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Abstract. Various Dimensionality Reduction algorithms transform initial
high-dimensional data into their lower-dimensional representations preserving
chosen properties of the initial data. Typically, such algorithms use the solution of
large-dimensional optimization problems, and the incremental versions are
designed for many popular algorithms to reduce their computational complexity.
Under manifold assumption about high-dimensional data, advanced manifold
learning algorithms should preserve the Data manifold and its differential properties
such as tangent spaces, Riemannian tensor, etc. Incremental version of the
Grassmann&Stiefel Eigenmaps manifold learning algorithm, which has asymp-
totically minimal reconstruction error, is proposed in this paper and has signifi-
cantly smaller computational complexity in contrast to the initial algorithm.
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1 Introduction

The general goal of data analysis is to extract previously unknown information from a
given dataset. Many data analysis tasks, such as pattern recognition, classification,
clustering, prognosis, and others, deal with real-world data that are presented in
high-dimensional spaces, and the ‘curse of dimensionality’ phenomena are often an
obstacle to the use of many methods for solving these tasks.

Fortunately, in many applications, especially in pattern recognition, the real
high-dimensional data occupy only a very small part in the high dimensional ‘obser-
vation space’ Rp; it means that an intrinsic dimension q of the data is small compared to
the dimension p (usually, q << p) [1, 2]. Various dimensionality reduction (feature
extraction) algorithms, whose goal is a finding of a low-dimensional parameterization
of such high-dimensional data, transform the data into their low-dimensional repre-
sentations (features) preserving certain chosen subject-driven data properties [3, 4].

The most popular model of high-dimensional data, which occupy a small part of
observation space Rp, is Manifold model in accordance with which the data lie on or
near an unknown Data manifold (DM) of known lower dimensionality q < p embedded
in an ambient high-dimensional space Rp (Manifold assumption [5] about high-
dimensional data). Typically, this assumption is satisfied for ‘real-world’ high-
dimensional data obtained from ‘natural’ sources.
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Dimensionality reduction under the manifold assumption about processed data are
usually referred to as the Manifold learning [6, 7] whose goal is constructing a
low-dimensional parameterization of the DM (global low-dimensional coordinates on
the DM) from a finite dataset sampled from the DM. This parameterization produces an
Embedding mapping from the DM to low-dimensional Feature space that should
preserve specific properties of the DM determined by chosen optimized cost function
which defines an ‘evaluation measure’ for the dimensionality reduction and reflects the
desired properties of the initial data which should be preserved in their features.

Most manifold learning algorithms include the solution of large-dimensional global
optimization problems and, thus, are computationally expensive. The incremental
versions of many popular algorithms (Locally Linear Embedding, Isomap, Laplacian
Eigenmaps, Local Tangent Space Alignment, Hessian Eigenmaps, etc. [6, 7]), which
reduce their computational complexity, were developed [8–17].

The manifold learning algorithms are usually used as a first key step in solution of
machine learning tasks: the low-dimensional features are used in reduced learning
procedures instead of initial high-dimensional data avoiding the curse of dimension-
ality [18]: ‘dimensionality reduction may be necessary in order to discard redundancy
and reduce the computational cost of further operations’ [19]. If the low-dimensional
features preserve only specific properties of data, then substantial data losses are
possible when using the features instead of the initial data. To prevent these losses, the
features should preserve as much as possible available information contained in the
high-dimensional data [20]; it means the possibility for recovering the initial data from
their features with small reconstruction error. Such Manifold reconstruction algorithms
result in both the parameterization and recovery of the unknown DM [21].

Mathematically [22], a ‘preserving the important information of the DM’ means
that manifold learning algorithms should ‘recover the geometry’ of the DM, and ‘the
information necessary for reconstructing the geometry of the manifold is embodied in
its Riemannian metric (tensor)’ [23]. Thus, the learning algorithms should accurately
recover Riemannian data manifold that is the DM equipped by Riemannian tensor.

