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Abstract. Knowledge about the users emotional state is important to
achieve human like, natural HCI in modern technical systems. Humans
rely on body gestures and posture when communicating. We investigate
the relation between gestures and human emotion, specifically when com-
pleting tasks. The main focus of this work lies on discriminating between
mental overload and mental underload, which can e.g. be useful in an
e-tutorial system. Mental underload is a new term used to describe the
state a person is in when completing a dull or boring task. It will be shown
how to select suited features, such as gestures, movement and postural
behavior. Furthermore those features will be investigated regarding their
discriminative power. After features are selected, a multiple classifier sys-
tem will be designed, trained and evaluated.

1 Introduction

A fundamental part of human communication is noticing a change in the affec-
tive state of the conversational partner. Affective state refers to the experience of
feelings or emotions. To elaborate on this more, consider the following scenario:
A person is telling another about a rather complex topic, e.g. in an teacher-
student setting. During this conversation the student starts to look a bit over-
whelmed by all the new information. In this case one would expect the teacher
to change his pace as the student obviously can’t follow up. Let that state the
student is experiencing henceforth be referred to as mental overload. This term is
meant to describe the state one is in when being confronted with a very complex
task, e.g. understanding something completely new. The opposite, i.e. complet-
ing an easy task or listening to a teacher talking about a already well known
topic, shall be called mental underload. In terms of the student-teacher example
one can consider a electronic tutorial platform which controls its pace depend-
ing on the student’s behavior. A user centered system should offer possibilities
for the user to express their emotions [10,16]. Based on human interaction one
can imagine two ways: verbal and non-verbal. Verbal communication focuses on
information retrieved from speech. These can be loudness and pitch or the words
being sad. There has been a lot of research in this area [2,9,11]. Non-verbal ways
of expressing feelings can be facial expressions and gestures, to name a few. While
facial expressions have been researched very thoroughly in the past [6,12,13,15],
the same doesn’t quite hold for gestures. Even tough they play a crucial part
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in human-to-human communication they have been only used little compared
to other modalities in Affective Computing [17], e.g. in [7,8]. This work aims to
close the gap and develop a method to employ postural behavior and gestures
as a powerful additional modality. Specifically to distinguish between mental
overload and underload, as described earlier.

2 Related Work

Kapur et al. [7] conducted a study in 2005 on gesture based affective computing.
Their goal was to train a classifier to distinguish between the four basic emo-
tions Sad, Joy, Anger and Fear. The authors equipped five actors with markers
of a motion capture system and asked them to “perform” given emotions. After
collecting the data 10 participants were asked to identify each emotion only by
watching the moving points, i.e. the position of the markers. In a next step the
authors compute mean of velocity and acceleration and the standard deviations
of positions. The resulting data is then used to train and evaluate several clas-
sifiers. The participants achieved an average recognition rate of 93 %, while the
classifiers achieved between 66.2 % and 91.8 %.

Kipp and Martin [8] investigate four basic gestural features and their respec-
tive relation to the emotional state. Their main goal was to create embodied
conversational agents, i.e. defining a set of gestures to discriminate emotions.
They introduced lexemes to describe gestures by a set of constraints on hand-
edness, hand shape, palm orientation and motion direction. Data was gathered
from the movie Death of a Salesman (1966 DS-1 and 1985 DS-2). In order to
estimate the correlation between emotion category and gestures, the authors
computed pairwise χ2 values. Results suggested a highly significant correla-
tion between emotion category and handedness (χ2 = 40.14; p < .001, in film
DS-1, χ2 = 35.37; p < .001, in film DS-2). They also found for the film DS-
2 a correlation between emotion category and palm orientation (χ2 = 42.50;
p < .05).

