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Abstract. Covariance-guided One-Class Support Vector Machine
(COSVM) is a very competitive kernel classifier, as it emphasizes the
low variance projectional directions of the training data, which results in
high accuracy. However, COSVM training involves solving a constrained
convex optimization problem, which requires large memory and enor-
mous amount of training time, especially for large scale datasets. More-
over, it has difficulties in classifying sequentially obtained data. For these
reasons, this paper introduces an incremental COSVM method by con-
trolling the possible changes of support vectors after the addition of new
data points. The control procedure is based on the relationship between
the Karush-Kuhn-Tuker conditions of COSVM and the distribution of
the training set. Comparative experiments have been carried out to show
the effectiveness of our proposed method, both in terms of execution time
and classification accuracy. Incremental COSVM results in better classi-
fication performance when compared to canonical COSVM and contem-
porary incremental one-class classifiers.

Keywords: One-class classification · Incremental learning · Support
Vector Machine · Covariance

1 Introduction

One-Class Classification is considered as one of the most challenging areas of
machine learning. It has gained a lot of attention and it can be found in many
practical applications such as medical analysis [1], face recognition [2], authorship
verification [3].

To solve one-class classification problems, several methods have been pro-
posed and different concrete models have been constructed. However, the key
limitation of the existing categories of one-class classification methods is that
none of them consider the full scale of information available. In boundary-based
methods, like the One-Class Support Vector Machine (OSVM) [4] or Support
Vector Data Description (SVDD) [5], only boundary data points are considered
to build the model, and the overall class is not completely considered.
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Besides, unlike multi-class classification problems, the low variance directions
of the target class distribution are crucial for one-class classification. In [6], it has
been shown that projecting the data in the high variance directions (like PCA)
will result in higher error (bias), while retaining the low variance directions will
lower the total error. As a solution, Naimul Mefraz Khan et al. proposed in [7]
to put more emphasis on the low variance directions while keeping the basic
formulation of OSVM untouched, so that we still have a convex optimization
problem with a unique global solution, that can be reached easily using numerical
methods. Covariance Guided One-Class Support Vector Machine (COSVM) is
a powerful kernel method for one-class classification, inspired from the Support
Vector Machine (SVM), where the covariance matrix is incorporated into the
dual optimization problem of OSVM. The covariance matrix is estimated in the
kernel space. Concerning its classification performance, success of COSVM has
been shown when compared to SVDD and OSVM. However, there are still some
difficulties associated with COSVM application in real case problems, where
data are sequentially obtained and learning has to be done from the first data.
Besides, COSVM requires large memory and enormous amount of training time,
especially for large dataset.

Implementations for the existing One-Class Classification methods assume
that all the data are provided in advance, and learning process is carried out in
the same step. Hence, these techniques are referred to as batch learning. Because
of this limitation, batch techniques show a serious performance degradation in
real-word applications when data are not available from the very beginning. For
such situation, a new learning strategy is required. Opposed to batch learning,
incremental learning is more effective when dealing with non-stationary or very
large amount of data. Thus, it finds its application in a great variety of situa-
tions such as visual tracking [8], software project estimation [9], brain computer
interfacing [10].

It has been defined in [11] with 4 criteria:

1. it should be able to learn additional information from new data
2. it should not require access to the original data
3. it should preserve previously acquired knowledge and use it to update an

existing classifier.
4. it should be able accommodate new outliers and target samples.

Several learning algorithms have been studied and modified to incremental
procedures, able to learn through time. Cauwenberghs and Poggio [12] proposed
an online learning algorithm of Support Vector Machine (SVM). Their algorithm
changes the coefficient of original Support Vectors (SV), and retains the Karuch-
Kuhn-Tucker (KKT) conditions on all previously training data as a new sample
acquired. Their approach have been extended by Laskov et al. [13] to OSVM.
However, the performance evaluation was only based on multi-class SVM. From
their side, Manuel Davy et al. introduced in [14] an online SVM for abnormal
events detection. They proposed a strategy to perform abnormality detection
over various signals by extracting relevant features from the considered signal and
detecting novelty, using an incremental procedure. Incremental SVDD proposed
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in [15] is also based on the control of the variation of the KKT conditions as new
samples are added. An other approach to improve the classification performance
is introduced in [16]. Incremental Weighted One-Class Support Vector Machine
(WOCSVM) is an extension of incremental OSVM. The proposed algorithm aims
to assign weights to each object of the training set, then it controls its influence
on the shape of the decision boundary.

