
Selecting Collaborative Filtering Algorithms
Using Metalearning

Tiago Cunha1(B), Carlos Soares1, and André C.P.L.F. de Carvalho2
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Abstract. Recommender Systems are an important tool in e-business,
for both companies and customers. Several algorithms are available to
developers, however, there is little guidance concerning which is the best
algorithm for a specific recommendation problem. In this study, a met-
alearning approach is proposed to address this issue. It consists of relat-
ing the characteristics of problems (metafeatures) to the performance of
recommendation algorithms. We propose a set of metafeatures based on
the application of systematic procedure to develop metafeatures and by
extending and generalizing the state of the art metafeatures for recom-
mender systems. The approach is tested on a set of Matrix Factorization
algorithms and a collection of real-world Collaborative Filtering datasets.
The performance of these algorithms in these datasets is evaluated using
several standard metrics. The algorithm selection problem is formulated
as classification tasks, where the target attribute is the best Matrix Fac-
torization algorithm, according to each metric. The results show that the
approach is viable and that the metafeatures used contain information
that is useful to predict the best algorithm for a dataset.

Keywords: Recommender system · Collaborative filtering · Model
selection · Metalearning

1 Introduction

The digital economy enabled an important source of revenue for companies, by
increasing the number of customers and markets available. However, e-commerce
websites usually have an overwhelming amount of products in their catalog,
which can easily result in the loss of purchase interest. This problem, known as
information overload, has been reduced with the use of Recommender Systems
(RSs), which recommend potentially interesting items [1]. Specifically in Collab-
orative Filtering (CF) algorithms, which is the focus of this work, these systems
gather data from customers, products and relationships established between ele-
ments from these two groups (e.g. a customer visualizes the page of a product
or buys that product) to extract patterns. These patterns can be used to rec-
ommend possibly interesting items in future sessions.
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There are several recommendation methodologies, each one with a large vari-
ety of algorithms [1]. This makes it difficult to select the best algorithm for a
new problem. The most common strategy is trial and error. However, it has a
high computational cost. In fact, when the data size is large, it becomes virtually
impossible to pursue this approach. The Metalearning (MtL) approach, which
has proved successful in other Data Mining tasks, can provide a good solution
to this problem. Besides, it allows the extraction of knowledge able to explain
why a suggested algorithm is better suited for a specific dataset.

MtL studies how machine learning (ML) can be employed to understand the
learning process and, improve the use of machine learning in future applica-
tions [6]. In MtL, learning occurs at two levels: base-level and meta-level [2]. At
the base-level, base-learners (in this work, they are the CF algorithms) accumu-
late experience on a specific learning task (i.e., a single dataset). At the meta-
level, meta-learners accumulate experience on the behavior of multiple base-
learners on multiple learning tasks (i.e., multiple datasets). This experience is rep-
resented as a metamodel, which can be used to suggest the best base-learner for a
specific dataset.

One of the main challenges in MtL is to define informative metafeatures,
i.e. characteristics that effectively describe the area of competence of each algo-
rithm [2]. In this study, the focus is on rating-based CF datasets and the metafea-
tures proposed here are based on three different perspectives on their distribution:
in terms of user, item and global. These distributions are aggregated using sim-
ple, standard summary statistical functions [18]. These metafeatures are expected
to contain some useful information about the (relative) performance of the algo-
rithms. The experimental approach used in this work can be summarized as:

1. base-level experimental work to estimate the performance of the selected CF
algorithms on the selected datasets;

2. extraction of metafeatures from the datasets;
3. meta-level learning to relate the metafeatures with the base-level algorithm

performance;
4. extraction and presentation of metaknowledge extracted.

This work extends existing studies [7,14,28] by (1) proposing an approach
with algorithm-independent metafeatures and (2) by performing the experimen-
tal work on a significantly larger number of datasets and base-level algorithms.
The goal is to generalize the knowledge extracted from this process, rather than
focus on specific application niches, unlike the related work studies.

