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Abstract. Estimating traffic conditions in arterial networks with GPS
probe data is a practically important while substantially challenging
problem. With the increasing availability of GPS equipments installed in
various vehicles, GPS probe data is currently becoming a significant data
source for traffic monitoring. However, limited by the lack of reliability
and low sampling frequency of GPS probes, probe data are usually not
sufficient for fully estimating traffic conditions of a large arterial net-
work. For the first time this paper studies how to explore social media
as an auxiliary data source and incorporate it with GPS probe data
to enhance traffic congestion estimation. Motivated by the increasing
amount of traffic information available in Twitter, we first extensively
collect tweets that report various traffic events such as congestion, acci-
dent, and road construction. Next we propose an extended Coupled Hid-
den Markov Model which can effectively integrate GPS probe readings
and traffic related tweets to more accurately estimate traffic conditions of
an arterial network. To address the computational challenge, a sequential
importance sampling based EM algorithm is also introduced. We evalu-
ate the proposed model on the arterial network of downtown Chicago.
The experimental results demonstrate the superior performance of the
model by comparison with previous methods.
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1 Introduction

Conventional traffic monitoring methods rely on road sensor data collected from
various sensors such as loop detectors [14], surveillance cameras [4], and radars.
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Due to the high cost of deploying and maintaining such devices, their spatialtem-
poral coverage is usually very limited. Recently, GPS based probe vehicle data
have become a significant data source available for the arterials and highways
not covered by dedicated sensing infrastructure. As such, there is considerable
research interest in exploring GPS probes for conducting various traffic related
applications [6,20]. However, the characteristics of probe data, including the
lack of reliability, low sampling frequency, and the randomness of its spatiotem-
poral coverage, make it insufficient for fully estimating traffic states for large
transportation networks [5].

Currently, it is a common practice for drivers and official transportation
departments to release instant traffic information through social media [12,18].
By taking Twitter as an example, a large number of tweets that report traffic
events like congestion and accident are posted instantly every day. Many such
tweets, like “Harrison St: accident at Kilbourn Ave, 2:04-4/2/2015”, explic-
itly give the type of traffic event, time, and location information. Motivated by
the rich traffic information available in social media, many recent efforts have
been devoted to exploring social media data to facilitate traffic related applica-
tions, such as traffic event location identification [16,19], traffic event detection
[1,21], as well as traffic congestion estimation [2,3,10]. Chen et al. made the first
attempt to estimate urban traffic congestions by relying only on the traffic infor-
mation collected from Twitter [10]. To improve long-term traffic prediction, He
et al. tried to use rich semantic information in online social media [7]. Wang et
al. proposed a coupled matrix and tensor factorization model to integrate social
media data, road features, and other information to better estimate traffic con-
gestions of a city [2]. However, existing works mainly focus on studying how to
utilize social media as the major data source for traffic monitoring. How to use
social media data and fuse it with GPS probe data to improve traffic congestion
estimation is still not fully explored.

For the first time, this paper incorporates traffic information extracted from
Twitter with the sparse and noisy GPS probe data to enhance urban traffic con-
gestion estimation. The challenges of the studied problem are two-fold. Firstly,
the traffic information extracted from Twitter can be associated to multi-typed
traffic events including congestion, accident, road construction, etc. It is non-
trivial to model the potential impacts of the diverse traffic events on traffic
congestion. For example, given a tweet that reports a traffic accident, how can
we quantitatively measure its impact on traffic congestion? Secondly, it is also
difficult to combine the two types of data with totally different data formats
seamlessly. A piece of GPS probe reading normally contains the time, speed,
heading, and the exact location (longitude, latitude) information of a vehicle;
while a tweet that reports a particular traffic event typically will mention the
traffic event type, the time, and the road or road segment information. The dif-
ferences of the two types of datasets on both traffic information and location
granularity make the effective combination of them very challenging.