Certain requirement to the recovery follows from the necessity of providing a good
generalization capability of the manifold reconstruction algorithms and preserving local
structure of the DM: the algorithms should preserve a differential structure of the DM
providing proximity between tangent spaces to the DM and Recovered data manifold
(RDM) [24]. In the Manifold theory [23, 25], the set composed of the manifold points
equipped by tangent spaces at these points is called the Tangent bundle of the manifold;
thus, a reconstruction of the DM, which ensures accurate reconstruction of its tangent
spaces too, is referred to as the Tangent bundle manifold learning.

Earlier proposed geometrically motivated Grassmann&Stiefel Eigenmaps algorithm
(GSE) [24, 26] solves the Tangent bundle manifold learning and recovers Riemannian
tensor of the DM; thus, it solves the Riemannian manifold recovery problem.

The GSE, like most manifold learning algorithms, includes the solution of
large-dimensional global optimization problems and, thus, is computationally expensive.

In this paper, we propose an incremental version of the GSE that reduces the
solution of the computationally expensive global optimization problems to the solution
of a sequence of local optimization problems solved in explicit form.
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The rest of the paper is organized as follows. Section 2 contains strong definition of
the Tangent bundle manifold learning and describes main ideas realized in its
GSE-solution. The proposed incremental version of the GSE is presented in Sect. 3.

2 Tangent Bundle Manifold Learning

2.1 Definitions and Assumptions

Consider unknown q-dimensional Data manifold with known intrinsic dimension q

M ¼ fX = g yð Þ 2 Rp : y 2 Y � Rqg

covered by a single chart g and embedded in an ambient p-dimensional space Rp,
q < p. The chart g is one-to-one mapping from open bounded Coordinate space
Y � Rq to the manifold M = g(Y) with differentiable inverse mapping hg(X) = g−1(X)
whose values y = hg(X) 2 Y give low-dimensional coordinates (representations, fea-
tures) of high-dimensional manifold-valued data X.

If the mappings hg(X) and g(y) are differentiable and Jg(y) is p × q Jacobian matrix
of the mapping g(y), than q-dimensional linear space L(X) = Span(Jg(hg(X))) in Rp is
tangent space to the DM M at the point X 2 M; hereinafter, Span(H) is linear space
spanned by columns of arbitrary matrix H.

The tangent spaces can be considered as elements of the Grassmann manifold
Grass(p, q) consisting of all q-dimensional linear subspaces in Rp.

Standard inner product in Rp induces an inner product on the tangent space L(X)
that defines Riemannian metric (tensor) Δ(X) in each manifold point X 2 M smoothly
varying from point to point; thus, the DM M is a Riemannian manifold (M, Δ).

Let Xn ¼ X1;X2; . . .;Xnf g be a dataset randomly sampled from the DM M ac-
cording to certain (unknown) probability measure whose support coincides with M.

2.2 Tangent Bundle Manifold Learning Definition

Conventional manifold learning problem, called usually Manifold embedding problem
[6, 7], is to construct a low-dimensional parameterization of the DM from given sample
Xn, which produces an Embedding mapping h : M � Rp ! Yh ¼ h Mð Þ � Rq from the
DM M to the Feature space (FS) Yh � Rq, q < p, which preserves specific chosen
properties of the DM.

Manifold reconstruction algorithm, which provides additionally a possibility of
accurate recovery of original vectors X from their low-dimensional features y = h(X),
includes a constructing of a Recovering mapping g(y) from the FS Yh to the Euclidean
space Rp in such a way that the pair (h, g) ensures approximate equalities

rh;g Xð Þ � g h Xð Þð Þ � X for all points X 2 M: ð1Þ

The mappings (h, g) determine q-dimensional Recovered data manifold
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Mh;g ¼ rh;g Mð Þ ¼ frh;g Xð Þ 2 Rp : X 2 Mg ¼ fX ¼ g yð Þ 2 Rp : y 2 Yh � Rqg ð2Þ

which is embedded in the ambient space Rp, covered by a single chart g, and consists of
all recovered values rh,g(X) of manifold points X 2 M. Proximities (1) imply manifold
proximityMh,g ≈ M meaning a small Hausdorff distance dH(Mh,g,M) between the DM
M and RDM Mh,g due inequality dHðMh;g;MÞ� supX2Mjrh;g Xð Þ�Xj.

