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Abstract. A cross-domain recommendation algorithm exploits user
preferences from multiple domains to solve the data sparsity and cold-
start problems, in order to improve the recommendation accuracy. In
this study, we propose an efficient Joint cross-domain user Clustering
and Similarity Learning recommendation algorithm, namely JCSL. We
formulate a joint objective function to perform adaptive user clustering
in each domain, when calculating the user-based and cluster-based sim-
ilarities across the multiple domains. In addition, the objective function
uses an L2,1 regularization term, to consider the sparsity that occurs in
the user-based and cluster-based similarities between multiple domains.
The joint problem is solved via an efficient alternating optimization algo-
rithm, which adapts the clustering solutions in each iteration so as to
jointly compute the user-based and cluster-based similarities. Our exper-
iments on ten cross-domain recommendation tasks show that JCSL out-
performs other state-of-the-art cross-domain strategies.

Keywords: Collaborative filtering · Cross-domain recommendation ·
Alternating optimization

1 Introduction

The collaborative filtering strategy has been widely followed in recommendation
systems, where users with similar preferences tend to get similar recommen-
dations [13]. User preferences are expressed explicitly in the form of ratings or
implicitly in the form of number of views, clicks, purchases, and so on. Represen-
tative collaborative filtering strategies are matrix factorization techniques, which
factorize the data matrix with user preferences in a single domain (e.g., music or
video), to reveal the latent associations between users and items [14]. However,
data sparsity and cold-start problems degrade the recommendation accuracy, as
there are only a few preferences on which to base the recommendations in a
single domain [5,13].
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With the advent of social media platforms and e-commerce systems, such
as Amazon and Epinions, users express their preferences in multiple domains.
For example, in Amazon users can rate items from different domains, such as
books and DVDs, or users express their opinion on different social media plat-
forms, such as Facebook and Twitter. In the effort to overcome the data sparsity
and cold-start problems, several cross-domain recommendation strategies have
been proposed, which exploit the additional information of user preferences in
multiple auxiliary domains to leverage the recommendation accuracy in a target
domain [15]. However, generating cross-domain recommendations is a challeng-
ing task [5,23]; for example, if the auxiliary domains are richer than the target
domain, algorithms learn how to recommend items in the auxiliary domains and
consider the target domain as noise. Moreover, the auxiliary domains might be
a potential source of noise, for example, if user preferences differ in the multi-
ple domains, the auxiliary domains introduce noise in the learning of the target
domain. Therefore, a pressing challenge resides on how to transfer the knowledge
of user preferences from different domains.

In cross-domain recommendation, the auxiliary domains can be categorized
based on users and items overlap, that is, full-overlap, and partial or non
user/item overlap between the domains [5]. In this study, we focus on partial
user overlap between the target and the auxiliary domains, as it reflects on the
real-world setting [8]. Relevant methods, such as [8,20], form user and item clus-
ters to capture the relationships between multiple domains at a cluster level,
thus tackling the sparsity problem; and then weigh the cluster-based and user-
based preferences to generate the top-N recommendations in the target domain.
However, existing cluster-based cross-domain strategies have the following limi-
tations, they form non-adaptive user and item clusters in a common latent space,
when computing the cluster-based associations [8]; or they linearly combine the
cluster-based and user-based relationships in the target domain [20].

1.1 Contribution

In this study, we overcome the aforementioned limitations in a novel approach for
joint cross-domain recommendation based on user adaptive clustering and simi-
larity learning. Our main contribution is summarized as follows, (i) we formulate
an objective function to jointly learn the user-based and cluster-based similar-
ities across multiple domains, while adapting the user clusters in each domain
at the same time. To account for the fact that the user-based and cluster-based
similarities across multiple domains are sparse, we use an L2,1-norm regulariza-
tion to force the similarities to be sparse. (ii) We propose an efficient alternating
optimization algorithm to minimize the joint objective function, thus computing
the user-based similarities across the multiple domains. The user latent factors
are weighted based on the calculated user-based similarities, to generate the final
top-N recommendations. Our experiments on ten cross-domain recommendation
tasks demonstrate the superiority of the proposed approach over competitive
cross-domain strategies.
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The remainder of the paper is organized as follows, Sect. 2 reviews the related
study and in Sect. 3 we formally define the cross-domain recommendation prob-
lem. Section 4 formulates the proposed joint objective function, Sect. 5 presents
our alternating optimization algorithm, and in Sect. 6 we elaborate on how to
generate the top-N cross-domain recommendations. Finally, Sect. 7 presents the
experimental results and Sect. 8 concludes the study.