Bianchi-Berthouze et al. conducted a study on posture and gesture and
immersion [1]. They focused on two things: is there a relationship between pos-
tural behavior and immersion and the importance of full-body control to improve
user experience. High immersion occurs when the participant has the perception
of being physically present in a virtual reality. Twenty participants were ran-
domly assigned to two groups: a simple point and click game and a first person
shooter. The authors hypothesized that the players in group two experienced a
higher lever of immersion. After playing 10 min the players were asked to com-
plete a Immersion Questionnaire [5] to quantify the level of immersion. Group 1
returned rather low immersion scores (mean 47.1, σ2 = 16.64). They also showed
many shifts in sitting position, e.g. from a very relaxed to a very attentive pose.
Group 2 showed significantly higher scores (mean 68.11, σ2 = 11.95). Movement
in this group occurred fewer, with players scoring lower in immersion showing
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more movement. The authors argue that the results suggest that higher immer-
sion causes fewer unnecessary movements. They also infer that the observed
reduction in movement is caused by the higher engagement, i.e. players in group
2 are more focused.

3 Experimental Setting

The dataset is based on an experiment conducted within the Transregional Col-
laborative Research Centre SFB/TRR 62 “Companion-Technology for Cognitive
Technical Systems”. Participants were asked to play a series of games based on
the interaction paradigm of Schüssel et al. [14]. The task of each game sequence
was to identify the singleton element, i.e. the one item that is unique in shape
and color(see Fig. 1). The participants interacted with the system by speech. The
difficulty was set by adjusting the number of shapes and the time to answer. If
the given answer was incorrect, the player received no reward for that particular
round. After a introduction each participant completed four game sequences of
decreasing difficulty. The first sequence was designed to induce overload (6 × 6
board, 6 s to answer, see Fig. 1), the second was 5 × 5 with 10 s, the third was set
to 3× 3 with 100 s, sequence four was a 3× 3 mode with 100 s (underload). The
last sequence induces frustration, e.g. by purposely logging in a wrong answer.
As the sequences 1 and 4 are explicitly designed to cause over- and underload,
we focused only on those two. After each sequence the participants answered a
self assessment questionnaire (SAM). The aim of those questions was to deter-
mine valence, arousal and dominance experienced in the particular sequence.
A total of 52 participants were recorded. Of those were 26 male and 26 female.
Their age spanned from 17 to 27 (mean 21.66, σ2 ≈ 2.7). During the experiment
participants were monitored by several sensors. This work focuses on the depth
data provided by a Kinect sensor to compute body movements and postural
behavior. The skeleton is extracted by the Kinect itself. We do not employ any
extraction algorithm.

Fig. 1. Experimental setting. Left: Front view. Middle: 3D projection of the data
provided by the Kinect sensor. The depth is color coded, such that green indicates near
objects and rad objects further away. Right: Rear view. The red rectangle indicates
the Kinect. (Color figure online)
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4 Feature Engineering

By watching the recordings a couple of mentionable static gestures were found.
For each of those a set of constraints was defined:

Arms crossed: the right hand is near the left elbow and vice versa.
Hands behind back: both hands are not visible to the Kinect.
Resting hand on hips: the right hand is near the right hip and vice versa.
Crossed feet: the left foot is right of right foot or vice versa.
Feet in front of another: the left foot is closer to the Kinect then the right
one or vice versa.

The occurrences are almost identically distributed and therefore bare only
little discriminative power. To overcome this, they have to be combined with fur-
ther information. We chose to enhance the features by adding the duration. One
drawback of this approach is that suitable thresholds for the constraints have
to be defined. Assuming a threshold for a given person is found, the threshold
doesn’t necessarily apply to other persons just as well. To avoid setting thresh-
olds the mean distance of the respective joints over the set of frames is computed.
Figure 4 gives an example. Again, by watching the video material and observing
the participants’ behavior two main linear movements have been identified: mov-
ing both hands away from the torso and scratching the head or face. The latter
occurred about evenly in both sequences. “Moving both hands away from the
torso” is mostly done in combination with confused facial expression as Fig. 2
shows (this might be very useful in fusion paradigms, i.e. in combination with
a facial expression detector). It seems to be a rather clear indicator whether a