This document is organized as follows: Sect. 2 presents the main aspects
of CF and MtL, with emphasis on related work of model selection for RSs.
Section 3 holds the explanation of the metafeature process to extract CF data
characteristics. Section 4 describes the experimental procedure at the base and
meta-levels, while Sect. 5 contains the results from both evaluation experiments.
It also shows the knowledge extracted from the experiments performed. Section 6
presents the main conclusions and points out possible future works.
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2 Related Work

2.1 Collaborative Filtering

RSs are inspired by human social behavior, where it is common to take into
account the tastes and opinions of acquaintances when making decisions [1]. In
this work, the application scope is limited to CF. Extensive surveys discussing
other recommendation strategies can be found elsewhere [1,26].

CF recommendations are based on the premise that a user must like the items
favored by a similar user. Thus, it uses the feedback from each individual user to
recommended items to similar users [26]. There are two types of recommenda-
tion tasks in CF. In rating prediction, the goal is to train models to accurately
estimate the ratings users would give to items. Alternatively, item recommen-
dation aims to recommend ordered lists of items, according to the preference of
the users. These are fundamentally different problems and CF algorithms have
been designed for each task. In this study, we will address both tasks.

Data. Traditionally, the data used in CF approaches are numerical (implicit or
explicit) feedback from the user, related with user preferences concerning some of
the items [1]. Explicit feedback, also known as user ratings, is a numerical value,
within a pre-defined scale, proportional to how the user likes the item. Probably,
the most well known scale ranges from 1 to 5, based on the metaphor of 1 to
5 stars. Implicit feedback, on the other hand, derives a numerical value from
the user interactions with the items on the website (e.g. clickstream data, click-
through data from the search engine, the time users spends on the pages). Col-
lecting user feedback through explicit and implicit methods present advantages
and disadvantages: implicit methods are considered unobtrusive, but explicitly
acquired data are more accurate in expressing the true preferences.

The data structure used in CF is known as the rating matrix R. It is described
as R = U ×I, representing a set of users U, where u ∈ {1...N} and a set of items
I, where i ∈ {1...M}. Each element of this matrix is the numerical feedback
provided by a user u relative to an item i, represented by rui.

Algorithms. CF algorithms can be divided into two major classes: memory-
based and model-based [1,13,26]. Memory-based algorithms apply heuristics on
a rating matrix to compute recommendations, whereas model-based algorithms
induce a model from this matrix and use it to recommend items. Memory-based
algorithms are usually based on Nearest Neighbor (NN) approaches, while model-
based algorithms are mostly based on Matrix Factorization (MF). For reasons
explained below (Sect. 4.1), this work focuses solely on MF algorithms.

MF is one of the most efficient and robust algorithms for CF [12]. It assumes
that the original rating matrix values can be approximated by the multiplica-
tion of at least two matrices with latent features that capture the underlying
data patterns. The computation is iterative and optimizes a performance mea-
sure, usually RMSE. In the simplest formulation of MF, the rating matrix R is
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approximated by the product of two matrices: R ≈ PQ, where P is an N × K
matrix and Q is a K × M matrix. P is the user feature matrix, Q is the item
feature matrix and K is the number of features in the given factorization.

There are three characteristics to be analyzed in each algorithm: the fac-
torization process, the learning strategy and user/item bias. The factorization
process is usually the one explained previously. However, there are algorithms
using other approaches, such as Singular Value Decomposition (SVD).

The most commonly used learning strategies are Alternating Least Squares
(ALS) and Stochastic Gradient Descent (SGD). These strategies are used in
an iterative fashion. In each iteration, a specific formula is optimized until a
threshold value is reached. ALS alternates between two steps: the P -step, which
fixes Q and recomputes P , and the Q-step, where P is fixed and Q is recomputed.
The re-computation on the P -step employs a regression model for each user,
whose input is the vector qi and the output is the original user rating vector. In
the Q-step, the input is the qu vector and the output is the item rating vector.
For SGD, the original rating rui is compared with the predicted value, giving an
error measure: eui = rui − qTi qu. Afterwards, user and item factors are modified
to minimize this error and a new iteration starts.

Next, the user/item bias is introduced in MF as a regularization measure.
This bias (either for users, items or both), tries to compensate the specific
user/item difference against the average values of either users/items. The pur-
pose is to take into account the fact that users have different rating habits. Note
that the user/item bias is different from the model bias: while the first is used
to compensate the specific user/item difference against the average values in
the CF problem, the second refers to the ML model preference for choosing one
hypothesis explaining the data over other (equally acceptable) hypothesis.