2 Related Work

Cross-domain recommendation algorithms differ in how the knowledge of user
preferences from the auxiliary domains is exploited, when generating the rec-
ommendations in the target domain [15,23]. For example, various cross-domain
approaches aggregate user preferences into a unified matrix, on which weighted
single-domain techniques are applied, such as user-based kNN [2]. The graph-
based method of [6] models the similarity relationships as a direct graph and
explore all possible paths connecting users or items to capture the cross-domain
relationships. Other methods exploit side information when linking multiple
domains, on condition that the domains are linked by common knowledge, such
as overlap of user/item attributes [4], social tags [1], and semantic networks [12].
However, such side information is not always available [20].

Other cross-domain techniques assume that the auxiliary and target domains
are related by means of shared latent features. Representative methods are tri-
matrix co-factorization, where user and item latent factors are shared between
domains with different user preferences patterns. For example, Pan et al. [22]
transform the knowledge of user preferences from different domains with het-
erogenous forms of user feedback, that is, explicit or implicit feedback, to com-
pute the shared latent features. Hu et al. [10] model a cubic user-item-domain
matrix (tensor), and by applying factorization the respective latent space is con-
structed, based on which the cross-domain recommendations are generated.

More closely related to our approach, cross-domain strategies transfer pat-
terns of user preferences between domains at a cluster level. Li et al. [16] calcu-
late user and item clusters for each domain, and then encode the cluster-based
patterns in a shared codebook; finally, the knowledge of user preferences is trans-
ferred across domains through the shared codebook. Gao et al. [8] compute the
latent factors of user-clusters and item-clusters to construct a common latent
space, which represents the preference patterns e.g., rating patterns, of user
clusters on the item clusters. Then, the common cluster-based preference pat-
tern that is shared across domains is learnt following a subspace strategy, so as
to control the optimal level of sharing among multiple domains. Mirbakhsh and
Ling [20] factorize a cluster-based coarse matrix, to capture the shared interests
among user and item clusters. By factorizing the coarse matrix the preferences
of users on items are computed at a cluster-level. By linearly combining the fac-
torized cluster-based preferences with the individual user preferences, the rec-
ommendation accuracy is improved. However, both [8] and [20] use non-adaptive
clustering strategies, when computing the cluster-based similarities.
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Table 1. Notation.

Symbol Description

d Number of domains

np Number of users in the p-th domain, p = 1, . . . , d

mp Number of items in the p-th domain

Rp ∈ �np×mp User-item interaction (rating) matrix in the p-th domain

Ap ∈ �np×np Adjacency matrix of the users’ graph in the p-th domain

cp Number of user clusters in the p-th domain

Cp ∈ �np×cp Cluster assignment matrix in the p-th domain

Ypk ∈ �cp×ck Cluster-based cross domain matrix between domains p and k

Xpk ∈ �np×nk Cross domain matrix between the users in domains p and k

Meanwhile, there are several graph-based algorithms that perform clustering
on multiple domains such as the studies reported in [3,7], However, these tech-
niques focus on grouping instances e.g., users from different domains, and do not
generate cross-domain recommendations.

3 Problem Formulation

3.1 Notation

Our notation is presented in Table 1. We assume that we have d different
domains, where np and mp are the numbers of users and items in the p-th
domain, respectively. In matrix Rp, we store the user preferences on items, in
the form of explicit feedback e.g., ratings or in the form of implicit feedback
e.g., number of views, clicks, and so on. Based on the matrix Rp, we capture
the user-based similarities in the p-th domain. If users i and j have interacted
with at least a common item q, then users i and j are connected. The connec-
tions/similarities are stored in an adjacency matrix Ap, whose ij-th entries are
calculated as follows [24]:

(Ap)ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mp∑

q=1
(Rp)iq(Rp)jq

√
mp∑

q=1
(Rp)2iq

√
mp∑

q=1
(Rp)2jq

, if users i and j are connected

0 , otherwise

(1)

with i, j = 1, . . . , np.