All the proposed Incremental One-Class SVM inherit the problem of classic
SVM method which uses only boundary points to build a model, regardless of
the spread of the remaining data. Also, none of them emphasizes the low variance
direction, which results in performance degradation. Therefore, in this paper we
try to solve mainly this problem by using an incremental COSVM (iCOSVM)
approach. In fact, iCOSVM has the advantage of incrementally emphasizing the
low variance direction to improve classification performance, which is not the
case for classical incremental one-class models. Our preposition aims to take
advantages from the accuracy of COSVM procedure and we prove that it is a
good candidate for learning in non-stationary environments.

The rest of the paper is organized as follows. Section 2 reviews the canonical
COSVM method since it is the basis of our proposed method. In Sect. 3, we
present in details the mathematical derivation of iCOSVM and we describe the
incremental algorithm. Section 4 presents our experimental studies and compar-
ison with canonical COSVM and other incremental one-class classifiers. Finally,
Sect. 5 contains some concluding remarks and perspectives.

2 The COSVM Method

Mathematically, OSVM tries to find the hyperplane that separates the training
data from the origin with maximum margin. It can be modeled by the following
dual problem, formulated using Lagrange multipliers.

min
α

1
2
αT Kα + b

(
1 −

N∑
i=1

αi

)
. (1)

s.t. 0 ≤ αi ≤ 1
νN

= C,

N∑
i=1

αi = 1.

Here, ν ∈ (0, 1] is a key parameter that controls the fraction of outliers
and that of support vectors, C is the penalty weight punishing the misclassi-
fied training examples, K (xi, xj) = 〈Φ (xi) , Φ (xj)〉 ,∀i, j ∈ {1, 2, . . . , N} is the
kernel matrix for the training data, and α are the Lagrange multipliers to be
determined.

The covariance matrix is then plugged in the dual problem and a parameter
η ∈ [0, 1] is introduced to control the contribution of the kernel matrix K and the
covariance matrix to the objective function. The COSVM optimization problem
can be written as follows:
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min
α

W (α, b) =
1
2
αT (ηK + (1 − η)Δ) α − b

(
1 −

N∑
i=1

αi

)
. (2)

s.t. 0 ≤ αi ≤ C,

N∑
i=1

αi = 1,

where Δ = K (I − 1N )KT . The control parameter η can take values from 0
to 1.

3 The Incremental COSVM Method

The key of our method is to construct a solution recursively, by adding one point
at a time [12], and retain the Karush-Kuhn-Tucker Conditions on all previously
acquired data.

3.1 Karush-Kuhn-Tucker Conditions

Both the kernel matrix K and the covariance matrix Δ are positive definite [17].
Therefore, the proposed method still results in a convex optimization problem.
Thus, the solution to this optimization problem will have one global optimum
solution and can be solved efficiently using a mathematical method. Karush-
Kuhn-Tucker (KKT) conditions [18] are among the most important theoretical
optimization methods.

First, let’s note
Γ = (ηK + (1 − η)Δ) .

The slopes gi of the cost function W in equation (2) are expressed using the
KKT conditions as:

gi =
∂W

∂α
=

∑
j

Γi,jαj − b

⎧⎪⎨
⎪⎩

≥ 0; αi = 0
= 0; 0 < αi < C

≤ 0; αi = C

(3)

∂W

∂b
= 1 −

∑
α = 0. (4)

According to the KKT conditions above, the target training data can be
divided into three categories, shown in Figs. 1, 2 and 3:
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Fig. 1. Subset S. gi = 0
and 0 < αi < C
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x

Fig. 2. Subset E . gi < 0
and αi = C
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x

Fig. 3. Subset O. gi > 0
and αi = 0
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1. Margin or unboundedSupportVectors are training pointsS = {i/0 < αi < C},
2. Error or bounded Support Vectors E = {i/αi = C},
3. Non Support Vectors O = {i/αi = 0}.

The KKT conditions have to be maintained for all trained data before a new
data xc is added and preserved after the new data is trained. Hence, the change
of Lagrange multipliers Δα is determined to hold the KKT.