Fig. 2. Examples of participant behavior. Left: The participant is scratching
their head. This occurred about evenly during overload and underload. Right: The
participant is moving their hand away. This occurred far more often during overload.
During underload it only occurred when the participant gave a wrong answer.
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Fig. 3. Extraced features. Top: Mean joint velocities during underload. Bottom:
Mean joint velocities during Overload. It can be seen that participant #72 had a rather
active feet movement during underload while their feet were mostly standing still during
overload.

person is experiencing over- or underload, because it occurs mostly during over-
load. We captured this gesture by computing mean joint distances (e.g. between
both hands, hand and hip), velocity, and acceleration. For each joint the values
were computed within a window of 120 frames. Figure 3 gives an example. Joint
velocity is computed as the first derivative of the joint positions (x, y, z) w.r.t.
time: v̄ = Δs

Δt . Joint acceleration is computed by approximating the derivative
of the joint velocities, i.e. ā = Δv

Δt . To account for varying movement within the
frame the standard deviation of velocity and acceleration are also computed.
Additionally, most participants showed a rather highly active head movement.
The Kinect sensor measures the rotation angles of the head in yaw, pitch, and
roll notation. The yaw angle can be used to detect whether a participant is look-
ing at the camera or not. Pitch angle indicates movement towards the floor or
the ceiling and roll angle is measuring head tilt. To capture those movements a
threshold for each angle is defined.

5 Results

We focus on person dependent classification. This type of classification refers to
training a classifier such that it fits well to a given person. A Random Forest
[3,4] (RF) of 200 trees was trained and evaluated with a 10-fold cross validation
for each participant. We choose RFs because they can be trained and evaluated
easily and can handle large amounts of data well. Furthermore they do not
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Fig. 4. Examples for postural behavior. Mean distances (window 120 frames, 60
frames overlap) between selected joints during underload (top) and overload (bottom).
Negative values e.g. indicate that the left hand is below the left hip.

Fig. 5. Person dependent classification results. Each group contains 52 samples,
i.e. the number of participants. Each sample represents the mean classification accuracy
obtained by a 10-fold cross validation.
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require many parameters. As the features were extracted with overlap, there is
a high correlation between neighboring samples. To achieve an unbiased result
the features containing overlap from test and training set were removed. Results
are shown in Fig. 5. Due to the slightly more expressive behaviors during mental
overload this class resulted in a smaller classification error. Overall an error rate
of about 5 % was achieved. Further experiments of training a single classifier
matching all participant behaviors at once (leave one subject out) yielded an
error of about 38 % in overload recognition and up to 47 % overall. This is due
to the highly individual character of human behavior and could possibly be
overcome by grouping similar participants.

5.1 Approximating Feature Importance

The importance of the different features was investigated by randomly permuting
the values of a feature and classifying based on that [4]. The resulting values
indicate how much the mean classification error changed after permutation (delta
error), i.e. high values represent important features. This was done for each of
the features and for each participant. Figure 6 gives an example for postural
behavior, i.e. selected joint distances.

Moving direction of the joints seems to be important for some participants
and for others it’s not. Tests without this feature did not yield significantly higher
accuracies. Head positions yielded rather low importance measurements. In fact,
the values obtained were the lowest of all features and for some participants the
delta error was negative. Negative values indicate that the classification accuracy
could be improved when leaving those features out. This was done and a new
set of tests was run, but classification error did not improve significantly. This
could be explained by interactions between features.

5.2 Approximating OOB Error

Recall, that the RF algorithm employs bagging during training phase. Bagging
is a technique where samples are divided into subsets by drawing randomly
with replacement [3] such that one subset is created per tree. The Out Of Bag
Error is computed by running the samples that haven’t been used for training
through the classification tree and evaluating the results. Figure 7 shows the
mean, maximal and minimal cumulative OOB error over all 52 participants.
The low OOB error indicates the classification trees can learn the underlying
distribution rather well. This is also backed by the high classification accuracies
obtained when evaluating self classification.