To address the above challenges, we first extensively collect traffic related
tweets from both traffic authority Twitter accounts (explain later) and regular
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Twitter user accounts, and extract the traffic event, time, and location infor-
mation by data processing. Through data analysis, we discover that (1) there
is a high occurrence correlation between traffic events like accident and traffic
congestion, and (2) the data of traffic event related tweets is an important com-
plementary to GPS probe data. Both discoveries indicate that the estimation
performance could potentially improved if Twitter data are properly incorpo-
rated. To effectively fuse the two types of data, we propose an extended Coupled
Hidden Markov Model (E CHMM). Different from traditional models with the
GPS probe observations only [6,8], in this model we consider the GPS probe data
and traffic related tweets as two types of observations generated from two differ-
ent distributions independently. As the exact solution of the E CHMM model is
infeasible for a large network due to the exponential space and time consumption,
we utilize a sequential importance sampling method to more efficiently solve the
E-step of the EM algorithm. In the M-step, we formulate the original optimiza-
tion problem decomposable into smaller problems that can be independently
optimized. We evaluate our model on the arterial network of downtown Chicago
with 1,257 road links whose total length is nearly 700 miles. The result shows
that by incorporating Twitter data, about 15 % GPS probes can be reduced
to achieve the comparable performance to previous method with all the GPS
probes. This research provides us with a promising way to reduce the cost and
improve the performance of urban traffic congestion estimation.

2 Preliminary

In this section, we will start with some definitions, and introduce the framework
of our method. Next we will make some basic assumptions in traffic congestion
estimation to facilitate us model the studied problem.

Definition 1. A tweet observation of traffic event et,l,i. We represent a
tweet observation of traffic event occurring on the road link l at time t as such
a tuple et,l,i = (c, loc, t), where c is the traffic event category, loc represents the
location or road segment of the event, and t denotes the time.

Definition 2. A GPS probe observation yt,l,i. We represent a GPS probe
observation on the road link l at time t as such a vector yt,l,i = (s, lat, lon, head, t),
where s is the vehicle speed, lat is the latitude, lon is the longitude, head is the head-
ing of the probe, and t denotes the time.

Definition 3. A road link l. We use the intersections to partition an arterial
road R into several road links R = {l1, l2, ...}. Each road link l can be represented
as such a tuple l = (Link ID, Start Inter, End Inter), where link ID is the ID
of the road link, Start Inter is the start intersection, and End Inter is the end
intersection.

Definition 4. Neighbor road links. Two road links l1 and l2 are called neigh-
bor road links if they connect to each other, namely they share an intersection.
Particularly, the road link l is also considered as a neighbor road link of itself.
We denote all the neighbor links of road link l as Nl.
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Fig. 1. Framework of the proposed model (Color figure online)

Figure 1 shows the framework of our method. It contains two major parts:
data collection and processing part, and the model part. There are two types of
data sources in our model, traffic related tweets and GPS probe readings. From
each traffic related tweet, we first extract the traffic event type, location, and
time information, and then map it to the corresponding road link by geocoding.
Similarly, we extract the exact location and travel speed information from each
GPS probe reading, and then map it to the corresponding road link. For each
road link, we assume the occurrence of traffic events on it follows multinomial
distribution, and the traveling speed of vehicles in a particular time interval
follows Gaussian distribution [6].

We model the spatiotemporal conditional dependencies of arterial traffic
using a probabilistic graphical model Coupled Hidden Markov Model. A CHMM
models a system of multiple interaction processes which are assumed to be a
Markov process with unobserved states. In our model, the multiple processes
evolving over time are the discrete traffic states of each link in the road network
(the circles in the model part of Fig. 1). Since we do not observe the state of
each link for all times, we consider them as hidden. We can observe the vehicle
speed and traffic events from GPS probe and tweets (the blue and red squares
in the model part of Fig. 1), and the traffic speed and event on each link are
conditioned on its hidden state. In addition, a coupled structure to the HMM
specifies the local dependencies between adjacent links of the arterial network.
As shown in the model part of Fig. 1, the goal of this paper is to more
accurately infer the hidden congestion states zt,l for each road link l
in each time interval t by utilizing the traffic event observations et,l
and the probe observations yt,l.

Following the classical traffic congestion estimation models [6,8], we make
the following assumptions for computational tractability.
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– Discrete traffic states: For each time interval t, the traffic condition on link l
is represented by a discrete value slt, which indicates the level of congestion.

– Conditional independence of link travel speed: Conditioned on the state slt of
a link l, the travel speed distribution on l is independent from all other traffic
variables.

– Conditional independence of traffic events: Conditioned on the state slt of a
link l, the probability of traffic event et,l,i occurring on link l is independent
from all other traffic variables.

– Conditional independence of state transitions: Conditioned on the states of
link l and its neighbor links in time interval t, the state of link l at time t + 1
is independent from all other current link states, all past link states, and all
past observations.

The second and third assumptions show that the two types of observations are
independent to each other and only determined by the current traffic state of
the road link. The last assumption implies that the traffic state of each road link
is only related to its neighbor links in the last time interval, but independent of
the states of the rest road links in earlier time intervals.