There are multiple frameworks with implementations of MF algorithms avail-
able (e.g. Apache Spark1, Recommenderlab2, Prediction.io3). In this work, we
focus on the MyMediaLite framework of MF algorithms [4].

Rating Prediction. (MF) is the most basic algorithm for this task. It uses
a standard factorization strategy, SGD, to perform the learning step and intro-
duces no user/item bias. Another algorithm, BiasedMatrixFactorization (BMF)
uses explicit user/item bias, but still learns through SGD and still uses the stan-
dard factorization approach [20]. SGD is also used as the learning technique in
LatentFeatureLogLinearModel (LFLLM) [16]. However, it is inspired on logistic
regression, instead of the standard MF. Besides, it has no user/item bias, since
the authors state that the algorithm is insensitive to it. SVDPlusPlus (SVD++)
is a MF strategy that extends the basic SVD strategy to include the items rated
by the users in the optimization formula [11]. It is a combination of neighbor-
hood algorithms with MF, which also includes user/item bias. Three asymmetric
algorithms, which are variations of SVD, are also used. The asymmetric changes

1 http://spark.apache.org/.
2 https://cran.r-project.org/web/packages/recommenderlab/index.html.
3 https://prediction.io/.

http://spark.apache.org/
https://cran.r-project.org/web/packages/recommenderlab/index.html
https://prediction.io/
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refer to the fact that the user (or item) factors are modeled by which items were
rated by the users (or by which users rated the items). The algorithms focus
on asymmetric changes on item (SIAFM), user (SUAFM) and both user and
item (SCAFM) [17]. These algorithms assume that by modeling the problem in
an asymmetric fashion, the prediction formula in SVD can be linearly combined
with these factors to obtain more accurate results. All these algorithms have
user/item bias and the learning stage is conducted with SGD. A MF-based algo-
rithm was adopted as baseline: UserItemBaseline (UIB) [12]. It uses the average
rating value plus a regularized user/item bias for prediction. The optimization
problem is solved with ALS. Three average-based algorithms were also included:
GlobalAverage (GA), ItemAverage (IA) and UserAverage (UA). These algo-
rithms make the predictions based on the average rating value of all ratings of
all users, all ratings of an item and all ratings of an user, respectively.

Item Recommendation. A different set of MF algorithms can be used to rec-
ommend rankings of items. BPRMF optimizes a criterion based on Bayesian
logic [19]. It reduces the ranking problem to a pairwise classification task, opti-
mizing the Area under the Curve (AUC) metric. It uses SGD as the learning
strategy and no user/item bias. MultiCoreBPRMF (MBPRMF) is a paral-
lel implementation of the previous algorithm. The algorithm WeightedBPRMF
(WBPRMF) is a variation of BPRMF that includes a sampling mecha-
nism that promotes low scored items and use/item bias. SoftMarginRankingMF
(SMRMF) is another variation of BPRMF, but it replaces the optimization
formula in SGD by a soft margin ranking loss inspired by SVM classifiers [24].
Another MF algorithm used is (WRMF) [10]. This algorithm uses ALS as the
learning technique and introduces user/item bias to regularize the process. The
only baseline algorithm available in this scope is MostPopular (MP). Here, items
are ranked by how often they have been seen in the past.

Evaluation. Due to the experimental nature of this work, the CF algorithms
are evaluated using an offline approach. This evaluation involves a data split
strategy (usually k-fold cross-validation, although others can be used) and the
application of suitable metrics, depending on the application scope. In the case of
Rating Prediction, the metrics are error based and evaluate the rating accuracy.
Examples of these metrics are the Mean Average Error (MAE), the normalized
version of MAE (NMAE) and the Root Mean Squared Error (RMSE) [9]. The
evaluation for the Item Recommendation task is based on predicted rankings,
using metrics like Mean Average Precision (MAP), Normalized Discount Cumu-
lative Gain (NDCG), Mean Reciprocal Rank (MRR) and AUC [9].

2.2 Metalearning

MtL looks for an hypothesis or function associating the characteristics of a
dataset and the behavior of learning techniques, when applied to this dataset. Its
use helps understand algorithm behavior on different conformations of data [22].
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There are two model induction levels in this methodology: the base-level and
the meta-level. In the problem investigated in this paper, the base-level refers to
the application of CF algorithms on CF datasets, while the meta-level studies the
effect of the characteristics of CF datasets on the performance of CF algorithms.
The MtL process addresses the algorithm selection problem in two phases: train-
ing and prediction. In the training phase, datasets are characterized by a set of
measurable characteristics and CF algorithms have their performance evaluated
on these datasets. Next, a learning algorithm is trained on the metadata to
induce a metamodel able to associate the characteristics of the dataset with the
best base-level algorithm to analyze it. In the second phase, this metamodel is
used to predict the best algorithm for a given dataset [21].