5.3 Approximating Outlier Measurements

Outliers in RFs can be found by first computing the proximity of the data and
then averaging by the number of trees. Proximity between two observations is
defined as the fraction of trees in the ensemble for which these two observations
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Fig. 6. Mean feature importance and respective standard deviation. Delta
error refers to the change in classification error made when permuting values of a given
feature. High values indicate important features and low values less important features.
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Fig. 7. Out-Of-Bag Errors. As the figure shows, the Out-Of-Bag Error doesn’t
improve further after about 50 trees.

Fig. 8. Outlier measurement and respective standard deviation. The samples
within one participant contain only little outliers. Note that the outlier value has been
omitted and only the bin numbers are shown.
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land on the same leaf [4]. Outliers can then be found by taking the squared
inverse proximity of a given sample and compare that value with the squared
inverse proximity of the remaining samples. A high value indicates this sample
is an outlier. Figure 8 shows the histograms of outlier measurements over all 52
participants and the corresponding standard deviations. As most of the samples
have a low measurement (first bin), the samples within each participant are very
similar.

5.4 Comparing Different Ensemble Members

The previous section evaluated RFs. To get an idea of how well that classifier
compares to others and how they influence classification accuracy, several tests
were run using different classifiers. Figure 9 shows the results. A 3-NN ensemble,
a Linear Discriminant Analysis (LDA) ensemble, and a mix of both were trained
using the random subspace method, which is a generalization of the RF algo-
rithm. It operates on a random subset of the feature space. In this case it was
set to m = �log2(M)�, as suggested by Breiman in is original paper. We chose
these two classifiers because they are trained similarly to RF and don’t require
many parameters.

Fig. 9. Comparing ensemble members. As the figure shows, the RF performs well
compared to the others.
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6 Conclusion

It was shown that there is indeed a relation between postural behavior and men-
tal over- and underload. Specifically, the findings suggested mental overload is in
most cases accompanied by a rather high physical arousal, i.e. a lot of movement.
This was then used as a basis to identify suitable features. These were mean joint
velocity, acceleration, and distances between several selected joints. Additionally,
the respective motion direction is important. Head movement has been captured
by computing rotational velocities on each axis and six predefined positions. To
prove the usefulness of the feature an extensive analysis was conducted. In par-
ticular, the training error (OOB error), the sample outlier measurement and
the feature importance have been investigated. The analysis of the OOB error
and the outlier measurement showed the features do indeed separate the samples
well into mental overload and underload for each participant. For each of the fea-
tures their respective discriminative power was also approximated. The results
indicated mean joint velocities and accelerations bare the most information and
head position and moving direction the least. In a last step the model itself has
been evaluated to prove the RF algorithm is indeed the best fitting choice for
this task. To achieve this the classification results were compared to ensembles
of 3-NN, LDA, and a mix of both classifiers. Comparing the results revealed
the RF outperformed the others. The overall results are promising in terms of
HCI systems which are adaptable to the users bearings. Such a systems would
interact with a single user over a longer period and learn to understand the users
behavior. Remembering the initial described tutorial system one could imagine
a systems which assists a student over at least a whole term by adapting the
teaching pace based on the presented approaches. The theoretical findings of this
work also used to successfully design and implement a live system. This system
is able to record a given participant using a Kinect sensor, extract features and
classify those features. Classification is achieved by training with the data from
the participants used in the theoretical analysis.

For future works it could be of interest to investigate if other affective states
can also be classified based on postural behavior. The data we used was from
rather young participants (mean 21.66 years). This could have biased the ges-
tures we found and analyzed, because elderly people may show different (less
expressive) gestures. It would be worthwhile to investigate this further. Another
drawback of our method is the rather long training phase, because we assumed
a person dependent. This could be overcome by finding a suitable participant
grouping and training classifier systems for each group.
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