the SD_valuei in the Formula (1) is provided by customers, however, due
to the information asymmetry, customers cannot raise their requirements preferences
clearly. Therefore, a novel approach called SDCalculation is proposed to calculate the
SD value based on the corresponding QoS and contract values. For a service, this
method calculates the satisfaction degree defined as SDQ that its QoS satisfies the QoS
constraints offered by the customer and the satisfaction degree called SDC that its
contract terms satisfy the contract preferences provided by the customer. Then, it is
clear that SD ¼ SDQ � SDC. The method is presented in the algorithm 1, where Num
(ti) is the function that count all the values of the term ti, and Q and C represent the QoS
values and the contract term values of the service, and W stands for the different
preference weights to the indicators of QoS, besides, Qmax

i is the maximum value of ith
indicator of QoS in the whole candidate service set. QC and CP represent the QoS
Constraints and the Contract preferences offered by the customer, respectively.
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3 Time-Aware Customer Preference Sensing

In this section, we try to sense the time-aware customer preferences based on cus-
tomers’ service usage history at different time intervals. For a customer whose
requirement is unclear, we analyze his selection standards or preferences in turn at each
time interval, which reveals his requirements partly, and the process is shown in Fig. 3.

To observe customer preferences for QoS or numerical contract terms, the box-plot
method from mathematical statistics is adopted. Thus, the values of Q1, Q2, Q3, the
Whisker upper limit and the Whisker lower limit need to be calculated respectively.
Before this, the QoS values of services in the service usage history should be unified by
Formula (2), which may reflect the actual preferences at individual time intervals.

Fig. 3. Time-aware customer preference sensing process
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P ¼ sQoSi � QoSimin

QoSimax � QoSimin
ð2Þ

Here, QoSimax; QoSimin represent the maximum and minimum values of the ith
indicator of QoS respectively. And sQoSi stands for the ith indicator value of the current
service.

In terms of non-numerical contract terms, we employ the colorful frequency his-
togram to show the customer preference distributions. For a term value, we count the
times of it appearing in the service usage history at each time interval, which will
contribute to draw the histogram, where the deeper the color, the greater its frequency
in the service usage history is, which will be illustrated by the Figures in Sect. 5.2.

Based on the analysis methods above, we can know the general distribution of the
customer preferences against with time as well as the specific customer preferences at
individual time interval. Here, to acquire the specific customer preferences, we adopt
the Q2 value as the QoS preferences at different time intervals, besides, we utilize the
term with highest frequencies as the contract term preferences at each time interval.

4 Time-Aware Satisfaction Degree Prediction

4.1 Problem Formulation

Based on the introduction above, through integrating all the SD information from other
customers, a three-dimensional customer-service-time tensor can be formed motivated
by [19], which is shown in Fig. 4. The tensor can be split into massive slices with each
one representing a time interval. Within a slice, each entry denotes a SD value of a
service from a customer during the specific time interval. In this paper, we pay more
attention to the study how to efficiently and precisely predict the missing entries in the
tensor based on the existing entries. Thus, the problem of SD prediction for various
users and services can be defined as follows. Typically, all the SD values are unified to
the interval [0, 1].

Definition: Suppose that the group of m customers, the set of n services and the set of
p time intervals can be defined as C, S and T respectively, then a SD element is a
quartet (i,j,k, SDijk) representing the SD value of service Sj for customer Ci at time
interval tk, where i 2 f1; . . .;mg; j 2 f1; . . .; ng; k 2 f1; . . .; pg, and SDijk 2 R.

Fig. 4. Time-aware satisfaction degree prediction process
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Besides, we regard the set of all triads (i,j,k) as R and define the set of all known triads
(i,j,k) in R as D. If we consider a tensor Z 2 R

m�n�p with each entry Zijk representing
the SD value of Sj for Ci at time interval tk, then the missing entries fZijkjði; j; kÞ 2
R� Dg should be predicted based on the existing entries fZijkjði; j; kÞ 2 Dg.