3.2 Cross-Domain Similarities

In our approach, we consider two types of cross-domain similarities, that is, the
cluster-based and the user-based cross-domain similarities, defined as follows:
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Definition 1 (Cluster-based cross-domain similarities). For the p-th
domain, we consider a cluster assignment matrix Cp, with (Cp)ic expressing
the probability that user i belongs to cluster c. We define a cluster-based cross
domain matrix Ypk�cp×ck , where cp and ck are the numbers of user clusters in
the p-th and k-th domains respectively. The entry (Ypk)ij expresses the similarity
between clusters i and j in the p-th and k-th domains, accordingly.

Definition 2 (User-based cross-domain similarities). We define a cross-
domain matrix Xpk between users in domains p and k. The entry (Xpk)ij

expresses the similarity between users i and j in domains p and k, respectively.

3.3 Problem Definition

In the cross-domain recommendation task, we assume that we have a target
domain p and d − 1 auxiliary domains. The goal is to predict the missing user
preferences on items (recommendations) in the target domain p, while consider-
ing the user-based similarities in the rest of d−1 auxiliary domains. Following the
notation of matrix factorization, let Up ∈ �np×l and Vp ∈ �mp×l be the user and
item latent factor matrices, with the factorized matrix R̂p = UpVT

p ∈ �np×mp

containing the missing user preferences on items. As the i-th row of matrix Up,
denoted by (Up)i∗, contains the l-dimensional user latent factor of user i, we can
use a social regularization term Ω(Up), when learning the factorized matrix R̂p

as follows [19]:

min
Up,Vp

||Rp − UpVT
p ||2F + γ(||Up||2F + ||Vp||2F ) + Ω(Up) (2)

where the first term is the approximation error between the factorized matrix R̂p

and the initial data matrix Rp; the second one is the regularization term to avoid
model overfitting with the parameter γ > 0; and the third term corresponds to
the social regularization term based on the d − 1 auxiliary domains between the
partial user overlaps. In the social regularization term Ω(Up), we have to weigh
the influence of the user latent factors based on the user-based cross-domain
similarities in Xpk (Definition 2) as follows:

Ω(Up) =
np∑

ij

1
d − 1

d−1∑

k=1

(Xpk)ij ||(Up)i∗ − (Up)j∗||2, with p �= k (3)

The term in the sum expresses the approximation error between the user latent
factors, weighted by the user-based cross-domain similarities in Xpk. The goal
of the proposed approach is formally defined as follows:

Definition 3 (Problem). The goal of the proposed approach is to calculate the
weights in Xpk based on the preferences that users have in the different domains,
in order to weigh the approximation error between the user latent factors (Up)i∗
and (Up)j∗ in (3).
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4 Joint Cross-Domain Objective Function

User clustering. To simplify the presentation, from now on we assume that we
have a target domain p and an auxiliary domain k. Given the adjacency matrix
Ap (computed in (1)), first we have to define the objective function for perform-
ing user clustering on the p-th domain, that is, to calculate the cluster assignment
matrix Cp, which corresponds to the following minimization problem:

min
Cp

∑

ij

||(Cp)i∗ − (Cp)j∗||2, with i, j = 1, . . . , np

subject to CT
p Cp = I, Cp ≥ 0

(4)

with orthogonality constraints on the cluster matrix Cp, and the user assign-
ments to clusters being 0 or positive. According to the Laplacian method of [9],
the minimization problem of (4) is equivalent to:

min
Cp

∑

ij

||(Cp)i∗ − (Cp)j∗||2 = min
Cp

Tr(CT
p LpCp)

subject to CT
p Cp = I,Cp ≥ 0

(5)

where Tr(·) is the trace operator. Matrix Lp ∈ �np×np is the Laplacian of the
adjacency matrix Ap, which is computed as follows: Lp = Dp − Ap, where D ∈
�np×np is a diagonal matrix, whose entries are calculated as (Dp)ii =

∑

ij

(Ap)ij .

Similarly, we define the respective objective function in (5), for performing user
clustering on the auxiliary domain k, denoted by matrix Ck ∈ �nk×ck .