3 Twitter Data Collection

In this section we introduce how we collect traffic event information from Twit-
ter. This paper focuses on studying the traffic conditions in Chicago, and we
collect traffic event tweets in Chicago from two types of accounts as in [2]: traffic
authority Twitter accounts and regular Twitter user accounts.

Traffic Authority Twitter Accounts. Traffic authority Twitter accounts
refer to the Twitter accounts that specialize in posting traffic related informa-
tion. Such accounts are mostly operated by official transportation departments.
Tweets posted by these accounts are formal and easy to process, and the exact
location and time information are explicitly given such as the tweet “Heavy
Traffic on NB Western: Fullerton to Kennedy Expy. 06:15 pm 02/13/2015”.
We identify 10 such Twitter accounts that report real-time traffic information
of Chicago: ChicagoDrives, ChiTraTracker, roadnowChicago, traffic Chicago,
IDOT Illinois, WGNtraffic, TotalTrafficCHI, GeoTrafficChi, roadnowil, and
rosalindrossi.

Regular Twitter user accounts. We also crawl the tweets posted by the regu-
lar users registered in Chicago. In all we target on more than 100,000 such users
and crawl more than 32.3 million corresponding tweets. Next, we preprocess
the data as follows. (1) Traffic Event Tweets Identification. We select traffic
event tweets from all the crawled tweets which match at least one term of the
predefined vocabularies: “stuck”, “congestion”, “jam”, “crowded”, “pedestrian”,
“driver”, “accident”, “crash”, “road blocked”, “road construction”, “slow traf-
fic”, “heavy traffic”, and “disabled vehicle”. Based on the keywords contained
in the tweets, we can also identify the traffic event category. (2) Tweet Geocod-
ing. We then geocode the tweets to the road links by matching their geo-tags
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and text content. By combing the geo-coordinates of tweets and the direction
mentioned in the content, we can geocode the tweets to the road links. For most
tweets without geo-tags, we first identify the streets, landmarks, and direction
information from the content by using gazetteer, and then geocode them to the
road segments.

Note that accurately identifying the locations of traffic events from tweets is
itself a challenging task [1,16]. Traffic event location extraction from the short
and noisy text is out of the scope of this work. In this paper we only keep the
tweets that explicitly give the traffic event type and road segment information.
For those with incomplete or obscure location information, we choose to omit
them. In all we obtain 245,568 traffic event tweets from April 2014 to December
2014, around 80 % of which are collected from traffic authority accounts. Each
tweet reports a traffic event. 163,742 of them are related to slow traffic, 77,454 are
related to accident, and 4,372 report other traffic events such as road construction
and road closure.

To investigate whether the traffic events reported by Twitter can reflect traffic
conditions, we plot the probe speed observations on the road links with a traffic
event reported by Twitter and on normal road links in Fig. 2. Each data point in
the figure represents a probe speed observation on a road link. Blue data points
represent the normal probe observations, while red data points represent probe
observations on the road links where traffic congestions or accidents are reported
by Twitter. One can see that the average probe speed on the road links with
traffic events is lower than that on road links with normal traffic conditions. It
implies that the traffic events reported by tweets usually indicate a slower traffic,
and thus they can help us better estimate traffic conditions.

Fig. 2. Probe speed: Normal vs Accident (left figure), and Normal vs Congestion (right
figure) (Color figure online)

4 Extended Coupled Hidden Markov Model:
Incorporating Two Types of Observations

Before elaborating the method, we first give some notations and their meanings
in Table 1. πs

l denotes the initial probability of road link l in traffic state s.
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Al is the traffic state transition probability matrix for link l with respect to
all its neighbor links. It is a matrix of size S|Nl| × S, where S|Nl| represents
the number of all possible states of the neighbors Nl of link l. Based on our
assumption, the state of link l in the time interval t + 1 is only related to the
states of its neighbor links Nl in the last time interval t. Hence each element
Al(Ri, s) represents the probability of link l to be in state s in the time interval
t + 1 given that its neighbors Nl are in states Ri = (ri1, ri2, ...ri|Nl|) in the time
interval t. gsl (·) is the probability density function of vehicle speed for link l
in state s. We assume it follows Gaussian distribution [6]. fs

l (·) represents the
distribution of traffic event number for link l in state s. We assume it follows
Multinomial distribution. P s

l contains all the parameters of the functions fs
l (·)

and gsl (·). qRi,s
t,l is a variable to help estimate the transition probability matrix

Al. We use boldface capital letters to denote the observations or hidden state
matrixes on all the road links in all the time intervals. For example, Y denotes all
the GPS probe observations. We use capital letters with subscripts to denote the
observations or hidden state vectors in a particular time interval. For example,
Yt denotes the GPS probe observations on all the road links from link l1 to lN
in the time interval t.

