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Abstract. Data visualization and iterative/interactive data mining are
growing rapidly in attention, both in research as well as in industry. How-
ever, integrated methods and tools that combine advanced visualization
and data mining techniques are rare, and those that exist are often spe-
cialized to a single problem or domain. In this paper, we introduce a novel
generic method for interactive visual exploration of high-dimensional
data. In contrast to most visualization tools, it is not based on the tradi-
tional dogma of manually zooming and rotating data. Instead, the tool
initially presents the user with an ‘interesting’ projection of the data
and then employs data randomization with constraints to allow users
to flexibly and intuitively express their interests or beliefs using visual
interactions that correspond to exactly defined constraints. These con-
straints expressed by the user are then taken into account by a projection-
finding algorithm to compute a new ‘interesting’ projection, a process
that can be iterated until the user runs out of time or finds that con-
straints explain everything she needs to find from the data. We present
the tool by means of two case studies, one controlled study on synthetic
data and another on real census data. The data and software related to
this paper are available at http://www.interesting-patterns.net/forsied/
interactive-visual-data-exploration-with-subjective-feedback/.

1 Introduction

Data visualization and iterative/interactive data mining are both mature,
actively researched topics of great practical importance. However, while progress
in both fields is abundant (see Sect. 4), methods that combine iterative data
mining with visualization and interaction are rare, except for a number of tools
designed for specific problem domains.

Yet, tools that combine state-of-the-art data mining with visualization and
interaction are highly desirable as they would maximally exploit the strengths
of both human data analysts and computer algorithms. While humans are
unmatched in spotting interesting relations in low-dimensional visual represen-
tations but poor at handling high-dimensional data, computers excel in manip-
ulating high-dimensional data but are weaker at identifying patterns that are
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truly relevant to the user. A symbiosis of the human data analyst and a well-
designed computer system thus promises to provide the most efficient way of
navigating the complex information space hidden in high-dimensional data [17].

Fig. 1. This three-step cycle illus-
trates our tool’s flow of action.

Contributions in This Paper. In this
paper we introduce a generically applicable
methodology and a tool that demonstrates
the proposed approach for interactive visual
exploration of (high-dimensional) data. The
tool iteratively cycles through three steps, as
indicated in Fig. 1. Throughout these cycles,
the user builds up an increasingly accu-
rate understanding of the aspects of the
data. Our tool maintains a model for this
understanding—to which we refer as the
background model.
Step 1. The tool initially presents the user with an ‘interesting’ projection of the
data, visualized as a scatter plot (Fig. 1 step 1 ). Here, interesting is formalized
with respect to the initial background model; more details follow below.
Step 2. On investigating this scatter plot, the user may take note of some
features of the data that contrast with, or add to, their beliefs about the data.
We will refer to such features as patterns. In step 2, the user is offered the
opportunity to tell the tool what patterns they have noted and assimilated.
Step 3. In step 3, the tool updates the background model to reflect this newly
assimilated information embodied by the patterns highlighted by the user. Then
the most interesting projection with respect to this updated background model
can be computed, and the cycle can be reiterated until the user runs out of time
or finds that patterns explain everything the user needs at the moment.

Formalizing the Background Model. A crucial challenge in realizing such a tool
is the formalization of the background model. One way to do this is by specifying
a randomization procedure that, when applied to the data, does not affect how
plausible the user would deem it to be [7,13]. Access to such a randomized version
of the data can be sufficient for determining interesting remaining structure in
the data that is not yet known to the user. New patterns are then incorporated by
adding corresponding constraints to the randomization procedure, ensuring that
the patterns remain present after randomization. We will refer to this approach
as the CORAND approach (for Constrained Randomization).

An Illustrative Example. As an example, consider a synthetic data set consisting
of 1000 10-dimensional data vectors of which dimensions 1–4 can be clustered
into five clusters, dimensions 5–6 into four clusters involving different subsets of
data points, and of which dimensions 7–10 are Gaussian noise. All dimensions
have equal variance. Figure 2 shows the scatter plots for all pairs of dimensions.
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We designed this example to illustrate the two pattern types that a user can
specify in the current implementation of our tool. Additionally, it shows how
the tool succeeds in finding interesting projections given previously identified
patterns. Thirdly, it also demonstrates how the user interactions meaningfully
affect subsequent visualizations.