Metafeatures are dataset descriptors that are expected to correlate well with
the performance of the models learned by different techniques [2]. The literature
describes two main types of meta-features: (1) Statistical and/or information-
theoretical measures and (2) Landmarkers. This study adopts the first type
of meta-features for CF. More information on metafeatures can be found else-
where [22].

The metatarget determines the type of prediction to be made by the MtL
model for a dataset. Common metatargets are (1) the algorithm with the best
performance on the dataset (2) a non-ordered subset of algorithms that per-
formed well on the dataset, (3) a ranking of algorithms according to their per-
formance on the dataset and (4) the performance of a set of techniques for the
dataset [2]. This study will follow the first approach, namely addressing MtL as
a classification task.

2.3 Model Selection for Recommender Systems

This section presents related work on model selection for RSs using MtL. Firstly,
it is important to notice that, despite sharing the same nature, the problems have
different goals: to predict the performance of CF algorithms at user level [7],
to predict the performance of CF algorithms at dataset level [14] and to pre-
dict the best algorithm for group-oriented recommendations [28]. The studies
diverge between using public [7,14] and private datasets [28], although none has
the appropriate number of datasets required: the maximum found is 4. This is
important since the generalization of the metalearning process requires a large
and diverse collection of datasets. The base level algorithms are mostly based
on NN, which despite being an important technique, have several drawbacks
with larger datasets and are somehow outdated. The main exception is on the
group-aware recommendations, since the algorithms are simply heuristics. The
metafeatures used are of several types:

1. rating distribution analysis: the number of ratings per user, the average rating
per user, the standard rating deviation per user [7], the ratings entropy, the
ratings Gini index and ratings sparsity [14];

2. neighbourhood analysis: the number of neighbors, the average similarity to
the top closest 30 neighbors, the clustering coefficient of a group of users, the



Selecting Collaborative Filtering Algorithms Using Metalearning 399

average Jaccard coefficient per user [7], group size, social contact level and
dissimilarity level [28];

3. general user analysis: the user influence [7], experience level and activity
level [28];

4. general item analysis: the item popularity, the item preference, the user influ-
ence and the average item entropy [7].

The techniques used in the meta-level are divided into 2 types: regression [7,14]
and classification [28]. While the regression is evaluated with MAE measure, the
classification problem uses error and rankings measures: RMSE and MRR.

3 Metafeatures for Recommender Systems Problems

One of the most important factors in the success of a metalearning approach
is the definition of a set of metafeatures that contain information about the
(relative) performance of the base-level algorithms [2]. Given that there is little
work on MtL for recommender systems and that the nature of the data in these
problems is quite different from traditional MtL problems (e.g. classification or
regression), there is not much work we can build upon. The set of metafeatures
proposed here is based on (1) the application of systematic procedure to develop
metafeatures [18] and (2) extend and generalize the state of the art metafeatures
for recommender systems [7,14,28].

The framework requires three main elements: the object that the metafea-
tures characterize, the function that analyzes the object and provides the result
as a data distribution, and the post-processing functions that are applied on
these distributions to extract their characteristics.

In the proposed approach, the objects can be of three types: dataset, row and
column. As previously seen, row and column refer to user and item, respectively.
On the dataset we analyze only the original rating distribution. However, for
each row and column, we use three distinct functions: count the number of
elements, mean value and sum of values. The post-processing functions used
provide the following values: maximum, minimum, mean, standard deviation,
median, mode, entropy, Gini index, skewness and kurtosis. The notation used to
represent metafeatures follows the format: object.function.post function.

For each rating matrix R = U×I, the set of meta-features, M , is extracted in
two steps: (1) application of a function f to the ratings rui in each row (f(U)),
column (f(I)) and the entire dataset (f(R)) to obtain three different ratings
distributions and (2) post-process the outcome of each function f (in the shape
of distribution) with the so-called post-functions pf by extracting statistics that
can be used as meta-features. Therefore, the set of meta-features is described as
M = pf [f(U)] ∪ pf [f(I)] ∪ pf [f(R)]. Four simple statistics were also included
and presented in Table 1.