Table 1. Notations and meanings

L Number of road segment links

T Number of time intervals

M Number of traffic event types

S Number of traffic states

Nl The set of all the neighbor links of road link l

Nli The i-th neighbor based on the lexicographical order of link ID,
link ID ∈ Nl

yt,l The set of probe observations for link l in time slot t

yt,l,i One probe observation for link l in t, yt,l,i ∈ yt,l

et,l The set of traffic event observations for link l in t

et,l,i One traffic event observation for link l in t, et,l,i ∈ et,l

πs
l The initial probability that link l begins in state s

Al The state transition probability matrix for link l with respect to its
neighbors Nl

gs
l (·) The probability density function of travel speed for link l in traffic state s

fs
l (·) The distribution function of traffic event for link l in traffic state s

P s
l The parameters of the probability density function gs

l (·) and fs
l (·)

zs
t,l The probability of link l being in traffic state s in t

qRi,s
t,l The probability of link l being in traffic state s for time period t given that

its neighboring links Nl are in states Ri = (ri1, ri2, ...ri|Nl|) in t − 1
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With above notations, we give the complete log likelihood of the observation
data and hidden variables. Typically, the log likelihood of the hidden variables
and observations of the CHMM can be written out as follows,

lnP (Y,E,Z) = lnP (Z1) +
T∑

t=2

lnP (Zt|Zt−1) +
T∑

t=1

lnP (Yt, Et|Zt)

= lnP (Z1) +
T∑

t=2

lnP (Zt|Zt−1) +
T∑

t=1

lnP (Yt|Zt) +
T∑

t=1

lnP (Et|Zt)

(1)
The first term of the formula (1) represents the initial probability of traffic

states Z1 for all the road links, the second term is the probability that traffic
states Zt−1 in time interval t−1 transit to the states Zt in the next time interval
t, and the third term is the probability of observations Yt, Et conditioned on
the traffic states Zt. Since the GPS probe observations are independent from
the traffic event observations, we can further decompose

∑T
t=1 lnP (Yt, Et|Zt) as

shown in the second line of formula (1).
The initial probability of the congestion states in the first time interval is

lnP (Z1) =
L∑

l=1

S∑

s=1

zs
1,llnπs

l (2)

The log probability of congestion state transiting from time interval t − 1 to
t can be further represented as follows,

lnP (Zt|Zt−1) =

L∑

l=1

S∑

s=1

S|Nl|∑

i=1

(
∏

Nlj∈Nl

z
rij

t−1,Nlj
zs
t,llnAl(Ri, s)) (3)

The third summation of formula (3) is over all the possible traffic states S|Nl|

of the neighbors Nl, while the subsequent product is over terms on each of its
individual neighbor state given the neighbor states (ri1, ..., ri|Nl|).

The probability of probe speed observations Yt given the congestion states
Zt can be represented as

lnP (Yt|Zt) =
L∑

l=1

S∑

s=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i))) (4)

The probability of traffic event observations Et given the congestion states
Zt can be represented as

lnP (Et|Zt) =
L∑

l=1

S∑

s=1

zs
t,l(

∑

et,l,i∈et,l

ln(fs
l (et,l,i))) (5)

4.1 Solution of E CHMM: EM Algorithm

Given the distribution function parameters P s
l of observations and the state

transition matrix Al, it is possible to estimate the congestion states of the links
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based on the observations. Similarly, given the congestion states of the road
links, we can estimate the parameters in the model. Motivated by this idea, EM
algorithm can be applied to solve E CHMM.

In the E-step, for road link l we compute the expected state probabilities zst,l
and the transition probabilities qRi,s

t,l given observations (yt,l, et,l), distribution
parameters P s

l , and the state transition probability matrix Al.

zs
t,l ← E(zs

t,l|yt,l, et,l, P
s
l , Al) (6)

qRi,s
t,l ← E(qr,st,l |yt,l, et,l, P s

l , Al) (7)

One can see that the traffic state zst,l is inferred based on both the GPS probe
observation yt,l and the tweet observation et,l. To distinguish the importance
of the two types of observations in estimating the traffic state zst,l, we rewrite
formula (7) as follows.

