
A Split-Merge DP-means Algorithm to Avoid
Local Minima

Shigeyuki Odashima(B), Miwa Ueki, and Naoyuki Sawasaki

Fujitsu Laboratories Ltd., Kawasaki, Japan
{s.odashima,ueki.miwa,sawasaki.naoyuk}@jp.fujitsu.com

Abstract. We present an extension of the DP-means algorithm, a hard-
clustering approximation of nonparametric Bayesian models. Although a
recent work [6] reports that the DP-means can converge to a local mini-
mum, the condition for the DP-means to converge to a local minimum is
still unknown. This paper demonstrates one reason the DP-means con-
verges to a local minimum: the DP-means cannot assign the optimal
number of clusters when many data points exist within small distances.
As a first attempt to avoid the local minimum, we propose an extension
of the DP-means by the split-merge technique. The proposed algorithm
splits clusters when a cluster has many data points to assign the num-
ber of clusters near to optimal. The experimental results with multiple
datasets show the robustness of the proposed algorithm.

Keywords: Clustering · DP-means · Small-variance asymptotics

1 Introduction

As we enter the age of “big data”, there is no doubt that there is an increasing
need for clustering algorithms that summarize data autonomously and efficiently.
Nonparametric models are prospective models to address this need because of
their flexibility. Unlike traditional models with fixed model complexity as a para-
meter, nonparametric Bayesian models [17] dynamically determine the model
complexity, i.e., the number of model components, in accordance with the data.
The traditional nonparametric Bayesian model often needs a high computa-
tion time because the methods need sampling algorithms or variational infer-
ence for model optimization; however, the recently introduced DP-means algo-
rithm [20] can determine model complexity with less computational cost. The
DP-means uses a technique named small-variance asymptotic (SVA) for non-
parametric Bayesian models and derives a hard-clustering algorithm similar to
Lloyd’s k-means algorithm. The DP-means automatically determines the num-
ber of clusters and cluster centroids efficiently without sampling methods or
variational inference techniques.

Convergence to a local minimum is a well-known problem in hard-clustering
algorithms, especially in k-means clustering. Convergence to a local minimum of
the k-means occurs when the initial clusters are assigned to close data points.
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part II, LNAI 9852, pp. 63–78, 2016.
DOI: 10.1007/978-3-319-46227-1 5

64 S. Odashima et al.

Fig. 1. Local minima of clustering algorithms. (a) The problem of the local minimum
of the k-means is well-known; the k-means converges to a local minimum when initial-
ization of clusters is not appropriate. (b) The DP-means is believed to be robust for
this type of local minimum because it assigns new clusters when the new data points
are distant from existing clusters. (c) However, as shown in this paper, the DP-means
has a different type of local minimum; the DP-means cannot assign the optimal number
of clusters when data points exist within small distances (Color figure online)

For example in Fig. 1(a), if the initial two clusters are assigned to the left data
points, the final solution can converge to the two clusters of the upper data points
(green) and lower data points (red), although the preferred clustering solution
is left data points and right data points. This convergence occurs because the
k-means assigns the data points to the nearest clusters, so if the cluster initial-
ization is inappropriate, the clustering solution converges to a local minimum.
Therefore, initialization to avoid converging to a local minimum is an important
step for the k-means algorithms, such as the k-means++ algorithm [4].

The DP-means also assigns the data points to the nearest clusters but gen-
erates new clusters when the distances between specific data points and existing
clusters are large (Fig. 1(b)). Therefore, the DP-means is believed to be robust
for convergence to local minima. However, a recent paper [6] reports that the
DP-means can converge to a local minimum with fewer than the optimal number
of clusters. The paper has a huge impact, but the condition for the DP-means
to converge to a local minimum is still unknown.

In this paper, we present an analysis of local minima of the DP-means. As
shown later, the original DP-means can converge to local minima because the
DP-means cannot assign the optimal number of clusters when the many data
points exist within small distances. For example, in Fig. 1(b), the solution with
the lowest cost (i.e. the preferred solution for the DP-means) is not that with
two clusters when the number of data points is large; a solution with lower cost
can be acquired when the number of clusters is six (Fig. 1(c)).

To avoid these local minima, we propose an extension of the DP-means by the
split-merge technique. The proposed algorithm splits clusters when the original
DP-means converges to a local minimum to obtain a good solution1 with a near-
optimal number of clusters.

1 In this paper, the quality of clustering is measured by the DP-means cost function
value defined in Sect. 2.1. Although other clustering evaluation metrics exist, such
as NMI scores or the Rand index, these metrics depend on the hyperparameter of
the DP-means. Note that a similar evaluation metric is commonly used in streaming
clustering [1,2,6] and robust k-means algorithms [4,5].

A Split-Merge DP-means Algorithm to Avoid Local Minima 65

1.1 Related Work

DP-means and extensions. Like nonparametric Bayesian models, the DP-
means has many extensions. For example, the DP-means (i.e. the small-variance
asymptotic technique for nonparametric Bayesian models) has been extended
to the hard-clustering version of HDP topic models [19], dependent Dirichlet
process [8], Bayesian hierarchical clustering [22], nonparametric Bayesian sub-
space clustering [31], infinite hidden Markov models [26], and infinite support
vector machines [30]. Also, the DP-means itself has been extended to efficient
algorithms, such as the distributed DP-means algorithm [25], one-pass online
clustering for tweet data [28], and approximate clustering with a small subset
named a coreset [6]. Although the concept of the DP-means has been extended
to many algorithms, the condition of the local minimum of the DP-means is still
unknown. To the best of our knowledge, this paper provides the first insight into
conditions when the DP-means converges to a local minimum.