These combinations enable the exploration of the rating distribution analysis
metafeatures commonly used in selection of CF algorithms and, more impor-
tantly, extend them in a systematic way.
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4 Experimental Setup

4.1 Base-Level

The robustness of experimental results in MtL depends on the number of datasets
available as each dataset represents a meta-example [2]. In most MtL studies,
however, only a few dozen datasets are available. This is also true for CF tasks,
as there are not many public datasets. Furthermore, very often these datasets
are very large, which makes it hard to use them for MtL experiments, as it
implies running all the base-level algorithms on the datasets. Thus, we selected
32 datasets for this study. Table 1 lists these datasets, providing their names,
reference and a few simple statistics with approximate values for readability. To
the best of our knowledge, this is the largest experimental study in terms of
number of CF rating based datasets.

These datasets present different numbers of users, items and ratings. As
expected, in most cases the sparsity is greater than 0.9 [26]. To ensure that the
values of the metafeatures and the performance measures are comparable across
datasets, it is necessary to normalize the rating scales. We decided to normalize
all ratings to the scale [1, 5], since it is the most common.

The performance of all selected CF algorithms on each dataset was estimated,
using, as explained earlier, the MyMediaLite framework (Sect. 2.1). Some algo-
rithms, namely the NN algorithms, were not able to obtain results on the largest
datasets. Therefore, we decided to limit the algorithms to those able to process
all the available datasets: the MF algorithms and the baselines. However, no
tuning of these parameters was performed, as this is common practice in MtL.

We evaluated the algorithms using seven commonly employed recommen-
dation metrics (Sect. 2.1). Each of those metrics evaluates the recommendation
problem accordingly to a specific perspective. Thus, the best CF algorithm for
a given dataset may vary for different evaluation metrics. Thus, we generate
a different meta-target variable for each evaluation metric, yielding seven dif-
ferent classification meta-level tasks. The evaluation process uses 10-fold cross-
validation and there is no parameter tuning at this stage. We decided to use the
default parameters, since this is the usual approach in MtL experiments.

4.2 Meta Level

The meta-features defined in this work were implemented using the recom-
menderlab package,4 which is based on the Matrix package.5 These packages
provide a flexible interface for CF data through a sparse matrix data struc-
ture. The implementations from these packages not only allow the application
of functions to each row, column and entire dataset, but also worked efficiently.

Since all meta-features are somehow related to the original ratings distribu-
tion, it is necessary to ensure that the correlated features are removed. There-
fore, a Correlation Feature Selection strategy (CFS) was applied to them, using
4 https://cran.r-project.org/web/packages/recommenderlab/index.html.
5 https://cran.r-project.org/web/packages/Matrix/index.html.

https://cran.r-project.org/web/packages/recommenderlab/index.html
https://cran.r-project.org/web/packages/Matrix/index.html
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Table 1. Datasets used in the base-level experiments

dataset #users #items #ratings sparsity ratings scale ref.

amazon-apps 1.3 M 61 k 2.6 M 0.999 [1,5] [15]

amazon-automotive 851 k 320 k 1.3 M 0.999 [1,5] [15]

amazon-baby 531 k 64 k 915 k 0.999 [1,5] [15]

amazon-beauty 1.2 M 249 k 2M 0.999 [1,5] [15]

amazon-cd 1.5 M 486 k 3.7 M 0.999 [1,5] [15]

amazon-digital-music 478 k 266 k 836 k 0.999 [1,5] [15]

amazon-food 768 k 166 k 1.2 M 0.999 [1,5] [15]

amazon-games 826 k 50 k 1.3 M 0.999 [1,5] [15]

amazon-garden 714 k 105 k 993 k 0.999 [1,5] [15]

amazon-home 2.5 M 410 k 4.2 M 0.999 [1,5] [15]

amazon-instant-video 426 k 24 k 584 k 0.999 [1,5] [15]

amazon-instruments 339 k 83 k 500 k 0.999 [1,5] [15]

amazon-movies 73 k 4 k 111 k 0.999 [1,5] [15]

amazon-office 909 k 130 k 1.2 M 0.999 [1,5] [15]