Fig. 2. Subsample of the toy data.

The first projection projects
the data onto a two-dimensional
subspace of the first four dimen-
sions of the data (Fig. 3a), i.e.,
in a subspace of the space in
which the data is clustered into
5 clusters. This is indeed sen-
sible, as the structure within
this four-dimensional subspace
is arguably the strongest.

We then consider two possi-
ble user actions (step 2, shown
in Fig. 3b). In the first possi-
bility, the user marks all points
within each cluster (cluster by
cluster), indicating they have
taken note of the positions of
these groups of points within
this particular projection. In the
second possibility, the user additionally concludes that these points appear to be
clustered, possibly also in other dimensions. (Details on how these two pattern
types are formalized will follow.)

Both these pattern types lead to additional constraints on the randomization
procedure. The effect of these constraints is identical within the two-dimensional
projection of the current visualization (Fig. 3c): the projections of the random-
ized points onto this plane are identical to the projections of the original points
onto this plane. Not visible though, is that in the second possibility the ran-
domization is restricted also in orthogonal dimensions (possibly different ones
for different clusters), to account for the additional clustering assumption.

The most interesting subsequent projection, following the user interaction,
is different in the two cases (see Fig. 3d). In the first case, the remaining cluster
structure within dimensions 1–4 is shown. However, in the second case this clus-
ter structure is fully explained by the constraints, and as a result, the cluster
structure in dimensions 5–6 being is shown instead.

Outline of This Paper. To use the CORAND approach, three main challenges
had to be addressed, as discussed in Sect. 2: (1) defining intuitive pattern types
that can be observed and specified based on a scatter plot of a two-dimensional
projection of the data; (2) defining a suitable randomization scheme, that can
be constrained to take account of such patterns; and (3) a way to identify the
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Fig. 3. Two user interaction scenarios for the toy data set. The smaller filled points
represent actual data vectors, whereas the unfilled circles represent randomized data
vectors. Row (a) shows the first visualization, which is the starting point for both
scenarios. Row (b) shows the sets of data points marked by the user, (c) shows the
randomized data and original data projected onto the same plane as (a), and (d) shows
the most interesting visualization given these specified patterns. The left column shows
the scenario when the user assumes nothing beyond the values of the data points in
the projection in row (a), whereas the right column shows the scenario when the user
assumes each of these sets of points may be clustered in other dimensions as well.
(Color figure online)
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most interesting projections given the background model. The resulting system
is evaluated in Sect. 3 for usefulness as well as computational properties, on the
the synthetic data from the above example as well as on a census dataset. Finally,
related work is discussed in Sect. 4, before concluding the paper in Sect. 5.

2 Methodology

We will use the notational convention that bold face upper case symbols rep-
resent matrices, bold face lower case symbols represent column vectors, and
standard face lower case symbols represent scalars. We assume that our data
set consists of n d-dimensional data vectors xi. The data set is represented by
a real matrix X =

(
xT
1 xT

2 · · · xT
n

)T ∈ R
n×d. More generally, we will denote

the transpose of the ith row of any matrix A as ai (i.e., ai is a column vector).
Finally, we will use the shorthand notation [n] = {1, . . . , n}.

2.1 Projection Tile Patterns in Two Flavours

In the interaction step, the proposed system allows users to declare that they
have become aware of (and thus are no longer interested in seeing) the value of
the projections of a set of points onto a specific subspace of the data space. We
call such information a projection tile pattern for reasons that will become clear
later. A projection tile parametrizes a set of constraints to the randomization.

Formally, a projection tile pattern, denoted τ , is defined by a k-dimensional
(with k ≤ d and k = 2 in the simplest case) subspace of Rd, and a subset of data
points Iτ ⊆ [n]. We will formalize the k-dimensional subspace as the column
space of an orthonormal matrix Wτ ∈ R

d×k with WT
τ Wτ = I, and can thus

denote the projection tile as τ = (Wτ , Iτ ). The proposed tool provides two ways
in which the user can define the projection vectors Wτ for a projection tile τ .

2D Tiles. The first approach simply chooses Wτ as the (two) weight vectors
defining the projection within which the data vectors belonging to Iτ were
marked. This approach allows the user to simply specify that they have taken
note of the positions of that set of data points within this projection. The user
makes no further assumptions – they assimilate solely what they see without
drawing conclusions not supported by direct evidence, see Fig. 3b (left).