Cluster-based and User-based Similarities. To compute the cluster-based
and user-based similarities between domains p and k, we follow a co-clustering
strategy [7], where we have to minimize the following objective function:

min
Ypk,Xpk

||Xpk − CpYpkCT
k ||2F + λx||Xpk||2,1 + λy||Ypk||2,1

subject to YT
pkYpk = I,Ypk ≥ 0,Xpk ≥ 0

(6)

with orthogonality constraints on the cluster-based matrix Ypk, and the user-
based and cluster-based (cross-domain) similarities being 0 or positive. Symbol
|| · ||2,1 denotes the L2,1 norm of a matrix which is calculated as follows [21]:

||Xpk||2,1 =
np∑

i=1

√
√
√
√

nk∑

j=1

(Xpk)ij
2 =

np∑

i=1

||(Xpk)i∗||2 (7)

The L2,1 regularization terms in (6) force the solutions of matrices Xpk and
Ypk to be sparse, reflecting on the real-world scenario, where the user-based
and cluster-based cross-domain similarities are usually sparse [5]. Parameters
λx,λy > 0 control the respective L2,1 regularization terms in (6).
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Joint Objective Function. By combining (i) the objective function in (6) with
(ii) the two clustering objective functions in (5) for domains p and k, we have
to minimize the following joint objective function:

min
Ck,Cp,Ypk,Xpk

F = ||Xpk − CpYpkCT
k ||2F + λx||Xpk||2,1 + λy||Ypk||2,1

+ βpTr(CT
p LpCp) + βkTr(CT

k LkCk)

subject to CT
k Ck = I, CT

p Cp = I,YT
pkYpk = I, Ck,Cp,Ypk,Xpk ≥ 0

(8)

where βp, βk > 0 are the regularization parameters for the clusterings in domains
p and k, respectively.

5 Alternating Optimization

As the joint objective function F(Ck,Cp,Ypk,Xpk) in (8) is not convex with
respect to the four variables/matrices, we propose an alternating optimization
algorithm, where we update one variable, while keeping the remaining three
fixed. The cluster assignment matrices Ck,Cp are initialized by performing k-
means to the respective adjacency matrices Ak and Ap, while Ypk and Xpk are
initialized by random (sparse) matrices. Next, we present the updating steps for
each variable.

Step 1, fix Cp, Ypk, Xpk and update Ck. By considering the optimality
condition ∂F/∂Ck = 0, we calculate the partial derivative of F with respect
to Ck:

∂F
∂Ck

= −2XT
pkCpYpk + 2CkYT

pkC
T
p CpYpk + 2βkLkCk (9)

As the joint objective function F in (8) is subject to the orthogonality constraints
CT

p Cp = I, YT
pkYpk = I, the second term of (9) equals 2Ck. By setting the

partial derivative equal to zero we have to solve the following equation with
respect to Ck:

− XT
pkCpYpk + Ck + βkLkCk = 0 (10)

As (I + βkLk) is a positive definite matrix, we can obtain the following closed-
form solution (updating rule) of Ck:

Ck = (I + βkLk)−1XT
pkCpYpk (11)

Step 2, fix Ck, Ypk, Xpk and update Cp. The partial derivative of F with
respect to Cp is equivalent to:

∂F
∂Cp

= −2XpkCkYT
pk + 2CpYpkCT

k CkYT
pk + 2βpLpCp (12)

Similarly, provided that F is subject to CT
k Ck = I, YT

pkYpk = I, we have the
optimality condition by setting the partial derivative equal to zero:

− XpkCkYT
pk + Cp + βpLpCp = 0 (13)
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Given that (I + βpLp) is positive definite, we have the following updating rule
for Cp:

Cp = (I + βpLp)−1XpkCkYT
pk (14)

Step 3, fix Cp, Ck, Xpk and update Ypk. The presence of the L2,1-norm
regularization in the objective function F of (8) makes the model difficult to
optimize, as the algorithm cannot be guaranteed to convergence based on the
analysis at [21]. To overcome this issue, we define a diagonal matrix Qy ∈ �cp×ck

(with the same size as Ypk), whose entries are calculated as follows:

(Qy)ii =
1

2||(Ypk)i∗||2 (15)

thus, we can calculate the partial derivative of F with respect to Ypk as follows:

∂F
∂Ypk

= −2CT
p XpkCk + 2CT

p CpYpkCT
k Ck + 2λyQyYpk (16)

where the last term corresponds to the partial derivative of the L2,1 regulariza-
tion term of Ypk in (8), with convergence guarantees [21]. As the joint objective
function F is subject to CT

k Ck = I, CT
p Cp = I, by setting the partial derivative

of (16) equal to zero, we have:

− CT
p XpkCk + Ypk + λyQyYpk = 0 (17)

which results in the following update rule for Ypk:

Ypk = (I + λyQy)−1CT
p XpkCk (18)

where (I + λyQy) is a positive definite matrix.

Step 4, fix Ck, Cp, Ypk and update Xpk. Similarly, given the L2,1 regular-
ization term of Xpk in the joint objective function F , we define the diagonal
matrix Qx ∈ �np×nk , whose entries are computed as follows:

(Qx)ii =
1

2||(Xpk)i∗||2 (19)

Then, we take the partial derivative of F with respect to Xpk:

∂F
∂Xpk

= 2Xpk − 2CpYpkCT
k + βxQxXpk (20)

By setting the partial derivative of (20) equal to zero, we obtain the following
update rule for Xpk:

Xpk = (I + βxQx)−1CpYpkCT
k (21)

Analysis. The alternating optimization is performed iteratively, where in each
iteration matrices Ck, Cp, Ypk and Xpk are updated based on (11), (14), (18)
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and (21), respectively. More precisely, at each iteration each variable/matrix is
recalculated based on the rest three matrices, which means that each matrix is
adapted to the values that the rest matrices have taken at the previous iteration,
in order to reach a consensus solution for all four matrices over the iterations.
The alternating optimization algorithm is repeated, until the algorithm con-
verges. The optimization algorithm converges on condition that the joint objec-
tion function F in (8) monotonically decreases after each iteration. Based on [21]
the L2,1-norm regularization terms of F are differentiable at zero, by using the
diagonal matrices Qy and Qx in (15) and (19) when updating Ypk and Xpk

in (18) and (21), respectively1. By considering the optimality condition in each
step, that is, setting the partial derivative of F with respect to each variable
equal to zero when updating the four variables, the proof that the algorithm
converges is similar to the convergence analysis of [11].

6 Generating Top-N Recommendations

The joint objective function F for k = 1, . . . , d − 1 auxiliary domains can be
extended to:

min
Ck,Cp,Ypk,Xpk

F =
d−1∑

k=1

[

||Xpk − CpYpkCT
k ||2F + λx||Xpk||2,1 + λy||Ypk||2,1

]

+ βpTr(CT
p LpCp) +

d−1∑

k=1

βkTr(CT
k LkCk)

subject to CT
k Ck = I, CT

p Cp = I,YT
pkYpk = I, Ck,Cp,Ypk,Xpk ≥ 0

(22)
where the variables of F are (i) the d− 1 clustering matrices Ck of the auxiliary
domains; (ii) the cluster matrix Cp of the target domain p; (iii) the d−1 matrices
Ypk, and Xpk. An overview of our approach is presented in Algorithm1.

7 Experimental Evaluation

7.1 Settings

Cross-domain recommendation tasks. Our experiments were performed on
ten cross-domain tasks from the Rich Epinions Dataset (RED)2, which con-
tains 131,228 users, 317,775 items and 1,127,673 user preferences, in the form
of ratings. The items are grouped in categories/domains, and we evaluate the
performance of cross-domain recommendation on the 10 largest domains. The
evaluation data were provided by the authors of [20]. The main characteristics
of the ten cross-domain recommendation tasks are presented in Table 2. The
evaluation tasks are challenging, as the domains do not have item overlaps, but
1 At the first iteration matrices Qy and Qx are initialized by using the identity

matrix [21].
2 http://liris.cnrs.fr/red/.

http://liris.cnrs.fr/red/
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ALGORITHM 1. Joint Cross-Domain User Clustering and Similarity Learning