amazon-pet-supplies 741 k 103 k 1.2 M 0.999 [1,5] [15]

amazon-phones 2.2 M 320 k 3.4 M 0.999 [1,5] [15]

amazon-sports 1.9 M 479 k 3.3 M 0.999 [1,5] [15]

amazon-tools 1.2 M 260 k 1.9 M 0.999 [1,5] [15]

amazon-toys 1.3 M 328 k 2.3 M 0.999 [1,5] [15]

flixter 148 k 49 k 8.2 M 0.998 [0,5] [27]

jester1 25 k 100 1.8 M 0.275 [-10,10] [5]

jester2 24 k 100 1.7 M 0.273 [-10,10] [5]

jester3 25 k 100 617 k 0.753 [-10,10] [5]

movielens100 k 1 k 2 k 100 k 0.937 [0,5] [8]

movielens10m 70 k 11 k 10M 0.987 [0,5] [8]

movielens1m 6 k 4 k 1M 0.955 [0,5] [8]

movielens20m 138 k 27 k 20M 0.995 [0,5] [8]

movielens latest 229 k 27 k 21M 0.997 [0,5] [8]

movietweetings latest 37 k 21 k 389 k 0.999 [0,10] [3]

movietweetings recsys2014 25 k 15 k 211 k 0.999 [0,10] [3]

tripadvisor 778 k 13 k 1.5 M 0.999 [1,5] [23]

yahoo-music 6 k 10 k 364 k 0.994 [1,5] [25]

a threshold t ∈ [0.6, 0.9] with increments of 0.5. This decreased the number of
features from 74 to the interval [11, 28], depending on the threshold used.

Each set of meta-features originated seven meta-level datasets, one per each
CFS threshold. Each metadataset is associated with 1 of the 7 recommendation
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targets, creating 49 metadatasets. As the model selection problem is approached
here as a classification task, 11 classification algorithms representing several
biases were chosen: ctree, C4.5, C5.0, kNN, LDA, Naive Bayes, SVM (linear,
polynomial and radial kernels), random forest and a baseline algorithm: major-
ity vote. Since the metadatasets have a reduced number of examples, the algo-
rithms were evaluated for accuracy in a leave one out strategy and no tuning was
performed. The goal is to reduce the potential overfitting of the meta-models.

5 Experimental Results

5.1 Base-Level Results

The results at the base-level are presented in Table 2. This table presents the best
algorithm for each dataset and metric. Each metric is applicable only to a suitable
type of recommendation algorithm: rating prediction or item recommendation.
These results are used as the target attributes in the meta-datasets.

Regarding the rating prediction experiments, it can be observed that most
datasets have for best algorithm either a baseline or BMF. In fact, only 6 datasets
do not follow this process. Furthermore, the results show that, for the metrics
MAE and NMAE, the best algorithms are almost always the same. Since the
metrics are very similar, this behavior is expected.

In the item recommendation experiments, the distribution of best algorithm
for each dataset is fairly distributed, although it is noticeable that these algo-
rithms have the tendency to not change according to the different metrics. This
is also expected since all of them evaluate the ranking accuracy of the algorithms.
However, since AUC values are more concerned with accuracy assessment regard-
less of the ranking, it produces different results.

It is important to observe that the baseline algorithms often perform best
on the largest datasets, regardless of the recommendation scope: IA, UA and
GA in rating prediction and MP in item recommendation. This relates to the
sparsity problem in CF and how difficult it is to make predictions in a cold start
environment.

Another important observation is that there are few algorithms that are never
chosen as the best in any pair dataset/metric. This may be a consequence of the
lack of tuning on the base level methods. These are the cases of SUAFM and UIB
in rating prediction and SMRMF in item recommendation. This means that it is
not possible to extract useful knowledge from these algorithms in the meta-level.
This can change if we can increase the number and diversify the nature of the
datasets in order to expand the search space.

