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Abstract. Since instances in multi-label problems are associated with
several labels simultaneously, most traditional feature selection algo-
rithms for single label problems are inapplicable. Therefore, new cri-
teria to evaluate features and new methods to model label correlations
are needed. In this paper, we adopt the graph model to capture the
label correlation, and propose a feature selection algorithm for multi-
label problems according to the graph combining with the large margin
theory. The proposed multi-label feature selection algorithm GMBA can
efficiently utilize the high order label correlation. Experiments on real
world data sets demonstrate the effectiveness of the proposed method.
The codes of the experiment of this paper are available at https://github.
com/Faustus-/ECML2016-GMBA.
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1 Introduction

Multi-label learning studies the problem in which each instance is associated
with a set of labels simultaneously. It usually occurs in text categorization,
automatic annotation and bioinformatics, etc. [24]. For example, each music
in emotions [15] data set can be associated with at most six different emotion
tags simultaneously. A straightforward method to solve the multi-label problem
is to decompose the problem into a series of single label binary classification
problems, such as Binary Relevance [2] and ML-kNN [23]. However, this strat-
egy neglects the label correlation which is usually helpful for improving the
performance of a multi-label learning algorithm. To complement this, various
multi-label learning algorithms with the consideration of label correlation have
been proposed, such as [4,7,8,11,13,19,22]. According to the utilization of label
correlation, these algorithms can be divided into three orders [24]: (a) the first
order algorithms predict labels for an unseen instance one by one. They are very
simple while neglecting label correlation [2,23]. (b) the second order algorithms
consider pairwise relation between labels, which usually leads to a label ranking
problem [4,8]. (c) the high order algorithms capture more complex correlation
between labels, but they are computationally expensive [7,11,13,19,22].
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Similar to other machine learning tasks, multi-label learning also suffers
from the curse of dimensionality. Redundant and irrelevant features make data
intractable, resulting in unreliable model and degraded learning performance.
Feature selection is an efficient and popular technique to reduce dimensional-
ity. Several feature selection algorithms for the multi-label problem have been
presented. For example, feature selection algorithms for multi-label naive bayes
classifier and Rank-SVM classifier are introduced in [5,21] respectively. These
multi-label feature selection algorithms belong to the wrapper model [14], which
evaluates features according to predictive results of the specified learning algo-
rithm, thus they share bias of the learning algorithm and it is prohibitively
expensive to run for data with a large number of features. In [6], two classic
single-label feature selection algorithms, F-Statistic and ReliefF, are extended
to handle multi-label problems. These algorithms belong to the filter model [14],
which evaluates features by measuring the statistics of a multi-label data set.
Algorithms belonging to the filter model are independent of specified classifiers
and more flexible than those belonging to the wrapper model.

In this paper, a graph-margin based multi-label feature selection algorithm
(GMBA) is proposed. GMBA firstly describes multi-label data with a graph, which
has good discrimination capability and shares similar expression capability to the
hypergraph applied in [13,19]. Then, it measures features based on the graph com-
bining with the large margin theory. Since GMBA evaluates features according to
the graph derived from the training data, it is independent of a specified learning
algorithm and belongs to the filter model. We will introduce GMBA in the follow-
ing order. In Sect. 2, we define a similarity measure for multi-label instances and
describe multi-label data by a graph. The discrimination capability and expression
capability of the graph are also discussed in this section. In Sect. 3, we define a mar-
gin for multi-label data and derive GMBA depending on the graph combining with
the margin. In addition, experimental results on real world data sets are reported
in Sect. 4 and paper concludes in Sect. 5.
Notations. Before introducing the algorithm, we will give the notations in this
paper. n, D and Q denote the number of training instances, the data dimension-
ality, and the number of labels, respectively. Fd denotes the dth feature and lq

denotes the qth label, where 1 ≤ d ≤ D and 1 ≤ q ≤ Q. nq denotes the number
of training samples associated with lq. (x i,y i) denotes the ith instance in the
training data.

x i =
(
x1i , ..., x

d
i , ..., x

D
i

)
denotes the features of the ith instance in the training

data, where xd
i denotes the dth component of the ith instance, or the ith instance

has value xd
i for Fd.