Hard-clustering algorithms. The Lloyd’s k-means algorithm [24] was pro-
posed half a century ago, but it is still popular for data mining [32]. Although
the original k-means algorithm is a batch clustering algorithm, the k-means
algorithm has been extended to online settings [12,23] and streaming settings
[1,2,27]. These algorithms are mainly based on the k-means++ algorithm [4]
with analysis of the local minimum of k-means clustering. Therefore, analysis
of the local minimum of the DP-means provides useful information for future
efficient DP-means algorithms.

Split-merge clustering algorithms. Split-merge techniques have been used
in clustering including hard-clustering [3,10,14,33]. Recently, split-merge algo-
rithms have been extended to nonparametric Bayesian models optimized by
MCMC [9,11,18,29] and by variational inference [7]. This paper is the first
to apply split-merge techniques to hard-clustering methods of nonparametric
Bayesian models with small-variance asymptotics.

The contributions of this paper are: (1) analysis of a condition of converging
to a local minimum for the DP-means, (2) proposal of a novel DP-means algo-
rithm with split-merge techniques to avoid converging to a local minimum, and
(3) evaluation of the efficiency of the proposed algorithms with several datasets
including real-world data.

2 Analysis of Existing DP-means Approaches

2.1 DP-means Clustering Problem

First, we provide a brief overview of existing DP-means algorithms. The cluster-
ing problem is selecting cluster centroids so as to minimize the distance between
each data point and its closest cluster. Solving this problem exactly is NP-hard
even with two clusters [15], so a local search method known as Lloyd’s k-means
algorithm [24] is widely used to acquire clustering solutions for a fixed number
of clusters. The DP-means [20] (Algorithm 1) is a local search method to acquire

66 S. Odashima et al.

clustering solutions for a variable number of clusters. Like Lloyd’s k-means, the
DP-means optimizes clusters by iteratively (a) assigning each data point xi to
clusters and (b) updating the centroids of each cluster by using assigned data
points. However, unlike the k-means, the number of clusters optimized by the
DP-means is not fixed. With hyperparameter λ to control clustering granular-
ity, the number of clusters is automatically determined in accordance with data
complexity.

In one view, clustering problems can be regarded as optimization problems
that minimize objective functions between data points and extracted clusters.
Similar to the k-means, the DP-means monotonically decreases the following
objective function, which is called the DP-means cost function:

costDP (X , C) =
∑

x∈X
min
µ∈C

||x − μ||2 + λ2k (1)

Here, X ∈ R
d×n is a set of n data points with d feature dimensions, C ∈ R

d×k

is a set of cluster centroids, and k is the number of clusters. The first term of
Eq. (1) represents the quantization error when approximating data by clusters
as the k-means objective function. The second term represents penalization of
the number of clusters to avoid over-fitting data with too many clusters.

The DP-means can easily be extended to online algorithms like an online
extension of Lloyd’s k-means [12]. Algorithm 2 shows a naive online extension
of the DP-means algorithm. Instead of clustering all data at once, the online
DP-means algorithm successively updates clusters as new data is loaded.

Because the batch DP-means and the online DP-means needs to perform a
nearest-neighbor search for all existing clusters with each data point, the major-
ity of computation time is consumed by this search step. Therefore, the time
complexity of the batch DP-means is O(knl) (l is the number of iterations to
convergence), and that of the online DP-means is O(kn). Note that because the
computation time depends on the number of clusters, the computation time of
the online DP-means can be larger than that of the batch DP-means.

The batch and online DP-means algorithms may assign new clusters when a
new data point is loaded, so intuitively these algorithms seem to be strongly
affected by the order of the data points. However, the problem is not data
order: convergence to a local minimum can occur in both the existing DP-means
approaches regardless of the data order, as shown in the following section.

2.2 Analysis of DP-means Algorithms

First, we provide a simplified condition to analyze DP-means clustering.

Definition 1 (easy case for DP-means clustering). We say the data is in the
“easy case” for DP-means clustering when the maximum of the squared Euclid-
ean distance of data is lower than λ2.

In the easy case, the data points exist within the hypersphere whose diameter
is λ (Fig. 2(a)). Note that even if the data points have multiple clusters, when

A Split-Merge DP-means Algorithm to Avoid Local Minima 67

Algorithm 1. Batch DP-means
Input: Data X = {x1, ..., xn},

threshold λ
Output: Centroids C = {μ1, ..., μk}
Init. C ← mean(xi|xi ∈ X), k = 1.
Init cluster indicators zi = 1 for all
i = 1, ..., n
while not converged do

for xi ∈ X do
c ← arg minc ||xi − μc||2
if ||xi − μc||2 > λ2 then

C ← C ∪ xi

set k = k + 1, zi ← k

else
set zi ← c

for μc ∈ C do
μc ← mean(xi|zi = c)

Algorithm 2. Online DP-
means
Input: New data x, threshold λ
Input: Centroids C = {μ1, ..., μk}
Input: The number of assigned

data to each cluster
w = {w1, ..., wk}

Output: Updated C and w
c ← argminc||x − μc||2
if ||x − μc||2 > λ2 then

C ← C ∪ x
w ← w ∪ {1}

else

μc ← wcµc+x

wc+1

wc ← wc + 1

the distance between clusters is sufficiently large, each individual cluster can be
considered as belonging to the easy case. In this case, the solutions of the batch
and online DP-means are the same, as shown in the following lemma.