Input: Rp, Ap, Rk, Ak, with k = 1, . . . , d − 1

Output: factorized matrix R̂p

1 Initialize Cp,Ck by performing k-means on Ap and Ak, ∀k = 1, . . . , d − 1
2 Initialize Ypk and Xpk, ∀k = 1, . . . , d − 1
3 convergence = False
4 while convergence = False do
5 Update Ck based on (11), ∀k = 1, . . . , d − 1
6 Update Cp based on (14)
7 Update Ypk based on (18), ∀k = 1, . . . , d − 1
8 Update Xpk based on (21), ∀k = 1, . . . , d − 1
9 Calculate F in (22) using the updated Ck,Cp,Ypk,Xpk, ∀k = 1, . . . , d − 1

10 if F converges
11 convergence = true
12 end if
13 end while
14 Calculate Ω(Up) based on the updated Xpk and (3), ∀k = 1, . . . , d − 1
15 Calculate Up and Vp based on Ω(Up) and (2)

16 R̂p = UpV
T
p

Table 2. The ten cross-domain recommendation tasks.

Domain Users Items Ratings Density (%)

Books 15,507 59,346 108,887 0.011

Baby Care 5,422 3,165 21,340 0.124

Destinations 9,290 3,615 31,418 0.093

Music 16,002 35,807 96,226 0.016

Online Stores & Services 28,643 5,518 54,734 0.034

Personal Care 6,214 10,786 28,945 0.043

Sport & Outdoor 6,750 9,597 19,181 0.029

Toys 9,040 18,681 51,152 0.030

Used Cars 17,041 4,174 28,598 0.040

Video & DVD 25,218 28,972 175,665 0.024

only user overlaps. In each cross-domain recommendation task, we consider one
target domain and the remaining nine serve as auxiliary domains. For each task
we preserve all the ratings of the auxiliary domains, and we randomly select
25 %, 50 % and 75 % of the target domain as training set [20]. For each split, the
remaining ratings of the target domain are considered as test set. We repeated
our experiment five times, and we report mean values and standard deviations
over the runs.

Compared methods. In our experiments, we evaluate the performance of the
following methods:

– NMF [14]: a single-domain baseline Nonnegative Matrix Factorization
method, which generates recommendations based only on the ratings of the
target domain, ignoring the ratings in the auxiliary domains.
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– CLFM [8]: a cross-domain Cluster-based Latent Factor Model which uses
joint nonnegative tri-factorization to construct a latent space to represent
the rating patterns of user clusters on the item clusters from each domain,
and then generates the cross-domain recommendations based on a subspace
learning strategy.

– CBMF [20]: a cross-domain Cluster-based Matrix Factorization model, which
defines a coarse cross-domain matrix to capture the shared preferences between
user and item clusters in the multiple domains, and then reveals the latent
associations at a cluster level by factorizing the coarse cross-domain matrix.
The final recommendations are generated by linearly combining the cluster-
based latent associations and the user-based latent associations in the target
domain. CBMF controls the influence of the cluster-based relationships on the
personalized recommendations based on a parameter α.

– JCSL: the proposed Joint cross-domain user Clustering and Similarity Learn-
ing model.

In all models we varied the number of latent factors from [10,100] by a step of 10.
In the cross-domain methods of CLMF, CBMF and JCSL we fixed the number
of clusters to 100, as suggested in [20]. The predefined clusters in both the CLMF
and CBMF methods are computed by performing k-means, also used in [8,20].
Similarly, in the proposed JCSL method, the clusters are initialized by the k-
means algorithm (Sect. 5). Following [8], in CLFM we tuned the dimensionality
of the subspace up to the minimum number of latent factors of the multiple
domains. In CBFM, we varied the α parameter in [0,1], where lower values of
α consider to a fewer extent the cluster-based relationships, when computing
the top-N recommendations. In JCSL the maximum number of iterations3 of
the alternating optimization algorithm is fixed to 50, and the regularization
parameters of the objective function in (22) were varied in [0.0001,0.1]. In all
examined models, the parameters were determined via cross validation and in
our experiments we report the best results.