5.2 Meta-Level Results: Rating Prediction

Figures 1 and 2 show the meta-models performance across several CFS thresh-
olds for the MAE and RMSE metrics, respectively. Each threshold was used to
understand the effect of correlation in our metafeature framework. The NMAE
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Table 2. Best models on multiple evaluation metrics for each dataset

dataset Rating prediction Item recommendation

MAE NMAE RMSE MAP MRR NDCG AUC

amazon-apps BMF BMF BMF MP MP MP MP

amazon-automotive IA IA BMF MP MP MP MP

amazon-baby IA IA BMF MP MP MP MP

amazon-beauty UA UA BMF MP MP MP MP

amazon-cd UA UA BMF MBPRMF MBPRMF MBPRMF MBPRMF

amazon-digital-music UA UA BMF BPRMF MP MP MP

amazon-food IA IA BMF MP MP MP MP

amazon-games BMF BMF BMF MP MP MP MP

amazon-garden IA IA BMF MP MP MP MP

amazon-home IA IA BMF MBPRMF MBPRMF MBPRMF MBPRMF

amazon-instant-video IA IA BMF MP MP MP MP

amazon-instruments IA IA BMF MP MP MP MP

amazon-movies BMF BMF BMF WBPRMF WBPRMF WBPRMF MBPRMF

amazon-office IA IA BMF MP MP MP MP

amazon-pet-supplies IA IA BMF MP MP MP MP

amazon-phones BMF BMF BMF BPRMF BPRMF BPRMF MBPRMF

amazon-sports IA IA BMF BPRMF MBPRMF MBPRMF MBPRMF

amazon-tools IA IA BMF MP MP MP MP

amazon-toys IA IA BMF MP MP MP MP

flixter BMF BMF BMF MP MBPRMF MP MBPRMF

jester1 SVD++ SVD++ SVD++ MP MP MP MP

jester2 SVD++ SVD++ SVD++ MP MP MP MP

jester3 SIAFM SIAFM SIAFM MP MP MP MP

movielens latest BMF BMF BMF WRMF WRMF WRMF MBPRMF

movielens100k BMF BMF BMF WRMF WRMF WRMF WRMF

movielens10m MF MF BMF WRMF WRMF WRMF WRMF

movielens1m MF MF MF WRMF WRMF WRMF MBPRMF

movielens20m BMF BMF BMF WRMF WRMF WRMF MBPRMF

movietweetings latest SCAFM SCAFM SCAFM WRMF WRMF WRMF MBPRMF

movietweetings recsys2014 UA GA GA MP MP MP MBPRMF

tripadvisor SIAFM SIAFM SIAFM WBPRMF WBPRMF WBPRMF MBPRMF

yahoo-music SVD++ SVD++ LFLLM WRMF WRMF WRMF WRMF

analysis was discarded in the paper due to space restrictions. However, the per-
formance is similar to the MAE metric.

The accuracy values are clearly different: while most algorithms, concerning
MAE, performed always above the baseline, on the RMSE meta-level problem,
only 2 of them achieve this goal. This is a consequence of the bias in the meta-
dataset towards the BMF algorithm. Since this algorithm wins most of the times,
the metalearning strategy becomes obsolete for this scope. Hopefully, using more
and diversified datasets will enable to study this specific problem in further detail.
This experiment shows that the meta-models created with our metafeature frame-
work are useful for solving the algorithm selection problem for CF.

One important point lies in the fact that the performances are fairly constant
across the thresholds. This was not expected beforehand and points to the fact
that the metafeatures used are very different in nature, despite having for basis
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Fig. 1. Results of MAE meta-dataset on CFS thresholds

Fig. 2. Results of RMSE meta-dataset on CFS thresholds

the same rating distribution. Therefore, the CFS analysis does not have sufficient
impact on selecting the best meta-models. This means that, in this experimental
setup, if a meta-model beats the baseline, it is of low importance which is the
CFS threshold used to build it.

The strategy to select the best algorithms follows the principle that the aver-
age accuracy across thresholds must be always better than the baseline. To
ensure this principle, the algorithms whose average accuracy for all thresholds
minus the standard deviation is above the performance of the baseline algorithm
(majority voting) were selected as the best ones. Thus, the best algorithms for
the MAE metric are all except the ctree. For the RMSE target, only the SVM
with polynomial kernel satisfies this principle.
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5.3 Meta-Level Results: Item Recommendation

Figures 3 and 4 present the accuracy results for the NDCG and AUC metrics,
respectively. MRR and MAP were discarded due to space restrictions. However,
the performances on these targets are also fairly similar to performance obtained
with the NDCG metric. First of all, one notices that there are several algorithms
whose performance was better than the baseline and remained stable across
the CFS thresholds. This behavior is similar to the one found in the rating
prediction problem. The only exception found shows that in both metrics, the
Naive Bayes algorithm presents a poor predictive performance, scoring always
below the baseline accuracy. The only explanation available is that the class

Fig. 3. Results of NDCG meta-dataset on CFS thresholds

Fig. 4. Results of AUC meta-dataset on CFS thresholds
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distribution is more balanced than the first problem and this affects the Naive
Bayes algorithm specially. However, on the overall analysis, these meta-models
perform better than in the rating prediction problem.