zs
t,l ←

{
E(zs

t,l|et,l, P s
l , Al) if Cardinality(yt,l) = 0

wt,lE(zs
t,l|yt,l, P

s
l , Al) + (1 − wt,l)E(zs

t,l|et,l, P s
l , Al) otherwise

(8)

If only the tweet observation et,l is available on road link l in time interval
t, the congestion state zst,l is estimated only based on et,l. Otherwise, zst,l is
estimated by using both types of observations. wt,l is the confidence of the probe
observations. The idea is that if sufficient probe observations are available, we
trust more on the traffic state zst,l estimated by probe observations. If the probe
data are very spare, we trust more on the estimation results with the tweet
observations. Here we use a sigmoid function to estimate the importance of the
coefficient wt,l = 1

1+eθ−Cardinality(yt,l)
, where θ is a predefined threshold of the

probe observation size. More probe observations result in a large wt,l, and thus
the final estimation result zst,l relies more on the probe observations. In this
paper we set θ = 3.

In the M-step, we maximize the expected complete log-likelihood, given the
probabilities zst,l and the transition probabilities qRi,s

t,l .

(P s
l , Al, π

s
l ) ← argmax

P,A,Π
lnP (Y,Z,E,P,A,Π)

subject to
S∑

s=1

Al(Ri, s) = 1, Al(Ri, s) ∈ [0, 1], ∀l, Ri, s;

S∑

s=1

πs
l = 1, πs

l ∈ [0, 1], ∀l, s.

(9)

5 Parameter Inference

On small networks, it is possible to do exact inference in the CHMM by con-
verting the model to an HMM. However, it is intractable to do exact inference
for any reasonable traffic network with the naive solution due to the following
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reasons. (1) Computation of the forward variable involves SL additions and N
multiplications at each of T time steps; (2) each forward variable requires 8SL

bytes of memory to store, and all T of them must be stored; (3) the transition
matrix itself is SL×SL. Next we will introduce a sequential importance sampling
based approach to more efficiently address the computational challenge.

5.1 E-Step: Particle Filtering

As a popular sequential importance sampling method, particle filtering is widely
used to approximately estimate the internal states in dynamical systems such as
signal processing and Bayesian statistical inference. Due to the extremely high
computational cost of the CHMM, particle filtering is introduced in previous
works [9]. In our setting, each particle or sample represents an instantiation
of the traffic state evolution on the traffic network. Given the observed probe
data and traffic events from tweets, each particle or sample is assigned a weight
proportional to the probability of the observations. Using a large number of
sampled particles, we can estimate the probabilities of the traffic states of each
link in each time interval, and the probabilities of traffic state transition among
the neighbor road links in successive time intervals. Details of the algorithm is
given in Algorithm 1.

Algorithm 1. Particle Filtering to Estimate Congestion States
Input: Number of samples K and time intervals T , the state transition matrix Al, the

parameters of the observation probability function P s
l for each road link l.

Output: The state probability distribution matrix Z, and the transition probability q
Ri,s

t,l

1 Initialization: randomly sample K samples {x0
k}K

k=1;

2 for t = 1 : T do

3 Generate K samples of the state xt
k based on the sampled states xt−1

k
and state

transition matrix Al: xt
k ∼ q(xk|xt−1

k
);

4 Compute the weights:

5 wt
k = p(Yt, Et|xt

k) = p(Yt|xt
k)p(Et|xt

k);

6 Normalize the weights:

7 ŵt
k =

wt
k∑K

j=1 wt
j

;

8 Resample K random samples {x̂t
k}K

k=1 from {xt
k}K

k=1 with replacement in proportion to

the weights {ŵt
k}K

k=1;

9 Replace the sample set with these new samples, i.e. {xt
k}K

k=1 ← {x̂t
k}K

k=1;

10 Set the weights to be equal: ŵt
k = 1

N , k = 1, ..., N

11 Estimate the state probability matrix Z and transition probability qR,s
t,l

with the K samples

return Z, q
Ri,s

t,l
;

5.2 M-step: Road Network Decomposition

In the M-step, we update three groups of parameters: the initial congestion
state probability πs

l , the observation distribution function parameters P s
l , and

the transition probability matrix Al. To update these parameters, the expected
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Fig. 3. Data Statistics: (a) Average # of probe readings for each road link in each
hour. (b) Hourly distributions of probe readings and tweets on each road segment.
(c) Hourly occurrence correlations between traffic accidents and congestions reported
by tweets.