4.2 Feature Matrix Learning

To acquire the feature matrices of customers, services and time, tensor factorization
technique is adopted to fit a factor model to the customer-service-time tensor. The
factorized customer-specific, service-specific and time-specific matrices are utilized to
further predict missing entries, which is shown in Fig. 4. Therefore, a high-quality
low-dimensional feature representation of customers, services and time can be derived
by analyzing the customer-service-time tensor. The premise is that only a small number
of factors influence the various SD values. In this paper, we consider a m� n� p SD
tensor consisting of m customers, n services and p time intervals. A low-rank tensor
factorization approach is adopted to seek to approximate the SD tensor Z by a mul-
tiplication of r-rank factors [14], which is expressed as Formula (3).

Z � M �u C �s S�t T ð3Þ

WhereM 2 R
r�r�r;C 2 R

m�r; S 2 R
n�r and T 2 R

p�r are feature matrices. r is the
number of features. Each column in C, S and T represents a customer, a service and a
time interval, respectively. �u, �s and �t are tensor-matrix multiplication operators,
e.g. M �u C ¼ Pr

i¼1 MijkCij. M is set to the diagonal tensor. If i = j=k then M = 1,
otherwise M = 0.

Typically, in reality, each customer has invoked only a small portion of services
and massive customers had not evaluated the services they had invoked, thus,
r � m; n; p. Besides, customers cannot clearly raise expectations due to information
asymmetry. Therefore, Z is usually very sparse. From the definition above, it is clear
that the low-dimensional matrices C, S and T are unknown and need to be estimated.

min
C;S;T

FðZ;C; S;TÞ ¼
Xm
i¼1

Xn
j¼1

Xp
k¼1

DijkðZijk � bZijkÞ2 þ a
Xm
i¼1

Xr

j¼1

jCijj2 þ b
Xn
i¼1

Xr

j¼1

jSijj2 þ c
Xp
i¼1

Xr

j¼1

jTijj2 ð4Þ

To access the quality of tensor approximation, a loss function for evaluating the
residue between the estimated tensor and the original tensor needs to be constructed.
We define the optimization problem as Formula (4), which avoids the over fitting issue.
Here, Dijk is the indicator function that equals to 1 if customer Ci invoked and evaluated
service Sj at the time interval tk and equals to 0 otherwise.

In Formula (4), where a; b; c[ 0 minimizes the objective function defined as the
sum-of-squared-residue with quadratic regularization terms. Therefore, a local mini-
mum of the objective function given by Formula (4) can be found by performing
incremental gradient descent in feature vectors Ci, Sj, and Tk. And the corresponding
formulas during performing incremental gradient descent are presented in Formula (5).
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@FA

@Ciy
¼ 2

Xn
j¼1

Xp
k¼1

DijkðbZijk � ZijkÞSTj Tk þ 2aCiy;

@FA

@Sjy
¼ 2

Xm
i¼1

Xp
k¼1

DijkðbZijk � ZijkÞCT
i Tk þ 2bSjy;

@FA

@Tky
¼ 2

Xm
i¼1

Xn
j¼1

DijkðbZijk � ZijkÞCT
i Sj þ 2cTky:

ð5Þ

bZijk ¼ Dijk

Xr

y¼1

CiySjyTky ð6Þ

Based on the formulas above, the customer-specific, service-specific and time-
specific feature matrices C, S and T can be learned. Hence, for the missing entry Zijk in
the tensor, the SD value can be predicted by Formula (6).

Based on the analysis above, the algorithm name SDPred is summarized, which is
presented in Algorithm 2. It also shows the iterative process for feature metrics
learning. Firstly, matrices C, S and T are initialized with small random non-negative
values. According to the update rules derived from Formula (5), the updating process is
iterated until the algorithm converges to a local minimum of the objective function
given in Formula (4). After the iteration, the matrices C, S and T can be acquired
eventually. Then, the missing SD values can be predicted by Formula (6).
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5 Experiments and Comparisons

5.1 Experimental Setting

(1) Candidate Services. We adopt a released QoS data set http://www.wsdream.net/
called WS-Dream. Firstly, 1000 Web services with same or similar functionalities have
been extracted. Then, we collect the QoS information of these services invoked by 142
customers at 64 time intervals, including response time and throughput. Based on the
data extracted, we simulate the contract term values of each Web service for each
customer at each time interval, including payment method and right of privacy with the
corresponding values {Credit card, Applypay, Alipay}, {true, false} respectively.