Lemma 1. In the easy case, the solutions of the batch DP-means and the online
DP-means are always one cluster whose centroid is the mean of the data points
regardless of data order.

Proof. For the batch DP-means, the initial centroid is the mean of the data
points regardless of data order by initialization. In this case, all data points
are assigned to this centroid because the squared Euclidean distance between
data points is less than λ2. For the online DP-means, the initial centroid is
the top of data, and all data points are assigned to this cluster because the
squared Euclidean distance between data points is less than λ2. In this case, the
coordinates of the centroid converge to the mean of the data points regardless
of the data order. ��

Lemma 1 suggests the DP-means always converges to the solution with one
cluster in easy cases. However, as shown in the following lemma, the solution
with one cluster is not always that with the lowest DP-means cost.

Lemma 2. In easy cases, there exists the case when the DP-means cost with
two clusters is less than that with one cluster.

Proof. Assume that λ2 = 100 and the data consists of 1000 points on (−1, 0)
and 1000 points on (1, 0), as shown in Fig. 2(b). This is an easy case. When the
solution has one cluster, the centroid of the cluster is (0, 0). In this case, the DP-
means cost is costDP (X , C1) = 2000×12+100×1 = 2100. However, if the solution

68 S. Odashima et al.

Fig. 2. Analysis of DP-means. (a) Easy case. Although DP-means always converges
solution with one cluster in easy case, (b) there exists case of solution with two clus-
ters with less DP-means cost. (c) This characteristic is natural because nonparametric
Bayesian models change model complexity according to data complexity.

has two clusters on (−1, 0) and (1, 0), the DP-means cost is costDP (X , C2) =
1000 × 02 + 1000 × 02 + 100 × 2 = 200. Therefore, in this case, the lower DP-
means cost is acquired when the number of clusters is two. ��

Then, we can find that the DP-means can converge to a local minimum.

Theorem 1. In easy cases, the batch DP-means and the online DP-means can
converge to a local minimum with fewer than the optimal number of clusters.

Proof. By Lemma 2, there exists a case when the number of optimal clusters
is more than one. However, by Lemma 1, the batch DP-means and the online
DP-means always converge to the solution with one cluster. Therefore, in this
case, the DP-means can converge to a local minimum with fewer clusters than
the optimal number.

This result matches a previous experimental result [6]. One reason for con-
verging to the local minimum is that the DP-means ignores the number of data
points assigned to clusters. For example, if the data consists of 10 points with
(−1, 0) and 10 points with (1, 0), the cost with one cluster is 120, and the cost
with two clusters is 210, so the optimal solution is one cluster. Therefore, as sug-
gested above, the optimal solution changes as the number of data points grows.
Figure 2(c) shows an intuitive interpretation of this result. On the left and the
right of this figure, the data points are generated by a mixture of two Gaussian
distributions centered at (−1, 0) and (1, 0), but the numbers of data points are
different. When the number of data points is small (Fig. 2(c) left), the boundary
between two clusters is vague. However, as the number of data points grows
(Fig. 2(c) right), the boundary between two clusters becomes clear. This is the
same characterization as for nonparametric Bayesian models, which is original
distribution of the DP-means: the number of clusters is determined based on the
complexity of data. Therefore, the DP-means should assign more clusters when
the complexity of data grows with many data points.

A Split-Merge DP-means Algorithm to Avoid Local Minima 69

3 Split-Merge DP-means

In this section, we discuss an extension of the DP-means named split-merge
DP-means to avoid a local minimum with the split-merge technique. Based on
the analysis in the previous section, the proposed algorithm splits clusters when
the clusters contain many data points. Also, the proposed algorithm merges
insufficiently split clusters.

In particular, as the first step to avoid a local minimum, we derive a split-
merge DP-means with the following approximations2: (a) the distributions of
clusters are approximated as uniform distributions, (b) the algorithm is executed
with a one-pass update rule, and (c) the cluster is split in one dimension3. In
the following section, we discuss the details of the proposed algorithm.

3.1 Condition for Splitting One Cluster into Two

Here, we provide the condition for splitting clusters to acquire the optimal DP-
means cost. We assume that the data X ∈ R

d×w consists of w points generated
by an origin-centered uniform distribution of range σ = (σ1, ..., σd) ∈ R

d. In the
following, we consider two cases. The first is when the data is not split, i.e., the
solution is one cluster. The second is when the data is split in dimension j, i.e.,
the solution is two clusters. When the data is not split, the DP-means solution
is one cluster on C1 = {μ1} = {(0, ..., 0)} with w data points. When the data is
split on dimension j, the DP-means solution is two clusters on C2 = {μ21,μ22} =
{(0, ...,−σj/2, ..., 0), (0, ..., σj/2, ..., 0)} with w/2 points on each cluster because
of assumption of a uniform distribution.