Evaluation protocol. Popular commercial systems make top-N recommenda-
tions to users, and relevant studies showed that rating error metrics, such as
RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error) do not
necessarily reflect on the top-N recommendation performance [5]. Therefore, in
our experiments we used the ranking-based metrics Recall and Normalized Dis-
counted Cumulative Gain to evaluate the top-N performance of the examined
models directly [20]. Recall (R@N) is defined as the ratio of the relevant items in
the top-N ranked list over all the relevant items for each user. The Normalized
Discounted Cumulative Gain (NDCG@N) metric considers the ranking of the
relevant items in the top-N list. For each user the Discounted Cumulative Gain
(DCG@N) is defined as:

3 The algorithm terminates (converges) in less iterations, if (F (t+1) − F (t))/F (t) ≤
1e − 03, where F (t) is the value of the objective function F after the t-th iteration.



Joint Cross-Domain Similarity Learning 437

DCG@N =
N∑

j=1

2relj − 1
log2 j + 1

(23)

where relj represents the relevance score of the item j to the user. NDCG@N
is the ratio of DCG@N over the ideal iDCG@N value for each user, that is, the
DCG@N value given the ratings in the test set. In our experiments we averaged
R@N and NDCG@N over all users.

7.2 Results

In the first set of experiments, we use 75 % of the target domain as training
set, while the remaining is considered as test set. Table 3 presents the exper-
imental results in terms of NDCG@10. The cross-domain methods of CLFM,
CBMF and JCSL significantly outperform the single-domain NMF method, by
exploiting the auxiliary domains when generating the recommendations. This
happens because the cross-domain methods incorporate the additional informa-
tion of user preferences on items from the auxiliary domains, thus reducing the
data sparsity in the target domain. The proposed JCSL method achieves an
8.95 % improvement on average when comparing with the second best method.
Using the paired t-test we found that JCSL is superior over the rest approaches
for p < 0.05. JCSL beats the competitive strategies, as it exploits the cluster-
based similarities more efficiently than the competitive cluster-based models.
The joint learning strategy of the adaptive user clustering while computing the
user-based and cluster-based similarities, makes JCSL to efficiently incorporate
the additional information of user preferences in the auxiliary domains. On the
other hand, CLFM uses a subspace learning strategy on non-adaptive clusters
in a common latent space. Finally, CBMF linearly combines the cluster-based
and the individual latent associations by capturing the user preferences in the
auxiliary domains based on predefined clusters. In this set of experiments there
is the exceptional case of the “Baby Care” cross-domain task, where the pro-
posed method has similar performance with CBMF. This happens because “Baby
Care” is the less sparse domain, as presented in Table 2. Figure 1 compares the
examined models in terms of recall (R@N), by varying the number of the top-N
recommendations. Similarly, JCSL achieves a 12.17 % improvement on average,
for all the cross-domain recommendation tasks.

To evaluate the performance of the examined methods when sparsity
increases, the training set is reduced to 25 % of the target domain, while keeping
all the ratings of the auxiliary domains. Table 4 reports the experimental results
in terms of recall (R@10) based on the reduced training sets. In relation to the
experimental results of Fig. 1, recall drops for all methods, due to the increased
sparsity. As we can observe, the proposed JCSL method achieves relatively high
recall. In all cross-domain recommendation tasks, JCSL is superior to the com-
petitive cross-domain strategies (for p < 0.05), by achieving on average relative
improvement of 14.49 %, when comparing with the second best method.

Figure 2 shows the effect on NDCG@10 of the cross-domain recommenda-
tion models, by varying the training sizes of three representative target domains,
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Table 3. Effect on NDCG@10 for the ten cross-domain recommendation tasks, using
75% of the target domain as training set. Bold values denote the best scores, for
∗p < 0.05 in paired t-test. The last column denotes the relative improvement (%),
when comparing JCSL with the second best method (CBMF).

Target domain NMF CLFM CBMF JCSL Improv. (%)