(2) Customer’s Service Usage History. Based on the reconstructedWS-Dream above,
we simulate service usage histories of 142 customers during different time intervals with
the format < customerID, timeIntervalID, wsID list, amount >, where the four dimen-
sions stand for the customer ID, time interval ID, all the service IDs selected by the
customer at the corresponding time interval and the invocation times, respectively.

5.2 Time-Aware Customer Preference Sensing

Based on the customers’ service usage history generated above, we adopt the methods
presented in Sect. 3 to analyze the time-aware preference distributions of each cus-
tomer. Here, we take it an example where customerID = 0 and customerID = 1. The
analysis results are shown in Figs. 5 and 6.

Fig. 5. Customer preference distributions based on customerID = 0
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According to Fig. 5 (a), (b), it is clear that the preferences to QoS of the customer
(ID = 0) have not changed significantly during the 64 time intervals, except for several
cases, which may reflect the actual customer preference, e.g. the customer’s location
changed, as a result, his preferences to response time and throughput varied as well.
Figure 5 (c) shows the customer preferences to three payment methods at different time
intervals. Obviously, the customer more prefers to Alipay. Figure 5 (d) tells us that the
customer only takes notice of his privacy sometimes with the small time interval IDs.
And he pays more attention to his privacy with time intervals changing. However, the
time-aware preference sensing of another customer (ID = 1) is different from the for-
mer, which is shown in Fig. 6, where he had less rigorous constraints for response time
and stricter constraints for throughput in general. His preferences to contract terms had
some differences from the former. Likewise, the time-aware preferences of another 140
customers can be sensed, which illustrates the validity of our methods.

5.3 Verification of the SDPred Algorithm

From the analysis above, we can know the specific customer preferences at different
time intervals. Then, the time-aware personalized SD values can be calculated and a
customer-service-time tensor can be built.

To verify the SDPred method proposed in this paper, we have summarized several
collaborative filtering methods as follows:

Fig. 6. Customer preference distributions based on customerID = 1
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(1) MSU(Most similar user): For a specific time interval t, if user Ui does not evaluate
the service Sj, then MSU takes the corresponding SD value the most similar user
of Ui keeps for Sj as the prediction of the missing SD value.

(2) KMSU(Top-k most similar user): Similar to MSU, it identifies top-k most similar
users and regards the average SD value of them at a time interval as the prediction.

(3) TSR(Time-aware similar requirement): For a single user Ui, if he has not accessed
the service Sj at a specific time interval tx, then TSR tries to distinguish the most
similar time interval ty when the user requirement is similar to that of tx. After-
wards, TSR takes the SD value corresponding to ty as the prediction of the
missing value at tx.

In addition, in order to compare these methods with SDPred, two metrics have been
proposed, including the Mean Residue (MR) defined as Formula (7) and the Root Mean
Squared Residue (RMSR) expressed in Formula (8).

MR ¼ 1
N

Xm
i¼1

Xn
j¼1

Xp
k¼1

jbZijk � Zijkj ð7Þ

RMSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xm
i¼1

Xn
j¼1

Xp
k¼1

ðbZijk � ZijkÞ2
vuut ð8Þ

Besides, to evaluate the performance of different approaches above, some entries
have been removed from the tensors, which will be compared with the prediction
values. The tensors with missing SD values are in different densities, which are defined
as the removal density. For instance, 20 % means that 20 % entries have been removed
from the original tensor and will apply the remaining 80 % entries to predict the
removed ones. The values of a; b; c are tuned by performing cross-validation on the
existing SD values. By massive attempts, we confirm that r ¼ 30; a ¼ b ¼ c ¼ 0:002.
And in the KMSU method, k = 5. With different removal densities, these methods are
compared with each other by the values of MR and RMSR, which are presented in
Fig. 7.

Fig. 7. Performance comparisons based on Tensor Removal Density
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From Fig. 7, it is clear that the SDPred algorithm outperforms another three
methods (lower MR and RMSR values) under different tensor removal densities. With
the Tensor Removal Density growing up, both MR and RMSR of these methods
increase gradually, which means that the more missing SD values exist, the less
accurate the predictions of the four methods are. In general, the SDPred method has the
best performance, then the followings are TSR, KMSU, MSU respectively, which
adequately illustrate the effectiveness of our method. However, sometimes the KMSU
method performs better than the TSR method. Therefore, if the tensor is much sparse,
the SDPred will be recommended to acquire more precise predictions.