Below, we provide the condition when the DP-means cost with two clusters is
less than the DP-means cost with one cluster. Now, we consider the expectation
values of DP-means cost with one cluster Exp(costDP (X , C1)) and two clusters
Exp(costDP (X , C2)). Because of assumption of a uniform distribution, we can
compute the expectation value of the squared Euclidean distance between a
data point and the cluster center in dimension l when the cluster is not split, as
Exp((xl − μl)2) =

∫ σl/2

−σl/2
1

σl/2−(−σl/2)
x2dx = σ2

l /12. Therefore, we have

Exp(costDP (X , C1)) = w · Exp(
∑

x∈X
||x − μ1||2) + λ2 · 1

= w(
σ2
1

12
+ ... +

σ2
d

12
) + λ2 (2)

2 Although the current form of the proposed algorithm has strong approximations,
as shown in the experimental results (Sect. 4), the proposed algorithm reduces the
DP-means cost in many situations. Therefore, the basic idea of the proposed method
(i.e. splitting clusters with many data points to avoid local minima of DP-means) is
useful for extending more exact algorithms without these approximations.

3 Although the split operation is ideally performed in multiple dimensions, naive selec-
tion from multiple dimensions needs O(2d) time. Therefore, for computational effi-
ciency, we limit the splitting dimension to only one dimension.

70 S. Odashima et al.

When the cluster is split in dimension j, the range of distance between the
data point and the cluster center is reduced to σj/2. Therefore, the expectation
value of the squared Euclidean distance between a data point and the cluster
center in dimension j is reduced to

∫ σj/4

−σj/4
1

σj/4−(−σj/4)x
2dx = σ2

j /48. Therefore,

Exp(costDP (X , C2)) =
w

2
· Exp(

∑

x∈X
||x − μ21||2) +

w

2
· Exp(

∑

x∈X
||x − μ22||2) + 2λ2

= w(
σ2
1

12
+ ... +

σ2
j

48
+ ... +

σ2
d

12
) + 2λ2 (3)

Note that because the cluster range changes only dimension j, the expec-
tation value of distance in each dimension except dimension j is the same
value as that of one cluster. Then, the condition in which the solution with
two clusters is better than that with one cluster is when Exp(costDP (X , C1)) >
Exp(costDP (X , C2)). Therefore, by using Eqs. (2) and (3), we have the condition
to split the cluster in dimension j:

w > 16
(

λ

σj

)2

(4)

Equation (4) means (a) clusters with many data points should be split and
(b) clusters with a wide range should be split. Also, when w is fixed, this condi-
tion is first satisfied by the dimension with maximum range. Therefore, we can
determine the dimension to split clusters by finding out the dimension with the
maximum range of clusters. Note that the derived splitting condition is based
only on the expectation values of the distance (i.e. the second moment) between
clusters and data points. Therefore, this analysis can easily be extended when the
cluster is approximated to other distributions, such as Gaussian distributions.

3.2 Split DP-means

In the following section, we provide an novel online DP-means algorithm by split-
ting clusters on the basis of the analysis. The basic idea of the proposed online
DP-means algorithm is storing the range of each cluster instead of each data
point. The range of clusters can easily be updated and split with online update
rules. Like the online DP-means algorithm, the proposed algorithm incremen-
tally updates clusters with new data points. However, unlike existing DP-means
algorithms, the proposed algorithm splits massive clusters that satisfy Eq. (4)
to avoid converging to a local minimum.

Here, we provide online update rules when adding a data point and when
splitting clusters. Consider the cluster C = (μ, w,σ,p, q), where μ ∈ R

d is the
cluster centroid, w ∈ R is the number of data points assigned to the cluster, σ ∈
R

d is the range of the cluster, and p ∈ R
d and q ∈ R

d are the minimum values
and the maximum values of the data points assigned to the cluster, respectively.
When a new piece of data x is added to the cluster, the cluster can be updated
in the following manner,

A Split-Merge DP-means Algorithm to Avoid Local Minima 71

μnew =
woldμold + x

wold + 1
, wnew = wold + 1,

σnew = qnew − pnew, pnew = min(pold,x), qnew = max(qold,x) (5)

When the splitting condition of Eq. (4) is satisfied in dimension j, the pro-
posed algorithm splits cluster C into two clusters, CL = (μL, wL,σL,pL, qL) and
CR = (μR, wR,σR,pR, qR), centered on the centroid μj of C in dimension j.
The values of each cluster are computed in the following manner:

μL,m =

{
(μm + pm)/2 (m = j)
μm (m �= j)

, μR,m =

{
(μm + qm)/2 (m = j)
μm (m �= j)

wL = w
μj − pj

σj
, σL = qL − pL, wR = w

qj − μj

σj
, σR = qR − pR

pL,m = pm, qL,m =

{
μm (m = j)
qm (m �= j)

, pR,m =

{
μm (m = j)
pm (m �= j)

, qR,m = qm (6)

Here, μL,m, μR,m, pL,m, pR,m, qL,m, and qR,m are the values of μL,μR,pL,
pR, qL, and qR in dimension m, respectively. Note that because the real data
does not follow uniform distributions, splitting clusters causes approximation
errors due to the assumption of uniform distribution. Therefore, reducing the
number of cluster splits is desirable. Therefore, in our implementation, if a new
point is outside the cluster and the splitting condition of Eq. (4) is satisfied, the
point is regarded as a new cluster instead of splitting the cluster. Also, note that
as discussed in Sect. 3.1, when selecting the dimension to split the cluster, we
select the dimension with the maximum range.