Clustering Tiles. It seems plausible, however, that when the marked points are
tightly clustered, the user concludes that these points are clustered not just
within the two dimensions shown in the scatter plot. To allow the user to express
such belief, the second approach takes Wτ to additionally include a basis for
other dimensions along which these data points are strongly clustered, see Fig. 3b
(right). This is achieved as follows.

Let X(Iτ , :) represent a matrix containing the rows indexed by elements from
Iτ from X. Let W ∈ R

d×2 contain the two weight vectors onto which the data
was projected for the current scatter plot. In addition to W, we want to find any
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other dimensions along which these data vectors are clustered. These dimensions
can be found as those along which the variance of these data points is not much
larger than the variance of the projection X(Iτ , :)W.

To find these dimensions, we first project the data onto the subspace orthogo-
nal to W. Let us represent this subspace by a matrix with orthonormal columns,
further denoted as W⊥. Thus, W⊥T

W⊥ = I and WTW⊥ = 0. Then, Principal
Component Analysis (PCA) is applied to the resulting matrix X(Iτ , :)W⊥. The
principal directions corresponding to a variance smaller than a threshold are
then selected and stored as columns in a matrix V. In other words, the variance
of each of the columns of X(Iτ , :)W⊥V is below the threshold.

The matrix Wτ associated to the projection tile pattern is then taken to be:

Wτ =
(
W W⊥V

)
.

The threshold on the variance used could be a tunable parameter, but was
set here to twice the average of the variance of the two dimensions of X(Iτ , :)W.

2.2 The Randomization Procedure

Here we describe the approach to randomizing the data. The randomized data
should represent a sample from an implicitly defined background model that
represents the user’s belief state about the data.

Initially, our approach assumes the user merely has an idea about the overall
scale of the data. However, throughout the interactive exploration, the patterns
in data described by the projection tiles will be maintained in the randomization.

Initial Randomization. The proposed randomization procedure is parame-
trized by n orthogonal rotation matrices Ui ∈ R

d×d, where i ∈ [n], and the
matrices satisfy (Ui)T = (Ui)−1. We further assume that we have a bijective
mapping f : [n] × [d] �→ [n] × [d] that can be used to permute the indices of the
data matrix. The randomization proceeds in three steps:

Random rotation of the rows. Each data vector xi is rotated by multipli-
cation with its corresponding random rotation matrix Ui, leading to a ran-
domised matrix Y with rows yT

i that are defined by:

∀i : yi = Uixi.

Global permutation. The matrix Y is further randomized by randomly per-
muting all its elements, leading to the matrix Z defined as:

∀i, j : Zi,j = Yf(i,j).

Inverse rotation of the rows. Each randomised data vector in Z is rotated
with the inverse rotation applied in step 1, leading to the fully randomised
matrix X∗ with rows x∗

i defined as follows in terms of the rows zT
i of Z:

∀i : x∗
i = Ui

T zi.
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The random rotations Ui and the permutation f are sampled uniformly at ran-
dom from all possible rotation matrices and permutations, respectively.

Intuitively, this randomization scheme preserves the scale of the data points.
Indeed, the random rotations leave their lengths unchanged, and the global per-
mutation subsequently shuffles the values of the d components of the rotated
data points. Note that without the permutation step, the two rotation steps
would undo each other such that X∗ = X. Thus, it is the combined effect that
results in a randomization of the data set.1

Accounting for One Projection Tile. Once the user has assimilated the
information in a projection tile τ = (Wτ , Iτ ), the randomization scheme should
incorporate this information by ensuring that it is present also in all random-
ized versions of the data. This ensures that it continues to be a sample from a
distribution representing the user’s belief state about the data.