5.4 Impact of Three Parameters in the SDPred Algorithm

Here, we further focus on the impact of three parameters in the SDPred algorithm,
including m, n and p representing the amount of customers, the number of services and
the amount of time intervals individually. Suppose that Tensor Removal Den-
sity = 50 %, three experiments are set n = 1000, p = 64; m = 142, p = 64; m = 142,
n = 1000, respectively. Then, the comparison results are shown in Figs. 8, 9 and 10.

From Fig. 8, we can know that with the increase of m, MR and RMSR of the three
methods (including MSU, KMSU, SDPred) both decline significantly. However, MR
and RMSR of TSR go down slowly. Although TSR performs best with smaller values
of m, SDPred can achieve higher prediction accuracy while m increasing. Figure 8 tells

Fig. 8. Performance comparisons based on the amount of customers in the tensor

Fig. 9. Performance comparisons based on the number of services in the tensor
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us that the amount of customers has greater impact on MSU, KMSU and SDPred along
with smaller influence on TSR, which are consistent with their mechanisms.

Figure 9 clearly presents that the MR and RMSR corresponding to these methods
also fall down while n increases. In addition, the former declines significantly shown in
Fig. 9 (a), while the latter goes down gradually presented in Fig. 9 (b). It is convinced
that SDPred has best performance basically followed by TSR, which is followed
closely after by KMSU and MSU. However, they have fewer differences, which mean
that the amount of services has little impact on these methods.

Based on Fig. 10, it is easy to know that in terms of these methods, both the MR
and RMSR decline while p grows up. Besides, TSR has a remarkable decline and
another three methods drop down non-significantly. Therefore, it clearly illustrates that
the amount of time intervals has larger impact on TSR. However, SDPred can achieve
higher prediction accuracy on the whole, which can prove its superiority.

Combined with Figs. 8, 9 and 10, it is obvious that regardless of various assign-
ments of the three parameters (m, n and p), overall, the SDPred method performs best,
which provides more evidences to illustrate the effectiveness of our method.

6 Related Work

Service contract has been widely studied from different perspective to describe a ser-
vice comprehensively. A policy centered meta-model was presented in [4] to describe
service contracts, which unified the policy [7], service level agreements [10], etc. In
this model, each term corresponded to one non-functional property.

In addition, several methods to calculate the customer satisfaction degree had been
proposed, including the method based on QoS [18] and the method based on QoS and
contract [3]. However, [13] only considered the QoS, which cannot reflect the reality
adequately. And the method in [17] may not be applied actually, since the SD values
were provided by customers, which were difficult to be collected. In [3], a novel model
to calculate customer satisfaction in the cloud was presented, which took the service
level agreements into account. However, these methods have not considered the actual
factor that SD values have varied with various time intervals changing.

Customer preference analysis has aroused wide attentions, including modeling user
preference by mutual information in a statistical framework [6], the context-aware user

Fig. 10. Performance comparisons based on the amount of time intervals in the tensor
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preference study [2]. Nevertheless, the important factor time has been weakened, which
needs to be enhanced in the user preference analysis.

Besides, several researchers recognized information asymmetry in the service field
[12]. Then, trust was proposed as the important source of value in service relationships
characterized by high degrees of information asymmetry in [5]. And two types of
trust-based approach for reducing information asymmetry ware presented in [13].

7 Conclusions and Future Work

This paper proposes the customer satisfaction model on contract-based services. In the
model, a novel SD calculation method is presented. Besides, we adopt the box-plot
method and colorful frequency histogram to sense the time-aware customer prefer-
ences. Then, time-aware personalized SD values can be calculated, including several
missing values due to information asymmetry. To predict the missing values, the
SDPred algorithm is proposed, which is the first to research time-aware personalized
satisfaction. Based on WS-Dream and the customers’ service usage history, the veri-
fication and comparison experiments are conducted, which verify the effectiveness of
our methods. And we further research the impact of parameter settings in the SDPred
algorithm, which provides more evidence to illustrate the superiority of our method.

Some future work is summarized shown in Fig. 1, including (1) to research the
changing trends of services over the time; (2) to further focus on the time-aware cus-
tomer preferences; (3) to recommend services for customers based on the work (1), (2).
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