3.2 Adiabatic Increments

To maintain the equilibrium of the KKT conditions expressed in Eqs. (3) and
(4), we express them differentially:

Δgi = Γi,cαc +
∑

j

Γi,jαj − Δb, (5)

Δαc +
∑
j∈S

αj = 0. (6)

The two equations above can be written as:⎡
⎢⎢⎣

Δgc

Δgs

Δgr

0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 Γc,s

1 Γs,s

1 Γr,s

0 1

⎤
⎥⎥⎦

[−Δb
Δαs

]
+ Δαc

⎡
⎢⎢⎣

Γc,c

Γs,c

Γr,c

1

⎤
⎥⎥⎦ . (7)

Since Δ gi = 0 when i ∈ S(it remains zero), lines 2 and 4 of the system (7)
can be re-written as:[

0
0

]
=

[
0 1
1 Γs,s

] [−Δb
Δαs

]
+ Δαc

[
1

Γs,c

]
. (8)

Thus, we can express the dependence of Δαi, i ∈ S and Δgi = 0, i /∈ S on
Δαc as the following: [−Δb

Δαs

]
= −R

[
1

Γs,c

]
Δαc, (9)

with

R =
[
0 1
1 Γs,s

]−1

.

Here, Γs,s is the kernel matrix whose entries are support vectors, and Γs,c is
a vector of kernels between the margin support vectors and the new candidate
vector xc.

The Eq. (9) gives the following:[−Δb
Δαs

]
= βΔαc,



22 T. Kefi et al.

where

β = −R
[

1
Γs,c

]
. (10)

In equilibrium, {
Δb = −βbΔαc,

Δαj = βjΔαc, j ∈ S (11)

and βj = 0 for all j outside the subset S.
Substituting Eq. (11) into lines 1 and 3 of the system (7) leads to the desired

relation between Δgi and Δαc:

Δgi = γi Δαc, i ∈ {1...n} ∪ {c} (12)

where we define {
γi = Γi,c +

∑
j∈S Γi,jβj , i /∈ S

γi = 0, i ∈ S (13)

3.3 Vectors Entering and Leaving a Subset

During the incremental procedure, a new example xc can be added to the pre-
vious training set, and depending on the value of the calculated parameters gc

and αc, the xc is recognized as a support vector, an error vector or a data vec-
tor. If xc is classified as a support vector, the set S, as well as the classification
boundaries and margins should be updated. Since the Margin Support Vectors
are our first concern in a classification process, it is worth to focus on the changes
in the subset S. Besides, we can see from the Eqs. (10), (11), (12) and (13) of
the previous section, that only R matrix needs to be computed to obtain all
updated parameters. Let us consider a vector xk entering to the subset S. Using
the Woodbury formula [19], R expands as:

R̃ =
[
R 0
0 0

]
+

1
γc

[
β
1

] [
β
1

]T

. (14)

When xk leaves S, and using the same formula, R contracts as:

R̃ = Rk,k − Rk,kRk,kRk,k. (15)

3.4 The Impact of the Tradeoff Parameter η

The contribution of our kernel matrix K and the covariance matrix Δ is con-
trolled using the parameter η. Figures 4, 5 and 6 present three different cases
showing the impact of the covariance matrix on the direction of the separating
hyperplane in the kernel space optimality. In Fig. 4, the optimal decision hyper-
plane is on the same direction as the high variance direction. Hence, the low
variance direction will not improve the separating direction. That is why the
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Fig. 4. Case 1: schematic depiction of
the decision hyperplane for iCOSVM
when the optimal control parameter
value is η = 1. The optimal linear pro-
jection is along the direction of high
variance.
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Fig. 5. Case 2: Schematic depiction of
the decision hyperplane for iCOSVM
when the optimal control parameter
value is η = 0. The optimal linear pro-
jection is along the direction of low
variance.
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Fig. 6. General Case: schematic depiction of the decision hyperplane for iCOSVM when
the optimal parameter value lies in between 0 and 1 (0 < η < 1). The linear projection
direction for iOSVM (depicted by dotted arrows) results in higher overlap between the
example target and hypothetical outlier data (circled by dotted boundary) than the
iCOSVM projection direction (depicted by solid arrows and the overlap circled by solid
boundary).

value of η should be set to 1 in order to eliminate the covariance matrix term.
On the other hand, in Fig. 5, the directions of the optimal decision hyperplane
and the low variance are parallel. Therefore the incremental OSVM (iOSVM)
term (kernel matrix) is ignored by setting η to 0. However, in real world cases, it
is very rare that the optimal decision hyperplane has the same direction as the
low or high variance. For this reason, the value of η needs to be tuned so that
we have less overlap between the linear projections of the target data and the
outlier data. As Fig. 6 shows, by using optimal η value, iCOSVM can reduce the
huge overlap caused by iOSVM projection.
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3.5 The Incremental Algorithm

Our implementation of incremental Covariance-guided One-Class SVM is pre-
sented as pseudo-code in Algorithm 1.