This is achieved by imposing the following constraints on the parameters
defining the randomization:

Constraints on the rotation matrices. For each i ∈ Iτ , the component of
xi that is within the column space of Wτ must be mapped onto the first k
dimensions of yi = Uixi by the rotation matrix Ui. This can be achieved by
ensuring that:2

∀i ∈ Iτ : WT
τ Ui =

(
I 0

)
. (1)

Constraints on the permutation. The permutation should not affect any
matrix cells with row indices i ∈ Iτ and columns indices j ∈ [k]:

∀i ∈ Iτ , j ∈ [k] : f(i, j) = (i, j). (2)

Proposition 1. Using the above constraints on the rotation matrices Ui and
the permutation f , it holds that:

∀i ∈ Iτ ,xT
i Wτ = x∗

i
TWτ . (3)

Thus, the values of the projections of the points in the projection tile remain
unaltered by the constrained randomization. We omit the proof as the more
general Proposition 2 is provided with proof further below.

1 The random rotations may seem superfluous: the global permutation randomizes the
data so dramatically that the added effect of the rotations is relatively unimportant.
However, their role is to make it possible to formalize the growing understanding of
the user as simple constraints on this randomization procedure, as discussed next.

2 This explains the name projection tile: the information to be preserved in the ran-
domization is concentrated in a ‘tile’ (i.e. the intersection of a set of rows and a set of
columns) in the intermediate matrix Y created during the randomization procedure.
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Accounting for Multiple Projection Tiles. Throughout subsequent itera-
tions, additional projection tile patterns will be specified by the user. A set of
tiles τi for which Iτi

∩ Iτj
= ∅ if i 
= j is straightforwardly combined simply by

applying the relevant constraints on the rotation matrices to the respective rows.
When the sets of data points affected by the projection tiles overlap though, the
constraints on the rotation matrices need to be combined. The aim of such a
combined constraint should be to preserve the values of the projections onto the
projection directions for each of the projection tiles a data vector was part of.

The combined effect of a set of tiles will thus be that the constraint on the
rotation matrix Ui will vary per data vector, and depends on the set of projec-
tions Wτ for which i ∈ Iτ . More specifically, we propose to use the following
constraint on the rotation matrices:

Constraints on the rotation matrices. Let Wi ∈ R
d×di denote a matrix of

which the columns are an orthonormal basis for space spanned by the union
of the columns of the matrices Wτ for τ with i ∈ Iτ . Thus, for any i and
τ : i ∈ Iτ , it holds that Wτ = Wivτ for some vτ ∈ R

di×dim(Wτ ). Then, for
each data vector i, the rotation matrix Ui must satisfy:

∀i ∈ Iτ : WT
i Ui =

(
I 0

)
. (4)

Constraints on the permutation. Then the permutation should not affect
any matrix cells in row i and columns [di]:

∀i ∈ [n], j ∈ [di] : f(i, j) = (i, j).

Proposition 2. Using the above constraints on the rotation matrices Ui and
the permutation f , it holds that:

∀τ,∀i ∈ Iτ ,xT
i Wτ = x∗

i
TWτ .

Proof. We first show that x∗
i
TWi = xT

i Wi:

x∗
i
T
Wi = zTi U

T
i Wi = zTi

(
I
0

)
= zi(1 : di)

T = yi(1 : di)
T = yT

i

(
I
0

)
= xT

i Wi.

The result follows from the fact that Wτ = Wivτ for some vτ ∈ R
di×dim(Wτ ).��

Technical Implementation of the Randomization Procedure. To ensure
the randomization can be carried out efficiently throughout the process, note
that the matrix Wi for the i ∈ Iτ for a new projection tile τ can be updated by
computing an orthonormal basis for

(
Wi W

)
.3

Additionally, note that the tiles define an equivalence relation over the row
indices, in which i and j are equivalent if they were included in the same set
of projection tiles so far. Within each equivalence class, the matrix Wi will be
constant, such that it suffices to compute it only once, simply keeping track of
which points belong to which equivalence class.
3 Such a basis can be found efficiently as the columns of Wi in addition to the columns

of an orthonormal basis of W−WT
i WiW (the components of W orthogonal to Wi),

the latter of which can be computed using the QR-decomposition.
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2.3 Visualization: Finding the Most Interesting Two-Dimensional
Projection

Given the data set X and the randomized data set X∗, it is now possible to
quantify the extent to which the empirical distribution of a projection Xw and
X∗w onto a weight vector w differ. There are various ways in which this dif-
ference can be quantified. We investigated a number of possibilities and found
that the L1-distance between the cumulative distribution functions works par-
ticularly well in practice. Thus, with Fx the empirical cumulative distribution
function for the set of values in x, the optimal projection is found by solving:

max
w

‖FXw − FX∗w‖1 .