Let G(y) = Jg(y) be p × q Jacobian matrix of the mapping g(y) which determines
q-dimensional tangent space Lh,g(X) to the RDM Mh,g at the point rh,g(X) 2 Mh,g:

Lh;g Xð Þ ¼ Span G h Xð Þð Þð Þ ð3Þ

Tangent bundle manifold learning problem is to construct the pair (h, g) of map-
pings h and g from given sample Xn ensuring both the proximities (1) and proximities

Lh;g Xð Þ � L Xð Þ for all points X 2 M; ð4Þ

proximities (4) are defined with use certain chosen metric on the Grass(p, q).
The matrix G(y) determines also metric tensor Dh;g Xð Þ ¼ GT h Xð Þð Þ � G h Xð Þð Þ

on the RMD Mh,g which is q × q matrix consisting of inner products
{(Gi(h(X)), Gj(h(X)))} between ith and jth columns Gi(h(X)) and Gj(h(X)) of the matrix
G(h(X)). Thus, the pair (h, g) determines Recovered Riemannian manifold (Mh,g, Δh,g)
that accurately approximates initial Riemannian data manifold (M, Δ).

2.3 Grassmann&Stiefel Eigenmaps: An Approach

Grassmann&Stiefel Eigenmaps algorithm gives the solution to the Tangent bundle
manifold learning problem and consists of three successively performed parts: Tangent
manifold learning, Manifold embedding, and Manifold recovery.

Tangent Manifold Learning Part. A sample-based family H consisting of p × q
matrices H(X) smoothly depending on X 2 M is constructed to meet relations

LH Xð Þ � Span H Xð Þð Þ � L Xð Þ for all X 2 M ð5Þ

in certain chosen metric on the Grassmann manifold. In next steps, the mappings h and
g will be built in such a way that both the equalities (1) and

G h Xð Þð Þ � H Xð Þ for all points X 2 M ð6Þ

are fulfilled. Hence, linear space LH(X) (5) approximates the tangent space Lh,g(X) (3)
to the RDM Mh,g at the point rh,g(X).

Manifold Embedding Part. Given the family H already constructed, the embedding
mapping y = h(X) is constructed as follows. The Taylor series expansions
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gðhðX0ÞÞ � g h Xð Þð Þ � G h Xð Þð Þ � ðhðX0Þ � h Xð ÞÞ ð7Þ

of the mapping g at near points h(X′), h(X) 2 Yh, under the desired approximate
equalities (1), (6) for the mappings h and g to be specified further, imply equalities:

X0 � X � H Xð Þ � h X0ð Þ � h Xð Þð Þ ð8Þ

for near points X, X′ 2 M. These equations considered further as regression equations
allow constructing the embedding mapping h and the FS Yh = h(M).

Manifold Reconstruction Step. Given the family H and mapping h(X) already
constructed, the expansion (7), under the desired proximities (1) and (6), implies
relation

g yð Þ � X þ H Xð Þ � y�h Xð Þð Þ ð9Þ

for near points y, h(X) 2 Yh which is used for constructing the mapping g.

2.4 Grassmann&Stiefel Eigenmaps: Some Details

Details of the GSE are presented below. The numbers {εi > 0} denote the algorithms
parameters whose values are chosen depending on the sample size n (εi = εi,n) and tend
to zero as n → ∞ with rate O(n−1/(q+2)).

Step S1: Neighborhoods (Construction and Description). The necessary prelimi-
nary calculations are performed at first step S1.

Euclidean Kernel. Introduce Euclidean kernel KE(X, X′) = I{|X′ – X| < ε1} on the DM
at points X, X′ 2 M, here I{�} is indicator function.