complete log-likelihood is maximized given the probability zst,l that each link l

is in state s at time t and probability qRi,s
t,l of link l to be in state s given that

neighbors of link l are in states Ri at time t − 1. Based on formulas (1)–(5), the
expected complete log likelihood is as follows.

lnP (Y,E|Z,Q,P,A,Π) =

L∑

l=1

S∑

s=1

T∑

t=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i)) +

∑

et,l,i∈et,l

ln(fs
l (et,l,i)))

+

L∑

l=1

T∑

t=2

S∑

s=1

S|Nl|∑

i=1

qRi,s
t,l ln(Al(Ri, s)) +

N∑

l=1

S∑

s=1

zs
1,lln(πl,s)

(10)

We can simplify the computation of formula (10) in the following two ways.
(1) One can see that formula (10) is comprised of three parts. Different parame-
ters appear in different parts, and thus the three parts can be solved separately.
(2) The optimization problem on the entire road network can be further decom-
posed into S × L smaller optimization problems with each one associated to a
particular congestion state and road link of the network. For example, for the
road link l in state s the first part in the right-hand side of formula (10) can be
decomposed to such an optimization problem.

max
Pl,s

T∑

t=1

zs
t,l(

∑

yt,l,i∈yt,l

ln(gs
l (yt,l,i)) +

∑

et,l,i∈et,l

ln(fs
l (et,l,i))) (11)

6 Evaluation

6.1 Experiment Setup

Datasets and analysis. The Twitter data are described in Sect. 3. From each
tweet, we extract the road segment, time and traffic event information. We cate-
gorize these tweets into three types by keywords matching: congestion, accident
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and others. We also have more than 2 million GPS probe readings generated by
various vehicles on 1,257 arterial road links of downtown Chicago in December
2014. The total length of these road links is nearly 700 miles.

Figure 3 gives the statistics of the two datasets. Figure 2(a) shows the average
numbers of probe readings in each hour of a day for each road segment. One can
see that the probe data are unevenly distributed on the arterial network. Probes
frequently appear on only a small number of road segments, while for most road
segments there are only very limited number of probe data. Figure 3(b) shows
the percentages of probe data and traffic related tweets in each hour of day. One
can see that most probe data are distributed in the time interval from 14:00pm
to 0:00am. Most traffic related tweets are posted in two time intervals from
5:00am to 10:00am and from 15:00pm to 22:00pm. The hourly distributions of
the two datasets are not perfectly consistent, which implies the combination of
them could provide us with more comprehensive information. Figure 3(c) shows
the proportion curves of the traffic accident and congestion reported by tweets in
each hour of a day. One can see that the two curves show very similar increasing
and decreasing trends, which indicates a strong occurrence correlation. Traffic
congestions can cause more accidents, and accidents in turn can make traffic
even worse. The high occurrence correlation between accident and congestion
implies that other types of traffic events captured from tweets may potentially
help us better estimate traffic congestions.

Ground Truth. Obtaining the ground truth itself is a challenge problem. The
manually annotated ground truth is very expensive, and thus is not feasible for
a large transportation network. Previous studies show that the bus probe data
in urban areas can provide a good approximation of the real traffic conditions
[5,22]. Thus we use the traffic conditions reported by Chicago Transit Authority
(CTA) as the ground truth. The traffic conditions are estimated based on more
than 5 million GPS traces generated by more than 2,000 CTA public passenger
buses from 11/25/2014 to 12/30/20141. CTA defines 5-state traffic conditions in
Chicago: heavy congestion, medium-heavy congestion, medium, light, and flow
conditions, with the corresponding traffic speeds as 0–10, 10–15, 15–20, 20–25,
and over 25 miles per hour. We assign the 5 congestion states with values 1.0,
0.8, 0.6, 0.4, and 0.2 respectively. As the real time GPS traces for some links are
sparse, we also consider the historical average traffic speed for each road link in
the last 3 years. Given a time interval t and a road link l, the traffic speed can
be estimated as speedt,l = w

∑n
i=1

speedt,l,i

n + (1 − w)speedht,l, where speedt,l,i is
the ith real time probe speed record, speedht,l is the historical speed, and w is a
weight. For simplicity, we consider a road segment is in congestion if the average
speed is lower than 15 mph.

Competitive Methods. We compare E CHMM with the following baselines.

– CHMM with probe observations (P CHMM) [6]. Herring et al. pro-
posed a CHMM model to estimate arterial traffic conditions with probe data.

1 https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-
Congestion-Esti/77hq-huss.

https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/77hq-huss
https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Historical-Congestion-Esti/77hq-huss
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We use it as a baseline to evaluate whether incorporating the Twitter data
can improve the performance.