The second dimension of the scatter plot can be sought by optimizing the same
objective while requiring it to be orthogonal to the first dimension.

We are unaware of any special structure of this optimization problem that
makes solving it particularly efficient. Yet, using the standard quasi-Newton
solver in R [18]4 already yields satisfactory result. Note that runs of the method
may produce different local optimum due to random initialization.

3 Experiments

We present two case studies to illustrate the framework and its utility. The case
studies are completed by using a JavaScript version of our tool, made freely
available along with the data used for maximum reproducibility.5

Table 1. Weight vectors of projections for the synthetic data.

Fig. Axis 1 2 3 4 5 6 7 8 9 10

3a X 0.194 0.545 −0.630 0.499 −0.119 −0.041 0.057 0.001 −0.029 0.003

Y −0.269 −0.754 −0.481 0.340 0.091 −0.004 0.016 −0.057 0.003 0.005

3d (left) X 0.143 −0.118 0.005 0.981 0.001 −0.013 −0.031 −0.022 0.044 −0.031

Y −0.245 0.448 0.854 0.088 0.004 −0.001 0.005 0.008 −0.043 0.023

3d (right) X 0.121 0.019 −0.232 0.017 −0.963 −0.008 0.022 0.023 0.037 0.004

Y −0.139 −0.067 −0.369 −0.082 0.111 −0.898 −0.083 0.086 0.005 −0.017

3.1 Synthetic Data Case Study

This section gives an extended discussion of the illustrative example from the
introduction, namely the synthetic data case study. The data is described in
Sect. 1 and shown in Fig. 2. The first projection shows that the projected data
4 The optim optimization function with method = “BFGS” and default settings.
5 Readers can access this tool online at: http://www.interesting-patterns.net/forsied/

interactive-visual-data-exploration-with-subjective-feedback/.

http://www.interesting-patterns.net/forsied/interactive-visual-data-exploration-with-subjective-feedback/
http://www.interesting-patterns.net/forsied/interactive-visual-data-exploration-with-subjective-feedback/
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(blue dots in Fig. 3a) differs strongly from the randomized data (gray circles).
The weight vectors defining the projection, shown in the 1st row of Table 1,
contain large weights in dimensions 1–4. Therefore, the cluster structure seen
here mainly corresponds to dimensions 1–4 of the data. A user can indicate
this insight by means of a clustering tile for each of the clustered sets of data
points (Fig. 3b, right). Encoding this into the background model, results in a
randomization shown in Fig. 3c (right), where in the projection the randomized
points perfectly align with data points. The new projection that differs most from
this updated random background model is given by Fig. 3d (right), revealing the
four clusters in dimensions 5–6 that the user was not aware of before.

If the user does not want to draw conclusions about the points being clus-
tered in dimensions other than those shown, she can use 2D tiles instead of
clustering tiles (Fig. 3b, left). The updated background model then results in a
randomization shown in Fig. 3c (left). In the given projection, this randomiza-
tion is indistinguishable from the one with a clustering tile, but it results in a
different subsequent projection. Indeed, now it shows just another view of the
five clusters in dimensions 1–4 (Fig. 3d, left), as confirmed by the large weights
for dimensions 1–4 in the 2nd row of Table 1.

Thus, by these simple interactions the user can choose whether she will
explore more the cluster structure in dimensions 1–4 or if she already is aware
of the cluster structure or does not find it interesting, in which case the system
would direct her to the structure occurring in dimensions 5–6.

3.2 UCI Adult Dataset Case Study

In this case study, we demonstrate the utility of our method by exploring a real
world dataset. The data is compiled from UCI Adult dataset6. To ensure the
real time interactivity, we sub-sampled 218 data points and selected six features:
“Age” (17−90), “Education” (1−16), “HoursPerWeek” (1−99), “Ethnic Group”
(White, AsianPacIlander, Black, Other), “Gender” (Female, Male), “Income”
(≥ 50k). Among the selected features, “Ethnic Group” is a categorical feature
with five categories, “Gender” and “Income” are binary features, the rest are all
numeric. To make our method applicable to this dataset, we further binarized
the “Ethnic Group” feature (yielded four binary features) and the final dataset
consists of 218 points and 9 features.