Algorithm 3 shows the derived algorithm. Like the online DP-means, the
majority of computation time of split DP-means is consumed by the nearest-
neighbor step. Therefore, the time complexity of split DP-means is O(kn).

3.3 Merge DP-means

The split DP-means (Algorithm 3) uses only the local information of the data,
so the solution might have much more clusters than the optimal number. Here,
we discuss the condition to merge overestimated clusters.

Merging two clusters. First, we provide the condition for merging two
clusters. Consider two clusters: CL = (μL, wL,σL,pL, qL) and CR =
(μR, wR,σR,pR, qR). Like the discussion in Sect. 3.1, the expected value of the
DP-means cost with two clusters Exp(costDP (C2)) can be computed as follows:

Exp(costDP (C2)) = wL(
σ2

L,1

12
+ ... +

σ2
L,d

12
) + wR(

σ2
R,1

12
+ ... +

σ2
R,d

12
) + 2λ2 (7)

72 S. Odashima et al.

Algorithm 3. Split DP-means
Input: New data x, threshold λ
Input: Clusters C = {C1, ..., Ck}, where Cm = (μm, wm, σm, pm, qm)
Output: Updated clusters C
Ĉ ← ∅, d̂2 ← λ2

for Cm ∈ C do
if x is outside Cm and Eq. (4) is satisfied when x is added to Cm then

continue

if ||x − μm||2 > d̂2 then

Ĉ ← Cm, d̂2 = ||x − μm||2
if Ĉ = ∅ then // New cluster

C ← C ∪ Cnew, where Cnew = (x, 1,0, x, x)
else // Update cluster

update Ĉ with x by Eq. (5)

if Ĉ satisfies Eq. (4) then // Split cluster

split Ĉ by Eq. (6)

Algorithm 4. Merge DP-means
Input: Cluster centroids C = {μ1, ..., μn} with w = {w1, ..., wn}, threshold λ
Output: Cluster centroids C′ = {μ′

1, ..., μ
′
k}

Compute Δcostm for all pairs of clusters with Eq. (10)
for all i, μ′

i = μi and zi = i // Initialize cluster assignments

while min(Δcostm) < 0 do
(k, l) ← argmink,l(Δcostm(Ck, Cl))

zl = k, C′ ← C′ \ {μ′
l} // Merge cluster

μ′
k ←

∑
{i|zi=k} wiµi
∑

{i|zi=k} wi
// Recompute centroid

recompute Δcostm for all pairs of existing clusters with Eq. (10)

When the two clusters are merged to one cluster, the merged centroid
becomes μM = wLµL+wRµR

wL+wR
. In this case, the difference vectors of centroids

between cluster CL, CR and the merged cluster CM are δL = (δL,1, ..., δL,d) =
(μM,1−μL,1, ..., μM,d−μL,d) and δM = (δM,1, ..., δM,d) = (μR,1−μM,1, ..., μR,d−
μM,d). Under the assumption of a uniform distribution, the expectation value of
the squared Euclidean distance between a data point in cluster C and the center
of the merged cluster CM in dimension l is computed as Exp((xl − μm)2) =∫ δl+σl/2

δl−σl/2
1

δl+σl/2−(δl−σl/2)
x2dx = δ2l + σ2

l /12. Therefore, the expectation value of
the DP-means with one merged cluster Exp(costDP (C1)) is

Exp(costDP (C1)) = wL{(δ2L,1 + ... + δ2L,d) + (
σ2

L,1

12
+ ... +

σ2
L,d

12
)}

+wR{(δ2R,1 + ... + δ2R,d) + (
σ2

R,1

12
+ ... +

σ2
R,d

12
)} + λ2 (8)

The condition in which the solution with one merged cluster has lower
cost than that with two clusters is when Exp(costDP (C1)) < Exp(costDP (C2)).

A Split-Merge DP-means Algorithm to Avoid Local Minima 73

Therefore, by using Eqs. (7) and (8), we have the condition to merge the clusters:

wL(δ2L,1 + ... + δ2L,d) + wR(δ2R,1 + ... + δ2R,d) − λ2 = wLd2L + wRd2R − λ2 < 0 (9)

Here, d2L and d2R are the squared Euclidean distance between the cluster
centers of CL and CM , CR and CM , respectively.

Merging multiple clusters. Because the original cluster information is lost
if we naively replace the clusters CL and CR with the merged clusters CM , it
is preferable to compute merged clusters with original clusters extracted by the
split DP-means. Below, we discuss the merging condition when using multiple
clusters extracted by the split DP-means.

Consider a cluster Ck that is originally contained in the cluster Cold with
the centroid μold and then contained in the cluster Cnew with the centroid
μnew by a merge operation. Like the discussion of merging two clusters, the
expectation value of the squared Euclidean distance of the dimension l when
Ck is contained by Cold is Exp((xl − μold,l)2) = d2old + σ2

l /12 and that when
Ck is contained by Cnew is Exp((xl − μnew,l)2) = d2new + σ2

l /12, where d2old and
d2new are the squared Euclidean distance between the centroids of C and Cold,
and that between the centroids of C and Cnew, respectively. Therefore, the cost
improvement of merging two clusters Δcostm(CL, CR) is computed as follows:

Δcostm(CL, CR) =
∑

Ci∈CL

wi(d2new,i−d2old,i)+
∑

Ci∈CR

wi(d2new,i−d2old,i)−λ2 (10)

If Δcostm(CL, CR) < 0, the DP-means cost function improves by applying
the merge operation. Algorithm 4 shows the derived algorithm. Our algorithm
greedily merges the clusters with the lowest Δcostm(CL, CR) value to improve
the total DP-means cost.