Algorithm 1. Incremental Covariance-guided One-Class SVM algorithm
1. Initialization
2. Compute R, and use it to compute β and γ according to Eqs. (10) and (13)
3. Set αc and Δαc to 0
4. Compute gc using Eq. (3)
5. While gc < 0 and αc < C do
6. if gc = 0 then xc is a margin support vector. Add c to S and equilibrium is

reached. Set αc = Δαc and update (αi)i=1...n. Update R, and b.
7. if gc < 0 then xc is an error support vector. Add c to E and equilibrium is

reached. Set αc = C, update (αi)i=1...n and b.
8. if a support vector reaches its upper bound, xk becomes a non-support vector.

Remove k from S and add it to O. Update R, (αi)i=1...n and b.
9. if a support vector reaches its lower bound, xk becomes an error support vector.

Remove k from S and add it to E . Update R, (αi)i=1...n and b.
10. if gi becomes 0, xk becomes a support vector. Add k to S Update R, (αi)i=1...n

and b.

If the equilibrium is not reached, parameters are sequentially moved until
the equilibrium is met. We aim to determine the largest possible increment 	αc

so that the decomposition of the set remains intact, while accounting for the
movement of some data from set to another during the update process. This is
the idea of adiabatic increments [12].

4 Experimental Results

In this section, we present detailed experimental analysis and results for our
proposed method, performed on artificially synthesized dataset and real world
datasets. We have evaluated the performance of our method with two different
experiment sets. In the first one, we compared the accuracy and time results
with non-incremental COSVM, to tease out the advantage of our incremental
model over batch learning model. In the second experiment set, we compare the
iCOSVM performance against the performance of contemporary incremental
one-class classifiers, to show the advantage of incrementally projecting data in
low variance directions. For the implementation, we used Tax’s data description
toolbox [20] in Matlab. First, we provided an analysis of the effect of tuning the
key control parameter η. This analysis will lead us to decide how to optimize
the value of η for a particular dataset.
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4.1 Optimising the Value of η

Cross validation can not be used to optimize the value of η. Therefore, a stopping
criterion is considered to find the optimum value. We use a pre-defined lowest
fraction of outliers allowed (fOL) as a stopping criterion. For new datasets, we
set η to 1, and we decrease its value, while observing the fraction of outliers.
When it hits (fOL), we stop and use the current value of η for the considered
dataset. We have to mention that there is no conflict between (fOL) and the
OSVM parameter ν, and they can be set independently to fit the purpose of the
dataset to be trained on. There is no strict conditions on how to choose the value
of ν, it can be set to any value from 0 to 1 [21]. For our additional parameter
(fOL), it is set to any value between 0 to ν.

Table 1. Description of datasets.

Dataset name Number of targets Number of outliers Number of features

Biomedical 67 127 5

Heart disease 160 137 13

Liver (diseased) 145 200 6

Liver (healthy) 200 145 6

Diabetes (absent) 268 500 8

Diabetes (present) 500 268 8

Arrythmia-1 237 183 278

Arrythmia-2 36 384 278

Chromosome-1 392 751 30

Chromosome-2 447 696 30

Chromosome-3 492 651 30

Chromosome-4 536 598 30

4.2 Datasets Used

We have used both artificially generated datasets and real world datasets in our
experiments to tease out the effectiveness of our proposed method in different
scenarios. For the experiments on artificially generated data, we have created
a number of 2D two class data drawn from two different set of distributions:
(1) Gaussian distribution with different covariance matrices. (2) Banana-shaped
distribution with different variances. For each distribution, two datasets were
generated, the first one with low overlap, and the second with high overlap.
Each class of each dataset was used as a target class and outliers in turns, such
that we evaluate the performance on 8 datasets (2 distributions × 2 classes × 2
overlaps). Figure 7 presents the plots of the generated datasets.
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Fig. 7. Artificial datasets used for comparison. The two shapes denote two different
classes generated from a pre-defined distribution. Each class was used as target and
outlier in turns.