– CTCE model [2]. CTCE is a recently proposed traffic congestion estima-
tion model with social media as the primary data source. Instead of utiliz-
ing CHMM, CTCE models the traffic information on the road segments as
matrices and tensors and apply matrix factorization technique to address the
estimation task.

– CHMM with tweet observations (T CHMM). In this model, only the
tweet observations are available. We use this baseline to evaluate the perfor-
mance of the CHMM model with the tweet observations only.

– Linear combination of the two types of data (LC CHMM). We use two
CHMMs with each one associated with one type of data to estimate the traffic
conditions separately. Assuming the estimation results of the two models are
Z1 and Z2, the final estimation is the linear combination of the two results,
Z = αZ1 + (1 − α)Z2.

Evaluation Metrics. We use the following metrics to evaluate the performance
of the proposed model: accuracy, precision@k, and Root Square Error (RMSE).
We use accuracy to evaluate the estimation performance on all the road segments
in all the time intervals. Normally, in a particular time interval only a small
number of road segments are in congestion. Thus to better evaluate whether
the proposed model can give good estimations on the road segments that are
very likely to occur congestion, we also use precision@k as a metric. We first
rank the congestion probabilities zst,l for all the road segments in all the time
intervals. Then we only consider the road segments with the top-k congestion
probabilities are in congestion. To further evaluate the performance of the model
on the above mentioned 5-state traffic conditions, we use the Root Mean Square

Error (RMSE) as the evaluation metric: RMSE =
√∑

t,l(zt,l−ẑt,l)2

L∗T , where zt,l
is the estimated traffic state of link l in time interval t, and ẑt,l is the ground
truth.

6.2 Quantitive Evaluation Results

Evaluation with precision@k. Table 2 shows the average precision@k of dif-
ferent methods over various k. As the traffic conditions on weekdays and week-
ends can be quiet different, we present the results by weekday and weekend
separately. We run the algorithm and calculate the precision@k on each day,
and then average the results. The best results are highlighted in bold type.
One can see that E CHMM performs best among all the methods. LC CHMM
model is inferior to E CHMM, but better than other methods. It is no surprise
that T CHMM presents the worst performance among all the methods. One
can infer that the traffic event tweets are too sparse for the T CHMM model
to get an accurate estimation. P CHMM can achieve comparable performance
with CTCE, but both methods are inferior to LC CHMM and E CHMM. One
can also see that in general the average precision@k on weekday is higher than
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Table 2. Average Precision @k of different methods

Average Precision @k on weekday

top-10 top-20 top-30 top-50 top-100 top-150 top-200 top-250 top-300

P CHMM 0.870 0.850 0.845 0.832 0.812 0.792 0.773 0.744 0.732

T CHMM 0.690 0.665 0.624 0.613 0.585 0.532 0.473 0.464 0.452

LC CHMM 0.890 0.850 0.852 0.842 0.832 0.817 0.792 0.784 0.775

CTCE 0.870 0.860 0.853 0.840 0.824 0.816 0.718 0.705 0.712

E CHMM 0.920 0.900 0.894 0.887 0.864 0.826 0.810 0.795 0.786

Average Precision @k on weekend

top-10 top-20 top-30 top-50 top-100 top-150 top-200 top-250 top-300

P CHMM 0.860 0.850 0.843 0.822 0.816 0.766 0.752 0.745 0.722

T CHMM 0.660 0.650 0.612 0.625 0.570 0.464 0.453 0.415 0.425

LC CHMM 0.870 0.850 0.845 0.825 0.820 0.812 0.805 0.785 0.768

CTCE 0.850 0.834 0.820 0.820 0.754 0.715 0.678 0.654 0.644

E CHMM 0.910 0.900 0.868 0.852 0.844 0.820 0.812 0.794 0.783

Fig. 4. RMSE of the four methods in rush hours

that on weekend. This is because most people travel on weekday more regularly
than on weekend.

Performance evaluation in rush hours. People concern more on the traffic
conditions in rush hours of a day. Thus we also evaluate the performance of
different models in rush hours. Figure 4 shows the experiment results in the rush
hours of 6:00–10:00 and 15:00–17:00 on weekday and on weekend, respectively.
One can see that the RMSE of E CHMM is mostly lower than all the baselines.
The performance of T CHMM is the worst among all the methods, which is con-
sistent with the previous experiment results. LC CHMM is consistently better
than P CHMM and CTCE, which means incorporating traffic event information
from tweets does help us better estimate traffic conditions. However, LC CHMM
is inferior to the proposed E CHMM. Thus we can conclude that E CHMM is
more efficient to fuse the two types of observations. By comparing the results
on weekday and weekend, one can see that on average the RMSE of various



Enhancing Traffic Congestion Estimation with Social Media 261

methods on weekday is larger than that on weekend. This finding also verifies
that traffic conditions on weekend is harder to estimate than on weekday.