Figure 3 shows an example result of the split-merge DP-means. In this exam-
ple, the data points are generated by five Gaussians (two Gaussians in the left
side, three Gaussians in the right side). When the number of data points is small,
the split DP-means extracts clusters in the same way as the original DP-means
(Fig. 3(a)). However, when the number of data points grows, the split DP-means
splits clusters even when the data points are within a circle with diameter λ
as shown by the gray dotted circles in Fig. 3(b). Finally, the merge DP-means
merges insufficiently split clusters (Fig. 3(c)).

4 Experiments

In this section, we validate the performance of the proposed algorithms. Although
we should determine λ2 for evaluation, to determine the “correct” value of λ2 is
impossible because the suitable granularity of clusters differs in each application.
Therefore, we conducted experiments with multiple λ2 for feasible results, i.e.,
so as not to generate too many clusters or too few clusters.

74 S. Odashima et al.

Fig. 3. Example result of split-merge DP-means for synthetic 2D data.

Datasets. We compare our algorithms with the following real data.

(1) USGS [16] contains the locations of earthquakes around the world between
1972 to 2010 mapped to 3D space with WGS 84. The value of each coordinate
is normalized by the radius of the earth. USGS has 59, 209 samples with three
dimensions. We use λ2 = [0.1, 0.32, 1.0, 3.2].

(2) MNIST [21] contains 70,000 images of handwritten digits of size 28×28 pixels.
We transform these images to 10 dimensions by using randomized PCA with
whitening. MNIST has 70, 000 samples with 10 dimensions. We use λ2 =
[8.0 × 100, 4.0 × 101, 2.0 × 102, 1.0 × 103].

(3) KDD2004BIO [13] contains features extracted from native protein sequences.
KDD2004BIO has 145,751 samples with 74 dimensions. We use λ2 = [3.2 ×
107, 1.0 × 108, 3.2 × 108, 1.0 × 109].

(4) SUN SCENES 397 [34] is a widely used image database for large-scale image
recognition. We use GIST features extracted from each image for evaluation.
SUN SCENES 397 has 198, 500 samples with 512 dimensions. We use λ2 =
[0.250, 0.354, 0.500, 0.707].

Note that our experimental settings include “reasonable” λ2 parameters used
in a related work [6] (USGS with λ2 = 1.0, MNIST with λ2 = 1.0×103, KDD2004BIO
with λ2 = 1.0 × 109), which are determined by dataset statistics. Additionally,
to evaluate non-easy cases, we also conducted evaluations with smaller λ2.

Algorithms. We compared the DP-means costs with the following algorithms:

(1) BD: Batch DP-means [20] (Algorithm 1).
(2) OD: Online DP-means (Algorithm 2).
(3) SD (proposed): Split DP-means (Algorithm 3).
(4) SMD (proposed): Split-merge DP-means (Algorithms 3 and 4)4.
4 We first applied split DP-means to the whole data in a one-pass settings and then

applied merge DP-means to the result of split DP-means.

A Split-Merge DP-means Algorithm to Avoid Local Minima 75

All algorithms were implemented by Python and ran in a single thread on
an Intel Xeon machine with eight 2.5 GHz processors and 32 GB RAM. We
measured the DP-means convergence when the change in cost was less than
0.01 or the number of iterations was over 300. We ran experiments for each
data set with five different orders of data (the original order and four random
permutations).

Results. Tables 1, 2, 3 and 4 show comparison results for the USGS data, MNIST
data, KDD2004BIO data, and SUN SCENES 397 data, respectively. These tables
show the average lowest DP-means cost with a 95% confidence interval and
the average computation time with five different data orders (±0 means the
clustering results are the same in the five data orders).

As shown by the results, the proposed split-merge DP-means algorithm pro-
vided the solutions with lower cost than the existing DP-means algorithms for
all datasets (including “reasonable” λ2 parameters [6]). Also, the result shows
that the solutions of the batch DP-means result are the same in five different
data orders in several cases (e.g. λ2 = 1.0 × 103 with MNIST data). These cases
can be interpreted as when the batch DP-means converges to a local minimum.
But even in these cases, the split-merge DP-means solutions have lower DP-
means cost. Therefore, the proposed algorithm avoided converging to the local
minima where the original DP-means converged. Also, as expected, the solutions
provided by the split-merge DP-means have lower cost than those provided by
the solutions of the split DP-means algorithm. Note that the split DP-means
increases the computation time by more than the batch DP-means does in many
cases because the solution of split DP-means has more clusters than that of the
batch DP-means. For example, in the case of MNIST with λ2 = 40, though the

Table 1. DP-means cost and runtime comparison for USGS data.

λ2 Cost (×102) Computation time (s)

BD OD SD SMD BD OD SD SMD

0.1 4.68 ± 0.26 7.06 ± 1.13 1.54 ± 0.03 1.20 ± 0.01 2217.9 45.9 525.6 604.4

0.32 18.0 ± 4.31 24.8 ± 3.35 3.39 ± 0.15 2.50 ± 0.06 507.1 17.2 404.1 446.6

1.0 64.1 ± 3.15 80.7 ± 23.6 7.02 ± 0.40 5.07 ± 0.20 119.8 6.3 308.8 328.5

3.2 460 ± 0 422 ± 105 14.5 ± 0.22 10.2 ± 0.22 1.7 2.1 234.3 242.5

Table 2. DP-means cost and runtime comparison for MNIST data.