Grassmann Kernel. An applying the Principal Component Analysis (PCA) [27] to the
points from the set Un(X, ε1) = {X′ 2 Xn: |X′ – X| < ε1} [ {X}, results in p × q
orthogonal matrix QPCA(X) whose columns are PCA principal eigenvectors corre-
sponding to the q largest PCA eigenvalues. These matrices determine q-dimensional
linear spaces LPCA(X) = Span(QPCA(X)) in Rp, which, under certain conditions,
approximate the tangent spaces L(X):

LPCA Xð Þ � L Xð Þ: ð10Þ

In what follows, we assume that sample size n is large enough to ensure a positive
value of the qth PCA-eigenvalue in sample points and provide proximities (10). To
provide trade-off between ‘statistical error’ (depending on number n(X) of sample
points in set Un(X, ε1)) and ‘curvature error’ (caused by deviation of the
manifold-valued points from the ‘assumed in the PCA’ linear space) in (10), ball radius
ε1 should tend to 0 as n → ∞ with rate O(n−1/(q+2)), providing, with high probability,
the order O(n−1/(q+2)) for the error in (10) [28, 29]; here ‘an event occurs with high
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probability’ means that its probability exceeds the value (1 – Cα/n
α) for any n and

α > 0, and the constant Cα depends only on α.
Grassmann kernel KG(X, X′) on the DM at points X, X′ 2 M is defined as

KG X;X0ð Þ ¼ I dBC LPCA Xð Þ;LPCA X0ð Þð Þ\e2f g � KBC LPCA Xð Þ;LPCA X0ð Þð Þ

with use Binet-Cauchy kernel KBC(LPCA(X), LPCA(X′)) = Det2[S(X, X′)] and
Binet-Cauchy metric dBC(LPCA(X), LPCA(X′)) = {1 − Det2[S(X, X′)]}1/2 on the
Grassmann manifold Grass(p, q) [30, 31], here S(X, X′) = QT

PCAðXÞ � QPCAðX0Þ.
Orthogonal p × p matrix pPCAðXÞ ¼ QPCA Xð Þ � QT

PCAðXÞ is projector onto linear
space LPCA(X) which approximates projection matrix π(X) onto the tangent space L(X).

Aggregate Kernel. Introduce the kernel K(X, X′) = KE(X, X′) × KG(X, X′), which
reflects not only geometrical nearness between points X and X′ but also nearness
between the linear spaces LPCA(X) and LPCA(X′) (and, thus (10), nearness between the
tangent spaces L(X) and L(X′)), as a product of the Euclidean and Grassmann kernels.

Step S2: Tangent Manifold Learning. The matrices H(X) will be constructed to meet
the equalities LH(X) = LPCA(X) for all points X 2 M that implies a representation

H Xð Þ ¼ QPCA Xð Þ � v Xð Þ; ð11Þ

in which q × q matrices v(x) should provide a smooth depending H(X) on point X.

At first, the p × q matrices {Hi = QPCA(Xi) × vi} are constructed to minimize a
form

DH;n ¼ 1
2

Xn

i;j¼1
K Xi;Xj
� �� jjHi � Hjjj2F ð12Þ

over q × q matrices v1, v2, …, vn, under normalizing constraint

Xn

i¼1
K Xið Þ � HT

i � Hi
� � ¼

Xn

i¼1
K Xið Þ � vTi � vi

� � ¼ K� Iq ð13Þ

used to avoid a degenerate solution; here K Xð Þ ¼ Pn
j¼1 K X;Xj

� �
and K ¼ Pn

i¼1 K Xið Þ.
The quadratic form (12) and the constraint (13) take the forms (K –Tr(VT × Ф × V))

and VT × F × V = K × Iq, respectively, here V is (nq) × q matrix whose transpose
consists of the consecutively written transposed q × q matrices v1, v2,…, vn,Φ = ||Φij||
and F = ||Fij|| are nq × nq matrices consisting, respectively, of q × q matrices

fUij ¼ K Xi;Xj
� �� S Xi;Xj

� �g and fFij ¼ dij � K Xið Þ � Iqg:

Thus, a minimization (12), (13) is reduced to the generalized eigenvector problem
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U� V ¼ k� F� V; ð14Þ

and (nq) × q matrix V, whose columns V1, V2, …, Vq 2 Rnq are orthonormal
eigenvectors corresponding to the q largest eigenvalues in the problem (14), determines
the required q × q matrices v1, v2, …, vn.