We assume the user uses clustering tiles throughout her exploration. Each
of the patterns discovered during the exploration process thus corresponds to
certain demographic clustering pattern. To illustrate how our tool helps the user
rapidly gain an understanding of the data, we discuss the first three iterations
of the exploration process below.

The first projection (Fig. 4a) visually consists of four clusters. The user notes
that the weight vectors corresponding to the axes of the plot assign large weights
to the “Ethnic Group” attributes (1st row, Table 2). As mentioned, we assume
the user marks these points as part of the same clustering tile. When marking

6 https://archive.ics.uci.edu/ml/datasets/Adult.

https://archive.ics.uci.edu/ml/datasets/Adult
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Fig. 4. Projections of UCI Adult dataset: (a) projection in the 1st iteration, (b) clus-
ters marked by user in the 1st iteration, (c) projection in the 2nd iteration, and
(d) projection in the 3rd iteration.

Table 2. Weight vectors of projections for the UCI Adult dataset.

Fig. Axis Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4a X −0.039 −0.001 0.001 0.312 −0.530 −0.193 0.763 0.017 0.008

Y 0.004 −0.004 −0.002 0.816 −0.141 0.465 −0.313 −0.011 0.002

4c X 0.081 −0.028 −0.022 −0.259 −0.233 −0.104 −0.380 −0.846 −0.001

Y −0.590 0.541 0.143 −0.233 −0.380 −0.026 −0.293 0.232 0.000

4d X 0.119 −0.149 0.047 0.102 0.191 0.104 −0.556 0.0581 −0.769

Y −0.382 −0.626 −0.406 0.346 0.317 −0.0287 0.111 −0.248 0.059

the clusters (Fig. 4b), the tool informs the user of the mean vectors of the points
within each clustering tile. The 1st row of Table 3 shows that each cluster com-
pletely represents one out of four ethnic groups, which corroborates the user’s
understanding.

Taking the user’s feedback into consideration, a new projection is gener-
ated by the tool. The new scatter plot (Fig. 4c) shows two large clusters, each
consisting of some points from the previous four-cluster structure (points from
these four clusters are colored differently). Thus, the new scatter plot elucidates
structure not shown in the previous one. Indeed, the weight vectors (2nd row
of Table 2) show that the clusters are separated mainly according to the “Gen-
der” attribute. After marking the two clusters separately, the mean vector of
each cluster (2nd row of Table 3) again confirms this: the cluster on the left
represents male group, and the female group is on the right.
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Table 3. Mean vectors of user marked clusters for the UCI Adult data set.

Fig. Cluster Age Edu. h/w EG AsPl EG Bl. EG Oth. EG Whi. Gender Income

4b top left 35.0 8.67 34.7 0.00 0.00 1.00 0.00 0.667 0.333

bott. left 37.2 9.43 40.3 0.00 1.00 0.00 0.00 0.286 0.071

top right 35.6 1.3 51.1 1.00 0.00 0.00 0.00 0.750 0.250

bott. right 38.4 10.2 41.6 0.00 0.00 0.00 1.00 0.762 0.275

4c left 39.0 10.2 43.3 0.0377 0.0252 0.0126 0.925 1.00 0.321

right 36.0 9.95 37.9 0.0339 0.169 0.0169 0.780 0.00 0.102

4d left 42.5 11.6 46.3 0.00 0.00 0.00 1.00 1.00 1.00

The projection in the third iteration (Fig. 4d) consists of three clusters, sepa-
rated only along the X-axis. Interestingly, the corresponding weight vector (3rd
row of Table 2) has strongly negative weights for the attributes “Income” and
“Ethnic Group - White”. This indicates the left cluster mainly represents the
people with high income and whose ethnic group is also “White”. As this cluster
has relatively low Y -value, according to the weight vector, they are also gener-
ally older and more highly educated. These observations are corroborated by the
cluster mean (3rd row of Table 3).

This case study shows that the proposed tool facilitates human data explo-
ration iteratively presenting an information projection considering what the user
has already learned about the data.

3.3 Performance on Synthetic Data

Ideally interactive data exploration tools should work in close to real time. This
section contains an empirical analysis of an (unoptimized) R implementation of
our tool, as a function of the size, dimensionality, and complexity of the data.
Note that limits on screen resolution as well as on human visual perception render
it useless to display more than of the order of a few hundred data vectors, such
that larger data sets can be down sampled without noticeably affecting the data
exploration experience.