Performance evaluation with various proportions of probe data. To
examine how the probe data size affects the estimation performance, we dis-
play the estimation accuracy curves of the methods E CHMM, LC CHMM, and
P CHMM with different probe data sizes in Fig. 5. It shows that E CHMM is
consistently better than the two baselines. When the probe data are extremely
sparse, say only 20 % probe data are available, the accuracy of P CHMM is only
0.22 while E CHMM is 0.42, which shows a significant improvement. However,
with the increase of the probe data size, the difference between E CHMM and
the other two methods becomes smaller. This is probably because the infor-
mation overlapping between the two datasets becomes larger when more probe
date are available. When the probe data are sufficient, the traffic conditions
inferred by traffic event tweets can also be captured by the probe readings. The
LC CHHM is better than P CHHM but inferior to E CHMM. One can see that
E CHMM only needs around 85 % probe data to achieve a comparable accuracy
to P CHMM with the whole probe data.

Scalability Analysis. As the optimization problem of the EM algorithm can
be decomposed into many smaller optimization problems, we can easily solve it
in parallel on multiple machines. Figure 6 shows the running time of solving the
optimization problems by distributing them into multiple machines on the traffic
data of a day on the studied road links. It shows a linearly decreasing trend of
the running time with the increase of machine number. One can see that it needs
more than 12 min for only one machine, but the time decreases to about 2 min if
we distribute these independent smaller optimization problems on 5 machines.
It demonstrates the proposed algorithm is very scalable to handle a large road
network with thousands of road links.

Fig. 5. Estimation accuracy vs probe
data size

Fig. 6. Running time vs # of machines
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7 Related Work

Traditionally, traffic monitoring and estimation mainly rely on various road sen-
sors, and can be roughly categorized into traffic modeling on individual roads
[11,13,14] and on a road network [20]. Helbing employed a Fundamental Dia-
gram to learn the relations among vehicle speed, traffic density, and volume
for a particular road to estimate traffic condition on an individual road [11].
Muoz et al. proposed a macroscopic traffic flow model SMM by utilizing the
loop detector data to estimate the traffic density at unmonitored locations along
a highway [14]. Porikli and Li proposed a Gaussian Mixture Hidden Markov
Models to detect traffic condition with the MPEG video data [13]. Researches
on traffic monitoring on a road network usually need to capture and model the
correlations of the traffic conditions among the road segments connected to each
other [6,15,20]. Such models mainly utilized the Floating Car Data (FCD) or
probe data generated by the GPS sensors equipped in vehicles. Herring et al.
proposed a coupled Hidden Markov Model which can effectively capture the traf-
fic congestion correlations among the road segments [6]. Fabritiis et al. studied
the problem of using FCD data based on traces of GPS positions to predict the
traffic on Italian motorway network [15].

Recently, exploring traffic related information from social media like Twitter
to detect traffic events or monitor traffic conditions has been a hot research
topic [1,2,10,12]. Most previous works focused on investigating either how to
extract and visualize the traffic event information from tweets [1,12] or how to
locate the traffic events mentioned in the tweets [16,19]. As traffic event data
are usually sparse and imbalanced, imbalanced learning techniques are usually
explored [17]. The work in [10] is the first to estimate traffic congestion of an
arterial network by collecting traffic related tweets from Twitter. Wang et al.
further incorporated other information such as social events and road features
with social media data to more effectively estimate citywide traffic congestions
[2]. However, as the probe data are not explored, the performance are usually
not desirable due to very sparse and noisy Twitter data [10].

8 Conclusion

In this paper, we studied the novel problem of incorporating social media seman-
tics to enhance traffic congestion estimation. Motivated by the increasing avail-
ability of traffic information in social media, we first extensively collected traffic
related tweets from Twitter. Then we extended the classical Coupled Hidden
Markov Model to effectively combine the tweet observations and probe observa-
tions. To solve the proposed model, we also introduced an efficient EM algorithm
to infer the parameters. Evaluation on the arterial network of Chicago showed
the proposed model can both effectively combine the two types of observations
and efficiently address the computational challenge.
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