For the real world case, we focused on medical datasets as this domain is one
of the key fields where one class classification is applied [1]. A detailed description
of the used datasets can be found in Table 1. These datasets are collected from
the UCI machine learning repository [22] and picked carefully, so that we have
a variety of sizes and dimensions, and we can, then, test the robustness of our
iCOSVM. As these datasets are originally two-class or multi-class, we used one
of them as a target class and the other ones are kept outliers.

4.3 Experimental Protocol

To make sure that our results are not coincidental or overoptimistic, we used a
cross-validation process [23]. The considered dataset was randomly split into 10
subsets of equal size. To build a model, one of the 10 subsets was removed, and
the rest was used as the training data. The previously removed subset was added
to the outliers and this whole set was used for testing. Finally the 10 accuracy
estimates are averaged to provide the accuracy over all the models of a dataset.
This guarantees that the achieved results were not a coincidence. Moreover, to
measure the performance of one class classifier, the Receiver Operating Charac-
teristic (ROC) curves [24] are usually used. The ROC curve presents a powerful
measurement of the performance of studied classifier. It does not depend on the
number of training or testing data points neither on the number of outliers, it
only depends on rates of correct and incorrect target detection. To evaluate the
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methods, we have also used the Area Under Curve (AUC) [25] produced by the
ROC curves, and we presented them in the results.

4.4 Classifiers

The iCOSVM was evaluated withe the comparison of its performance against
the following classifiers’ performance:

– COSVM: Since our incremental approach is built upon COSVM, this classifier
has been described in details in Sect. 2.

– iOSVM: This method tries to find, recursively, the maximum margin hyper-
plane that separates targets from outliers.

– iSVDD: This method gives the sphere boundary description of the target data
points with minimum volume.

The incremental classifiers, iOSVM, iSVDD and iCOSVM were implemented
with the help of DDtools [20]. For the implementation of COSVM, the SVM-KM
toolbox was used [26]. The radial basis kernel was used for kernelization. This
kernel is calculated as K(xi, xj) = e−‖xi−xj‖2/σ. It is proved to be robust and
flexible [27]. Here, σ represents the positive “width” parameter. For η value opti-
mization, the value of σ was set to 1. But, when comparing with other methods
σ is optimized first. The parameter ν for COSVM, iOSVM and iCOSVM, also
called fraction of rejection in the case of iSVDD was set to 0.2.

While optimizing η, the lowest threshold for the fraction of outliers (fOL)
was set to 0.1 (see Sect. 4.1). However, it is too difficult, and even not possible
to define optimal values for the parameters fOL and ν in real cases, where data
points are unknown in the beginning of the classification process. Therefore, we
have set both of the two parameters to 0.2.

4.5 Results and Discussion

To test the effectiveness of our proposed algorithm, we started by comparing
iCOSVM with canonical COSVM on artificially generated datasets.

As we can see in Table 2, iCOSVM provides better results in terms of AUC
values, on all datasets, by averaging over 10 different models. Figure 8 shows
the average training time per model for artificial datasets of different sizes. The
training speed of our algorithm is faster than the COSVM, mainly on large data
sets, and presents insignificant variation as the size of the dataset increases. It
has been shown in a number of recent studies [28] that incremental learning
algorithms outperform batch learning algorithms in both speed and accuracy,
because they provide cleaner solution.

In fact, the complexity for solving the convex optimization problem of
COSVM is O(N3), where N is the number of training data points. Whereas,
a key to efficiency of the iCOSVM algorithm lies in identifying performance
bottlenecks associated with inverting matrices to solve the convex optimiza-
tion problem. These operations were eliminated thanks to the introduction of
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Table 2. Average AUC of COSVM and iCOSVM for the 8 artificial datasets. Each
dataset has 1000 data points(best method in bold).

Dataset COSVM iCOSVM

Gauss. (low overlap)-1 98.33 98.45

Gauss. (low overlap)-2 98.28 98.52

Gauss. (high overlap)-1 81.47 84.19

Gauss. (high overlap)-2 87.14 87.74

Banana (low overlap)-1 98.46 98.88

Banana (low overlap)-2 98.33 99.26

Banana (high overlap)-1 85.73 86.43

Banana (high overlap)-2 84.88 84.97

L
o

g
 o

f t
ra

in
in

g
 t

im
e

Size of training dataset

Fig. 8. Log of training times (per model) in seconds for COSVM and iCOSVM for the
experiments on the artificial datasets of different sizes.