We evaluated the scalability on synthetic data with d ∈ {16, 32, 64, 128}
dimensions and n ∈ {64, 128, 256, 512} data points scattered around k ∈
{2, 4, 8, 16} randomly drawn cluster centroids (Table 4). The randomization is
done here with the initial background model. The most costly part in random-
ization is the multiplication of orthogonal matrices. Indeed, the running time
of the randomization scales roughly as nd2−3. The results suggests the running
time of the optimization is roughly proportional to the size of the data matrix
nd and the complexity of data k has here only a minimal effect in the running
time of the optimization.

Furthermore, in 69 % of the cases, the L1 on the first axis is within 1%
of the best L1 norm out of ten restarts. The optimization algorithm is thus
quite stable, and in practical applications it may well be be sufficient to run
the optimization algorithm only once. These results have been obtained with
unoptimized and single-threaded R implementation on a 2.3 GHz Intel Xeon
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Table 4. Median wall clock running times for randomization (“rand.”) and for opti-
mization (“optim.”) over ten iterations of the optimization algorithm that finds the
two-dimensional projection using the L1 loss function for datasets of n data items and
d dimensions with k clusters and its randomized version. We also show the number of
iterations in which the L1 norm first component ended up within 1 % of the result with
the largest L1 norm out of 10 tries; 10 means that the L1 of the first component was
within 1 % for all ten optimization runs.

n d rand. (s) k ∈ {2, 4, 8, 16}
optim. (s) in top 1 % out of 10

64 16 0.1 {0.4, 0.7, 0.5, 0.8} {10, 2, 9, 5}
64 32 0.2 {1.2, 1.4, 1.5, 1.4} {9, 1, 10, 9}
64 64 1.1 {3.1, 3.6, 3.4, 3.9} {9, 1, 9, 5}
64 128 4.8 {9.1, 10.2, 10.4, 10.2} {4, 2, 8, 8}
128 16 0.1 {0.8, 0.9, 1.3, 1.0} {10, 2, 2, 8}
128 32 0.4 {1.6, 2.2, 2.4, 2.7} {2, 10, 8, 10}
128 64 1.7 {5.6, 5.5, 5.9, 6.9} {7, 10, 7, 10}
128 128 10.5 {11.5, 16.3, 18.2, 18.3} {7, 7, 6, 5}
256 16 0.2 {1.2, 1.3, 1.5, 2.4} {10, 4, 10, 9}
256 32 0.7 {3.6, 3.8, 3.6, 4.3} {7, 8, 1, 9}
256 64 3.8 {8.8, 9.0, 9.8, 12.8} {3, 9, 7, 9}
256 128 21.7 {24.5, 29.3, 28.0, 34.1} {8, 9, 5, 5}
512 16 0.4 {2.8, 2.4, 3.1, 3.3} {10, 9, 9, 10}
512 32 1.5 {5.2, 5.1, 6.8, 7.9} {8, 8, 8, 10}
512 64 7.7 {15.6, 14.8, 17.1, 17.6} {10, 8, 1, 2}
512 128 44.0 {37.2, 44.2, 47.3, 46.9} {9, 1, 9, 7}

E5 processor.7 The performance could probably be significantly boosted, e.g.,
by carefully optimizing the code and the implementation. Yet, even with this
unoptimized code, response times are already of the order of 1 s to 1 min.

4 Related Work

Dimensionality Reduction. Dimensionality reduction for exploratory data
analysis has been studied for decades. Early research into visual exploration
of data led to approaches such as multidimensional scaling [11,21] and pro-
jection pursuit [6,9]. Most recent research on this topic (also referred to as
manifold learning) is still inspired by the aim of multi-dimensional scaling; find
a low-dimensional embedding of points such that their distances in the high-
dimensional space are well represented. In contrast to Principal Component
7 The R implementation used to produce Table 4 is available on our online demo page

(footnote 5).
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Analysis [16], one usually does not treat all distances equal. Rather, the idea
is to preserve small distances well, while large distances are irrelevant, as long
as they remain large; examples are Local Linear and (t-)Stochastic Neighbor
Embedding [8,14,19]. Typically, it is not even possible to achieve this perfectly,
and a trade-off between precision and recall arises [22]. Recent works are mostly
spectral methods along this line.