The value H(X) (11) at arbitrary point X 2 M is chosen to minimize a form

dH;n Hð Þ ¼
Xn

j¼1
KðX;XjÞ � jjQPCAðXÞ � vðXÞ � Hjjj2F ð15Þ

over v(X) under condition Span(H) = LPCA(X), whose solution is

H Xð Þ ¼ QPCA Xð Þ � v Xð Þ ¼ QPCA Xð Þ � 1
KðXÞ

Xn

j¼1
K X;Xj
� �� S X;Xj

� �� vj:

ð16Þ

It follows from above formulas that the q × p matrix

Gh Xð Þ ¼ H�ðXÞ � pPCA Xð Þ ¼ v�1 Xð Þ � QT
PCAðXÞ

estimates Jacobian matrix Jh(X) of Embedding mapping h(X) constructed afterward,
here H�ðXÞ is q × p pseudoinverse Moore-Penrose matrix of p × q matrix H(X) [32].

Step S3: Manifold Embedding. Embedding mapping h(X) with already known (es-
timated) Jacobian Gh(X) is constructed to meet equalities (8) written for all pairs of
near points X, X′ 2 M which can be considered as regression equations.

At first, the vector set {h1, h2, …, hn} � Rq is computed as a standard least squares
solution in this regression problem by minimizing the residual

Dh;n ¼
Xn

i;j¼1
K Xi;Xj
� �� Xj � Xi � Hi � ðhj � hiÞ

�� ��2 ð17Þ

over the vectors h1, h2, …, hn under normalizing condition h1 + h2 + … + hn = 0.
Then, considering the obtained vectors {hj} as preliminary values of the mapping

h(X) at sample points, choose the value

h Xð Þ ¼ 1
KðXÞ

Xn

i¼1
K X;Xið Þ � hi þGhðXÞ � X� Xið Þf g ð18Þ

for arbitrary point X 2 M as a result of minimizing over h the residual

dh;n hð Þ ¼
Xn

j¼1
K X;Xj
� �� Xj � X� HðXÞ � ðhj � hÞ�� ��2: ð19Þ

The mapping (18) determines Feature sample Yh,n = {yh,i = h(Xi), i = 1, 2, …, n}.

Step S4: Manifold Recovery. A kernel on the FS Yh and, then, the recovering
mapping g(y) and its Jacobian matrix G(y) are constructed in this step.
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Kernel on the Feature Space. It follows from (8) that proximities

jX�Xij � d y; yh;i
� � ¼ f y�yh;i

� �T�½HTðXiÞ � HðXiÞ	 � y�yh;i
� �g1=2

hold true for near points y = h(X) and yh,i 2 Yh,n. Let uE(y, ε1) = {yh,i: d(y, yh,i) < ε1}
be a neighborhood of the feature y = h(X) consisting of sample features which are
images of the sample points from Un(X, ε1).

An applying the PCA to the set h−1(uE(y, ε1)) = {Xi: yh,i 2 uE(y, ε1)} results in the
linear space LPCA*(y) 2 Grass(p, q) which meets proximity LPCA*(h(X)) ≈ LPCA(X).

Introduce feature kernel k(y, yh,i) = I{yh,i 2 uE(y, ε1)} × KG(LPCA*(y), LPCA*(yh,i))
that meets equalities k(h(X), h(X′)) ≈ K(X, X′) for near points X 2 M and X′ 2 Xn.

Constructing the Recovering Mapping and its Jacobian. The matrix G(y), which
should meet both the conditions (6) and constraint Span(G(y)) = LPCA*(y), is chosen

by minimizing quadratic form
Pn

j¼1 k y; yh;j
� �

� jjGðyÞ � Hjjj2F over G, that results in

G yð Þ ¼ p
 yð Þ � 1
kðyÞ

Xn

j¼1
k y; yh;j
� �

� Hj; ð20Þ

here π*(y) is the projector onto the linear space LPCA*(y) and k yð Þ ¼ Pn
j¼1 k y; yh;j

� �
.

Based on expansions (9) written for features yh,j 2 uE(y, ε1), g(y) is chosen by

minimizing quadratic form
Pn

j¼1 k y; yh;j
� �

� Xj � g yð Þ � GðyÞ � ðyh;j � yÞ�� ��2 over g,
thus

g yð Þ ¼ 1
kðyÞ

Xn

j¼1
k y; yh;j
� �

� Xj þGðyÞ � y� yh;j
� �� �

: ð21Þ

The constructed mappings (18), (21) allow recovering the DM M and its tangent
spaces L(X) by the formulas (2) and (4).