Following the previous strategy to select the best models, for the NDCG
target, the algorithms with the best predictive performance were SVM (linear,
polynomial and radial kernels), random forest, kNN and C4.5. For the AUC
metric, the best algorithms are almost the same, with the difference that the
random forest algorithm was replaced with the C5.0 algorithm.

5.4 Meta-Knowledge

To extract meta-knowledge from the previous MtL experiments, variable impor-
tance analysis was performed on all the algorithms previously identified with
the best performance. Two different analysis were carried out: with and without
model information. Thus, in the first case, the trained model characteristics are
used to infer the most important variables, unlike in the second case.

The first analysis was conducted by assessing the feature frequency in the
best models for all CFS thresholds. Next, the meta-features present in most
meta-datasets (i.e., 5 meta-datasets must contain the feature) were selected.
The results extract 11 meta-features: number of ratings, dataset.ratings.mode,
dataset.ratings.gini, row.mean.median, row.mean.entropy, row.mean.skewness,
row.count.kurtosis, column.count.gini, column.count.skewness, col.mean.min and
column.sum.kurtosis. The features are distributed as follows: 3 features about
the entire dataset, and 4 for each the user and item. This highlights the fact
that not only the original ratings distribution holds important characteristics to
solve the algorithm selection problem for CF. When these metafeatures are com-
pared with the related work (Sect. 2.3), it is observed that few have already been
used and their importance is confirmed in this study (for instance the number
of ratings and the ratings gini index). However, there are others proposed that
have not been used so far and that hold important value. Also, column.count
and row.mean are found to be the most relevant distributions to be analyzed in
this problem. Although the related work has some metafeatures related to the
row.mean distribution (i.e., average of user ratings), the depth level on which
they were used does not compare to our experimental work. This leads us to
the conclusion that our metafeature framework is able to propose novel and
important metafeatures which are useful for the problem of algorithm selection.

A second analysis was carried out using the method RELIEF.6 It finds
weights of attributes based on the distance between instances, using only the
dataset. The results obtained show that, for each meta-dataset, a subset of the
previously mentioned meta-features is selected. These tests assure the validity
of the set of most important features found.

The main pattern found upon model inspection is that a low global number
of ratings leads to the selection of a baseline algorithm. This is expressed in
several ways by a combination of the previous meta-features or simply by the

6 https://cran.r-project.org/web/packages/FSelector/index.html.

https://cran.r-project.org/web/packages/FSelector/index.html
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number of ratings. Other meta-features, despite being important in discerning
the algorithms, are difficult to interpret. This has more impact if the functions
or post-functions are themselves not easily understandable.

One important consideration lies in the fact that the meta-dataset has very
few instances, which prevents a more detailed analysis of the meta-knowledge.
Still, the fact remains that the meta-features proposed are informative and that
help tackling the problem of algorithm selection for CF.

6 Conclusions

In this study, we have proposed a Metalearning approach to select Matrix Fac-
torization algorithms on two scopes of the CF problem: rating prediction and
item recommendation. The meta-features proposed follow a thorough analysis
of the feature space and are based on combinations of the original rating distrib-
ution and generalize the meta-features used in recent studies. Each base-learner
is trained on a collection of real-world datasets and evaluated on a range of suit-
able metrics, which serve as different targets in the meta-level. The meta-models
induced have performed well above the baseline algorithm, even when the meta-
dataset has very few examples. Furthermore, variable importance analysis has
shown that the proposed meta-features provide added knowledge when compared
with the usage of characteristics of only the original rating distribution. Future
work may focus on increasing the number of datasets, perform dimensionality
reduction to expand the range of algorithms available, proposal of meta-features
related to the models characteristics, the extension of the meta-targets to label
ranking problems and tuning of both the base and meta level algorithms.
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