Iterative Data Mining and Machine Learning. There are two general
frameworks for iterative data mining: FORSIED [3,4] is based on modeling the
belief state of the user as an evolving probability distribution in order to for-
malize subjective interestingness of patterns. This distribution is chosen as the
Maximum Entropy distribution subject to the user beliefs as constraints, at that
moment in time. Given a pattern syntax, one then aims to find the pattern that
provides the most information, quantified as the pattern’s ‘subjective informa-
tion content’. The other framework, which we here named CORAND [7,13], is
similar, but the evolving distribution does not need to have an explicit form.
Instead, it relies on sampling (randomization) of the data, using the user beliefs
as constraints.

Both these frameworks are general in the sense that it has been shown they
can be applied in various data mining settings; local pattern mining, clustering,
dimensionality reduction, etc. The main difference is that in FORSIED, the
background model is expressed analytically, while in CORAND it may be defined
implicitly. This leads to differences in how they are deployed and when they
are effective. Randomization schemes are easier to propose, or at least they
require little mathematical skills. Explicit models have the advantage that they
often enable faster search of the best pattern, and the models may be more
transparent. Also, randomization schemes are computationally demanding when
many randomizations are required. Yet, in cases like the current paper, a single
randomization suffices, and the approach scales well. For both frameworks, the
pattern syntax ultimately determines their relative tractability.

Many special-purpose methods have been developed for active learning, a
form of iterative mining/learning, in diverse settings: classification, ranking, etc.,
as well as explicit models for user preferences. However, since these approaches do
not target data exploration, we do not review them here. Finally, several special-
purpose methods have been developed for visual iterative data exploration in
specific contexts, for example for itemset mining and subgroup discovery [1,5,
12,15], information retrieval [20], and network analysis [2].

Visually Controllable Data Mining. This work was motivated by and can
be considered an instance of visually controllable data mining [17], where the
objective is to implement advanced data analysis method so that they are under-
standable and efficiently controllable by the user. Our proposed method satisfies
the properties of a visually controllable data mining method (see [17], Sect. II B):
(VC1) the data and model space are presented visually, (VC2) there are intuitive
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visual interactions that allow the user to modify the model space, and (VC3)
the method is fast enough to allow for visual interaction.

Information Visualization and Visual Analytics. Many new interactive
visualization methods are presented yearly at the IEEE Conference on Visual
Analytics Science and Technology (VAST). The focus in these communities is
less on the use or development of advanced data mining or machine learning
techniques, and more on efficient use of displays and human cognition, as well
as efficient exploration via selection of data objects and features, but the need
to merge with the data mining community has been long recognized [10].

5 Conclusions

There is a growing need for generic tools that integrate advanced visualization
with data mining techniques to facilitate visual data analysis by a human user.
Our aim with this paper was to present a proof of concept for how this need can
be addressed: a tool that initially presents the user with an ‘interesting’ projec-
tion of the data and then employs data randomization with constraints to allow
users to flexibly express their interests or beliefs. These constraints expressed
by the user are then taken into account by a projection-finding algorithm to
compute a new ‘interesting’ projection, a process that can be iterated until the
user runs out of time or finds that constraints explain everything the user needs
to know about the data.

In our example, the user can associate two types of constraints on a chosen
subset of data points: the appearance of the points in the particular projection
or the fact that the points can be nearby also in other projections. We also
tested the tool on two data sets, one controlled experiment on synthetic data
and another on real census data. We found that the tool performs according to
our expectations; it manages to find interesting projections, although interesting
can be case specific and relies on the definition of an appropriate interestingness
measure, here L1 norm. More research into that is warranted. Nonetheless, we
think this approach is useful in constructing new tools and methods for visually
controllable interactive data analysis in variety of settings. In further work we
intend to investigate the use of the FORSIED approach to formalizing the back-
ground model [3,4], as well as its use for computing the most informative data
projections. Additionally, alternative types of constraints will be investigated.
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13. Lijffijt, J., Papapetrou, P., Puolamäki, K.: A statistical significance testing app-
roach to mining the most informative set of patterns. DMKD 28(1), 238–263 (2014)

14. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. JMLR 9, 2579–2605
(2008)
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