2.5 Grassmann&Stiefel Eigenmaps: Some Properties

Under asymptotic n → ∞, when ε1 = O(n−1/(q+2)), relation dH(Mh,g, M) = O(n−2/(q+2))
hold true uniformly in points X 2 Mwith high probability [33]. This rate coincides with
the asymptotically minimax lower bound for the Hausdorff distance dH(Mh,g, M) [34];
thus, the RDM Mh,g estimates the DM M with optimal rate of convergence.

The main computational complexity of the GSE-algorithm is in the second and
third steps, in which global high-dimensional optimization problems are solved.

First problem is generalized eigenvector problem (14) with nq × nq matrices F and
Φ. This problem is solved usually with use the Singular value decomposition
(SVD) [32] whose computational complexity is O(n3) [35].

Second problem is regression problem (17) for nq-dimensional estimated vector.
This problem is reduced to the solution of the linear least-square normal equations with
nq × nq matrix whose computational complexity is O(n3) also [32].
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Thus, the GSE has total computational complexity O(n3) and is computationally
expensive under large sample size n.

3 Incremental Grassmann&Stiefel Eigenmaps

The incremental version of the GSE divides the most computationally expensive
generalized eigenvector and regression problems into n local optimization procedures,
each time k solved in explicit form for one new variable (matrix Hk and feature hk)
only, k = 1, 2, …, n.

The proposed incremental version includes an additional preliminary step S1+

performed after the Step S1, in which a weighted undirected sample graph Г(Xn)
consisting of the sample points {Xi} as nodes is constructed and the shortest ways
between arbitrary node chosen as an origin of the graph and all the other nodes are
calculated.

The second and third steps S2 and S3 are replaced by common incremental step
S2–3 in which the matrices {Hk} and features {hk} are computed sequentially at the
graph nodes, moving along the shortest paths starting from the chosen origin of the
graph. Step S4 in the GSE remains unchanged in the incremental version.

3.1 Step S1+: Sample Graph

Introduce a weighted undirected sample graph Г(Xn) consisting of the sample points
{Xi} as nodes. The edges in Г(Xn) connect the nodes Xi and Xj if and only when
K(Xi, Xj) > 0; the lengths of such edge (Xi, Xj) equal to |Xi – Xj|/K(Xi, Xj).

Choose arbitrary node X(1) 2 Г(Xn) as an origin of the graph. Using the Dijksra
algorithm [36], compute the shortest paths between the chosen node and all the other
nodes X(2), X(3), …, X(n) writing in ascending order of the lengths of the shortest paths
from the origin X(1). Denote Гk a subgraph consisting of the nodes {X(1), X(2),…, X(k)}
and connected them edges.

Note. The origin X(1) can be chosen as a node with minimal eccentricity; an eccen-
tricity of some node equals to maximum of lengths of the shortest paths between the
node under consideration and all the other nodes. But a calculation of the shortest ways
between all nodes in the graph Г(Xn), which should be computed for this construction,
require n-fold applying of the Dijksra algorithm.

3.2 Step S2–3: Incremental Tangent Manifold Learning and Manifold
Embedding

Incremental version computes sequentially the matrices H(X) and h(X) at the points
X(1), X(2), …, X(n), starting from matrix H(1) and h(1) (initialization). Thus, step S2–3
consists of n substeps {S2–3k, k = 1, 2, …, n} in which initialization substep is
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Initialization substep S2–31. Put v(1) = Iq and h(1) = 0; thus, H(X(1)) = QPCA(X(1)).
At the k-th substep S2–3k, k > 1, when the matrices H(j), j < k, have already

computed, quadratic form ΔH,k, similar to the form (12) but written only for the points
Xi, Xj 2 Гk, is minimized over single unknown matrix H(k) = QPCA(X(k)) × v(k). This
problem, in turn, is reduced to a minimization over v(k) of the form dH,k(H(k)), similar to
the form dH,n(H(k)) (15) but written only for points Xj 2 Гk−1. Its solution v(k), which is
similar to the solution (16), is written in explicit form.