λ2 Cost (×105) Computation time (s)

BD OD SD SMD BD OD SD SMD

8.0 × 100 1.31 ± 0.01 1.73 ± 0.04 1.14 ± 0.01 1.12 ± 0.00 58255.7 134.5 1739.0 2379.1

4.0 × 101 7.00 ± 0 6.91 ± 0.26 1.86 ± 0.07 1.71 ± 0.04 2.1 2.6 1006.0 1180.3

2.0 × 102 7.00 ± 0 7.00 ± 0 2.78 ± 0.13 2.50 ± 0.07 2.1 2.4 440.2 458.4

1.0 × 103 7.01 ± 0 7.01 ± 0 3.96 ± 0.15 3.60 ± 0.12 2.1 2.4 154.4 155.7

76 S. Odashima et al.

Table 3. DP-means cost and runtime comparison for KDD2004BIO data.

λ2 Cost (×1011) Computation time (s)

BD OD SD SMD BD OD SD SMD

3.2× 107 1.91± 0.01 3.37± 0.13 1.57± 0.05 1.45± 0.03 30349.0 49.6 2340.9 2522.5

1.0× 108 2.75± 0.00 4.68± 0.03 2.12± 0.12 1.86± 0.06 10810.1 27.1 1543.8 1593.9

3.2× 108 3.19± 0.04 5.69± 0.34 2.89± 0.19 2.45± 0.09 7723.6 20.2 948.9 960.8

1.0× 109 7.33± 0.01 9.27± 3.62 4.49± 0.75 3.59± 0.43 255.5 10.2 661.3 665.5

Table 4. DP-means cost and runtime comparison for SUN SCENES 397 data.

λ2 Cost (×104) Computation time (s)

BD OD SD SMD BD OD SD SMD

0.250 1.15± 0.01 1.37± 0.01 1.13± 0.00 1.13± 0.00 279623.7 605.5 5084.7 5268.8

0.354 1.25± 0.01 1.47± 0.02 1.17± 0.00 1.17± 0.00 101439.4 173.3 4223.2 4346.9

0.500 1.41± 0.02 1.56± 0.04 1.21± 0.00 1.21± 0.00 12746.6 58.1 3518.2 3593.1

0.707 1.79± 0 1.81± 0.01 1.24± 0.01 1.24± 0.01 421.6 23.1 2966.5 3013.5

Table 5. Numbers of clusters for each dataset in original data order. Note that this
table uses the same settings as Bachem et al. [6].

Dataset BD OD SD SMD Optimal [6]

USGS (λ2 = 1.0) 8 6 529 312 156

MNIST (λ2 = 1.0 × 103) 1 1 140 87 65

KDD2004BIO (λ2 = 1.0 × 109) 4 3 202 122 55

split DP-means solution had only one cluster, the split DP-means solution had
average 1700 clusters.

Note that though the DP-means solutions of the proposed algorithms are
worse than Bachem’s recently reported result using a grid search of cluster num-
bers on the coresets [6] (2.50×1011 DP-means cost for KDD2004BIO dataset with
λ = 1.0 × 109), Bachem’s algorithm requires an exhaustive search to determine
the optimal number of clusters. In contrast, the proposed algorithms do not
require an exhaustive search for the number of clusters.

Table 5 shows the number of clusters extracted by each algorithm. In this
table, “optimal” is the optimal number of clusters reported by the grid-search
k-means algorithm of the number of clusters [6]. As reported in this study, the
batch and online DP-means tend to converge to the local minimum due to there
being too few clusters (less than 1/13 of the optimal number). The proposed
algorithms extract the number of clusters nearer the optimal number (the result
by the split-merge DP-means is within 2.5 times the optimal number). Although
the online split DP-means result tends to extract more clusters than the optimal
result, refinement with the split-merge DP-means reduces overestimated clusters.

A Split-Merge DP-means Algorithm to Avoid Local Minima 77

5 Conclusion

In this paper, we discussed the condition where the DP-means can converge to a
local minimum and then showed an extension of the DP-means. We provided an
analysis for the condition where the DP-means converges to a local minimum:
though more clusters are needed when the number of data points grows, the
original DP-means cannot assign the optimal number of clusters. To avoid con-
verging to these local minima, we derived an extension of the DP-means with
the split-merge technique. We empirically showed that the proposed algorithm
provides solutions with lower cost values.

The limitations of the current form of our algorithm are (a) data points are
approximated as a specific distribution (uniform distribution), (b) the informa-
tion of detailed data points is lost due to online update rules, and (c) the split
operation is performed only in one dimension. In the future, we hope to extend
the proposed algorithm to an more exact one without these approximations.