Books .0997± .0119 .1502± 0308 .1780± .0619 .1919± .0472∗ 7.80∗

Baby Care .2054± .0506 .3144± .0345 .3875± .0153 .3749± .0460 −3.25

Destinations .2991± .0810 .3648± .0961 .4271± .0903 .4587± .0805∗ 7.39∗

Music .1235± .0263 .1631± .0417 .1991± .0399 .2109± .0420∗ 7.43∗

Online Stores .1718± .0909 .2550± .0183 .3222± .0320 .3665± .0509∗ 13.74∗

Personal Care .1385± .0173 .1677± .0687 .2155± .0311 .2491 ± .0460∗ 15.59∗

Sport & Outdoor .1167± .0290 .1469± .0308 .1493± .0917 .1665± .0922∗ 11.52∗

Toys .1718± .0649 .2269± .0406 .2757± .0453 .3017± .0434∗ 9.43∗

Used Cars .0981± .0841 .1301± .0167 .1750± .0471 .1897± .0209∗ 8.15∗

Video & DVD .2413± .0381 .3225± .0350 .3984± .0428 .4451± .0428∗ 11.72∗

Fig. 1. Effect on Recall (R@N) by varying the number of the top-N recommendations.
In the ten cross-domain tasks, 75% of the target domain is considered as training set.
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Table 4. Effect on Recall (R@10) for the ten cross-domain recommendation tasks,
using 25% of the target domain as training set. Bold values denote the best scores,
for ∗p < 0.05 in paired t-test. The last column denotes the relative improvement (%),
when comparing JCSL with the second best method (CBMF).

Target domain NMF CLFM CBMF JCSL Improv. (%)

Books .0856± .0348 .1108± .0744 .1468± .0390 .1779± .0173∗ 21.18∗

Baby Care .1796± .0947 .3411± .0872 .4474± .0752 .4968± .1212∗ 11.04∗

Destinations .2604± .0520 .3748± .0869 .4365± .0803 .5013± .0720∗ 14.84∗

Music .1485± .0431 .1805± .0450 .2073± .0869 .2304± .0330∗ 11.14∗

Online Stores .2099± .0112 .3151± .0860 .3689± .0401 .4230± .0622∗ 14.74∗

Personal Care .1345± .0152 .1690± .0622 .1961± .0560 .2232± .0648∗ 13.81∗

Sport & Outdoor .0800± .0853 .1239± .0.751 .1622± .0306 .1820± .0294∗ 12.63∗

Toys .2448± .0679 .3137± .0585 .3497± .0751 .3921 ± .0655∗ 12.12∗

Used Cars .0730± .0250 .1098± .0959 .1160± .0699 .1439± .0427∗ 24.05∗

Video & DVD .2164± .0162 .3685± .0285 .4421± .0892 .4834± .0733∗ 9.34∗

which are at different scale (Table 2). For presentation purposes, in this set of
experiments the baseline NMF method is omitted, due to its low performance.
We observe that all cross-domain methods increase the NDCG metric, when
a larger training set is used. Figure 2 shows that the proposed JCSL method
keeps NDCG relatively high in all settings, while outperforming CLFM and
CBMF. The three cross-domain models differ in how the knowledge of user
preferences is transferred between the domains when generating the recommen-
dations, which explains their different performance when decreasing the training
set size. JCSL adapts the clustering in each domain separately, while computing
the cross-domain cluster-based similarities; whereas CLFM and CBMF compute
the similarities between predefined/non-adaptive clusters, when generating the
recommendations.

Fig. 2. Effect on NDCG@10 by varying the size of the training set.
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8 Conclusion

In this paper, we presented an efficient cross-domain recommendation algorithm
based on a joint strategy to adapt the user clusters, while calculating the user-
based and cluster-based similarities across multiple domains. The joint opti-
mization problem is solved via an efficient alternating optimization algorithm.
Our experiments on ten cross-domain tasks confirmed the superiority of the
proposed approach over competitive cross-domain strategies at different levels
of sparsity. The main advantages of our approach are that JCSL adapts the
clusters in each domain separately, while computing the cross-domain cluster-
based similarities, whereas the competitors compute the similarities between
predefined/non-adaptive clusters when generating the recommendations. Instead
of linearly combining the cluster-based and user-based similarities, as for exam-
ple CBMF does, JCSL jointly learns both types of similarities. In this study we
considered partial user overlaps, with the mapping of users being known between
the different domains. An interesting future direction is to extend our proposed
approach for unknown user-matching across multiple domains [17]. In addition,
an interesting future direction is to evaluate the performance of different cluster-
ing algorithms, such as spherical k-means [25] or power iteration [18], to initialize
the clusters in the different domains.

Acknowledgments. We would like to thank Nima Mirbakhsh and Charles Ling for
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