Let Δh,k be a quadratic form, similar to the form Δh,n (17) but written only for points
Xi, Xj 2 Гk. The value h(k), under the already computed values h(j), j < k, is calculated
by minimizing the quadratic form Δh,k over single vector h(k). This problem, in turn, is
reduced to a minimization over h(k) the form dh,k(h(k)), similar to the form dh,n(h(k)) (19)
but written only for points Xj 2 Гk−1; its solution, similar to the solution (18), is written
in explicit form also.

Thus, the substeps S2–3k, k = 1, 2, …, n, are:

Typical substep S2–3k, 1 < k ≤ n. Given {(H(j), h(j)), j < k} already obtained, put

HðkÞ ¼ QPCA XðkÞ
� �� vðkÞ ¼ QPCA XðkÞ

� ��
P

j\k K XðkÞ;XðjÞ
� �� S XðkÞ;XðjÞ

� �� vðjÞP
j\k K XðkÞ;XðjÞ

� � ;

ð22Þ

hðkÞ ¼
P

j\k K XðkÞ;XðjÞ
� �� hðjÞ þ v�1

ðkÞ � QT
PCAðXðkÞÞ � ðXðkÞ � XðjÞÞ

n o
P

j\k K XðkÞ;XðjÞ
� � : ð23Þ

Given {(H(k), h(k)), k = 1, 2, …, n}, the value H(X) = QPCA(X) × v(X) and h(X) at
arbitrary point X 2 M are calculated with use formulas (16) and (18), respectively.

3.3 Incremental GSE: Properties

Computational Complexity. Incremental GSE works mainly with sample data lying
in a neighborhood of some point X contained in ε1-ball Un(X, ε1) centered at X. The
number n(X) of sample points fallen into this ball, under ε1 = ε1,n = O(n−1/(q+2)), with
high probability equals to n × O(n−q/(q+2)) = O(n2/(q+2)) uniformly on X 2 M [37].

The sample graph Г(Xn) consists of V = n nodes and E edges connecting the graph
nodes {Xk}. Each node Xk is connected with no more than n(Xk) other nodes, thus
E < 0.5 × n × maxkn(Xk) = O(n(q+4)/(q+2)) and, hence, Г(Xn) is sparse graph.

The running time of the Dijksra algorithm (Step S1+), which computes the shortest
paths in the sparse connected graph Г(Xn), is O(E × lnV) = O(n(q+4)/(q+2) × lnn) in the
worst case; the Fibonacci heap improves this rate to O(E + V × lnV) = O(n(q+4)/(q+2))
[38].
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The running time of k-th Step S2–3k (formulas (22) and (23)) is proportional to
n(Xk); thus total running time of the Step S2–3 is n × O(n−q/(q+2)) = O(n(q+4)/(q+2)).

Therefore, the running time of the incremental version of the GSE is O(n(q+4)/(q+2)),
in contrast to the running time O(n3) of the initial GSE.

Accuracy. It follows from (18), (21) that X - rh,g(X) ≈ pTPCA Xð Þ � eðXÞ� �� dðXÞj j, in
which d Xð Þ ¼ X� 1

KðXÞ
Pn

i¼1 K X;Xið Þ � Xi and e(X) = δ(X)/|δ(X)|. The first and

second multipliers are majorized by the PCA-error in (10) and ε1,n, respectively, each
of them has rate O(n−1/(q+2)). Thus, reconstruction error (X − rh,g(X)) in the incremental
GSE has the same asymptotically optimal rate O(n−2/(q+2)) as in the original GSE.

4 Conclusion

The incremental version of the Grassmann&Stiefel Eigenmaps algorithm, which con-
structs the low-dimensional representations of high-dimensional data with asymptoti-
cally minimal reconstruction error, is proposed. This version has the same optimal
convergence rate O(n−2/(q+2)) of the reconstruction error and a significantly smaller
computational complexity on the sample size n: running time O(n(q+4)/(q+2)) of the
incremental version in contrast to O(n3) of the original algorithm.
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