the Woodbery formula for the re-computation of the gradient, β and γ. This
involves matrix-vector multiplications and recursive updates of the matrix R,
whose dimension is equal to the support vectors number Ns. The running time
needed for an update of the matrix R is quadratic in the number of support vec-
tors, which is much better than explicit inversion. Thus, in incremental learning,
the complexity is O(N2

s ), where Ns ≤ N .
Tables 3 and 4 contain the average AUC for the incremental classifiers on

the artificial and real datasets, respectively. As we can see, iCOSVM provides
better results on all datasets. Specially in case of the biomedical and chromo-
some datasets, iCOSVM performs significantly better when compared to other
methods. It is not surprising that iSVDD gives almost the worst accuracy values,
as SVM and its derivatives are constructed to give the better separation [29].

We notice that iCOSVM outperforms the other classifiers as η values are in
the neighborhood of 0.7, which puts more emphasize on the kernel matrix and
fine-tune the contribution of the covariance matrix.
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Table 3. Average AUC of each method for the 12 artificial datasets (best method in
bold, second best emphasized).

Experiment iSVDD iOSVM iCOSVM

Gauss. (low overlap)-1 90.7 95.0 95.2

Gauss. (low overlap)-2 92.2 95.2 96.0

Gauss. (high overlap)-1 71.7 73.8 75.2

Gauss. (high overlap)-2 69.8 73.3 76.3

Banana (low overlap)-1 95.2 97.5 97.8

Banana (low overlap)-2 92.2 97.3 97.5

Banana (high overlap)-1 74.8 83.2 83.7

Banana (high overlap)-2 74.0 81.0 82.8

Table 4. Average AUC of each method for the 12 real-world datasets (best method in
bold, second best emphasized).

Experiment iSVDD iOSVM iCOSVM

Biomedical 28.4 77.7 82.9

heart disease 49.4 60.9 61.9

Liver (diseased) 54.8 69.1 69.6

Liver (healthy) 52.5 67.3 68.7

Diabetes (present) 95.2 97.5 97.8

Diabetes (normal) 92.2 97.3 97.5

arrhythmia-1 74.8 83.2 83.7

arrhythmia-2 74.0 81.0 82.8

Chromosome-1 48.0 65.2 78.2

Chromosome-2 48.2 63.2 73.4

Chromosome-3 47.4 46.6 55.5

Chromosome-4 47.9 58.6 70.8

Since the process of computing the covariance matrix is done as a pre-
processing and re-used during all training phase, in terms of training complex-
ity, iCOSVM does not have additional overhead on top of the original iOSVM.
Table 5 shows the average training times per model for both the artificial and the
real-world datasets. As we expect, iCOSVM performs almost as fast as iOSVM,
while providing better classification accuracy.

Also, we present some individual graphical results for the dataset models by
plotting the actual ROC curves for a real world dataset. Figure 9 shows the ROC
curves of the three incremental classifiers for four models of the chromosome
dataset. The rule-of-thumb to judge the performance of a classifier from a ROC
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Table 5. Average training times (per model) in seconds for iOSVM and iCOSVM for
the experiments on the artificial and real-world datasets. Average training times (per
model) in seconds for iOSVM and iCOSVM for the experiments on the artificial and
real-world datasets.

Experiment iOSVM iCOSVM

Artificial datasets 0.0047 0.0046

Real-world datasets 0.0044 0.0043
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Fig. 9. ROC curves for the three incremental classifiers applied on Chromosome dataset

curve is “The best classification has the largest area under curve”. We can clearly
see from the Fig. 9 that iCOSVM indeed leads to better ROC curves.

5 Conclusion

In this paper, we have proposed an incremental Covariance-guided One-Class
Support Vector Machine (iCOSVM) classification approach. iCOSVM improves
upon the incremental One-Class Support Vector Machine method by the incor-
poration of the covariance matrix into the optimization problem. The new intro-
duced term emphasized the projection in the directions of low variances of
the training datasets. The contribution of both Kernel and covariance matri-
ces are controlled via a parameter that was tuned efficiently for optimum per-
formance. iCOSVM takes advantages from the high accuracy of the canonical
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Covariance-guided One-Class Support Vector Machine (COSVM). We have pre-
sented detailed experiments on several artificial and real-world datasets, where
we compared our method against contemporary batch and incremental learning
methods. Results have shown the superiority of the method. Future works will
consist in validating these results on strong applications such as face recognition,
anomaly detection, etc.
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