References

1. Ackermann, M., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler,
C.: StreamKM++: a clustering algorithm for data streams. J. Exp. Algorithms 17,
2.4:2.1–2.4:2.30 (2012)

2. Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: NIPS
(2009)

3. Appice, A., Guccione, P., Malerba, D., Ciampi, A.: Dealing with temporal and
spatial correlations to classify outliers in geophysical data streams. Inf. Sci. 285,
162–180 (2014)

4. Arthur, D., Vassilvitskii, S.: k-means++: The advantage of careful seeding. In:
SODA (2007)

5. Bachem, O., Lucic, M., Hassani, S., Krause, A.: Approximate k-means++ in sub-
linear time. In: AAAI (2016)

6. Bachem, O., Lucic, M., Krause, A.: Coresets for nonparametric estimation - the
case of DP-means. In: ICML (2015)

7. Bryant, M., Sudderth, E.: Truly nonparametric online variational inference for
hierarchical Dirichlet processes. In: NIPS (2012)

8. Campbell, T., Liu, M., Kulis, B., How, J., Carin, L.: Dynamic clustering via asymp-
totics of the dependent Dirichlet process mixture. In: NIPS (2013)

9. Chang, J., Fisher, J.W.: Parallel sampling of DP mixture models using sub-clusters
splits. In: NIPS (2013)

10. Chaudhuri, D., Chaudhuri, B., Murthy, C.: A new split-and-merge clustering tech-
nique. Pattern Recogn. Lett. 13, 399–409 (1992)

11. Dahl, D.: An improved merge-split sampler for conjugate Dirichlet process mixture
models. University of Wisconsin, Technical report (2003)

12. Dasgupta, S.: Course notes, CSE 291: Topics in unsupervised learning (2008).
http://www-cse.ucsd.edu/∼dasgupta/291/index.html

13. Protein Homology Dataset: KDD Cup 2004 (2004). http://www.sigkdd.org/
kdd-cup-2004-particle-physics-plus-protein-homology-prediction

14. Ding, C., He, X.: Cluster merging and splitting in hierarchical clustering algo-
rithms. In: ICDM (2003)

http://www-cse.ucsd.edu/~dasgupta/291/index.html
http://www.sigkdd.org/kdd-cup-2004-particle-physics-plus-protein-homology-prediction
http://www.sigkdd.org/kdd-cup-2004-particle-physics-plus-protein-homology-prediction

78 S. Odashima et al.

15. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs
via the singular value decomposition. Mach. Learn. 56, 9–33 (2004)

16. Global earthquakes (1.1.1972-19.3.2010): United States Geological Survey (2010).
https://mldata.org/repository/data/viewslug/global-earthquakes/

17. Hjort, N., Holmes, C., Mueller, P., Walker, S. (eds.): Bayesian Nonparametrics:
Principles and Practice. Cambridge University Press, Cambridge (2010)

18. Jain, S., Neal, R.: Splitting and merging components of a nonconjugate Dirichlet
process mixture model. Bayesian Anal. 2, 445–472 (2007)

19. Jiang, K., Kulis, B., Jordan, M.: Small-variance asymptotics for exponential family
Dirichlet process mixture models. In: NIPS (2012)

20. Kulis, B., Jordan, M.: Revisiting k-means: new algorithms via Bayesian nonpara-
metrics. In: ICML (2012)

21. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

22. Lee, J., Choi, S.: Bayesian hierarchical clustering with exponential family: small-
variance asymptotics and reducibility. In: AISTATS (2015)

23. Liberty, E., Sriharsha, R., Sviridenko, M.: An algorithm for online k-means clus-
tering. In: ALENEX (2016)

24. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28,
129–137 (1982)

25. Pan, X., Gonzalez, J., Jegelka, S., Broderick, T., Jordan, M.: Optimistic concur-
rency control for distributed unsupervised learning. In: NIPS (2013)

26. Roychowdhury, A., Jiang, K., Kulis, B.: Small-variance asymptotics for hidden
Markov models. In: NIPS (2013)

27. Shindler, M., Wong, A.: Fast and accurate k-means for large datasets. In: NIPS
(2011)

28. Shirakawa, M., Hara, T., Nishio, S.: MLJ: language-independent real-time search
of tweets reported by media outlets and journalists. In: VLDB (2014)

29. Wang, C., Blei, D.: A split-merge MCMC algorithm for the hierarchical Dirichlet
process (2012). arXiv:1201.1657 [stat.ML]

30. Wang, Y., Zhu, J.: Small-variance asymptotics for Dirichlet process mixture of
SVMs. In: AAAI (2014)

31. Wang, Y., Zhu, J.: DP-space: Bayesian nonparametric subspace clustering with
small-variance asymptotics. In: ICML (2015)

32. Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.,
Ng, A., Liu, B., Yu, P., Zhou, Z., Steinbach, M., Hand, D., Steinberg, D.: Top 10
algorithms in data mining. Knowl. Inf. Syst. 14, 1–37 (2008)

33. Xiang, Q., Mao, Q., Chai, K., Chieu, H., Tsang, I., Zhao, Z.: A split-merge frame-
work for comparing clusterings. In: ICML (2012)

34. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: SUN database: large-scale
scene recognition from abbey to zoo. In: CVPR (2010)

https://mldata.org/repository/data/viewslug/global-earthquakes/
http://arxiv.org/abs/1201.1657

	A Split-Merge DP-means Algorithm to Avoid Local Minima
	1 Introduction
	1.1 Related Work

	2 Analysis of Existing DP-means Approaches
	2.1 DP-means Clustering Problem
	2.2 Analysis of DP-means Algorithms

	3 Split-Merge DP-means
	3.1 Condition for Splitting One Cluster into Two
	3.2 Split DP-means
	3.3 Merge DP-means

	4 Experiments
	5 Conclusion
	References