x d =
(
xd
1, ..., x

d
i , ..., x

d
n

)T denotes a feature vector of the dth feature. The
superscript T means the transpose of a vector or matrix.

y i =
(
y1i , ..., y

q
i , ..., y

Q
i

)
denotes the relationship between labels and the ith

instance in the training data. If the ith instance is associated with lq then yq
i = 1,

or yq
i = 0. For single-label problems, there is a constraint that |y i| = 1, 1 ≤ i ≤ n,

where |·| denotes the 1-norm of the vector.
s(i,i′) denotes the similarity between the ith and i′th instances.
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G = (V,E) denotes a graph, where V and E denote the vertex set and the
edge set of the graph, respectively. AG denotes the adjacent matrix of G, DG

denotes the degree matrix of G. LG = DG −AG is the corresponding Laplacian
matrix.

[π] returns 1 if predicate π holds, and 0 otherwise.
|·| and ‖·‖ returns 1-norm and 2-norm respectively.
ω is a weight vector of features.

2 Graph Model for Multi-label Data

2.1 Graph Definition

Graph is a widely used model for its powerful expression capability. For example,
well-known page rank and image segmentation algorithm in [3] are based on
the graph model. In this paper, we adopt the graph to capture the correlation
between labels and instances for multi-label data.

Suppose, in a graph, each vertex vi ∈ V represents an instance and an edge
e(i,i′) ∈ E connecting two vertexes denotes the similarity of the corresponding
instances, then a simple undirected graph G = (V,E) can be built to model the
correlation between instances. The key of building the graph depends on how
one measures the instance similarity. For a single-label problem, the similarity
between two instances x i and x i′ are usually defined as Eq. 1 [25].

ssingle (i, i′) =

{
1
nq

, yq
i = yq

i′ = 1

0, otherwise
(1)

which means that instances in the same class share the same similarity, while
similarity between instances from different classes is 0. However, when it comes
to multi-label problems, an instance is associated with several labels (classes)
simultaneously and it is ambiguous to compare the belongingness of two different
instances. Therefore, Eq. (1) is not suitable when solving multi-label problems
and we define Eq. 2 to measure the similarity between two multi-label instances.

smulti (i, i′) =

⎧
⎨

⎩

∑Q
q=1 nq·[yq

i=1∧yq

i′=1]
∑Q

q=1 nq·[yq
i=1∨yq

i′=1] ,
∑Q

q=1 nq · [yq
i = 1 ∨ yq

i′ = 1] �= 0

0, otherwise
(2)

In Eq. 2, the numerator counts the labels two instances shared, and the denom-
inator counts the labels at least one of the two instances associated with. nq is
the number of training samples associated with lq and it is applied as a weight to
tune the importance of different labels. Equation 2 is a variation of the Jaccard
similarity, which measures the ratio of the size of intersection and the size of
union for two sets. Then, the multi-label data can be represented as a graph
using an adjacent matrix AG definded in Eq. 3, where AG (i, i′) is the element
in the ith row, i′th column of AG.

AG (i, i′) =

{
smulti (i, i′) , i �= i′

0, otherwise
(3)
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Fig. 1. (a) Our proposed graph for multi-label data, (b) The graph for multi-class
data transformed from the multi-label data. The edges in graphs are denoted with
solid lines and circles are vertexes. The fractions on the edges represent the similarity
weight. Circles fallen in the same ellipse (dash line) represent instances associated
with the same label/class. The circle fallen in the intersection of two ellipses means the
instance is associated with two labels simultaneously. And the two instances associated
with no labels are put in the ellipse below.

2.2 Discrimination Capability

To explain the discrimination capability of the proposed graph, an exam-
ple is presented below. Assuming that there are Q different labels, we have
y i ∈ {0, 1}Q. Without loss of generality, we set Q = 2 and two labels are named l1

and l2. We also assume that a multi-label training data set consists of one
instance associated with l1, two instances associated with l2, one instance asso-
ciated with l1 and l2 simultaneously and two instances associated with no labels.
The proposed graph to describe these instances is given in Fig. 1(a). Then, if
one can split the graph into different parts (such as the ellipses of dash line),
instances associated with different labels will be discriminated. Hence multi-label
instances are discriminable in the proposed graph. Moreover, some off the shelf
algorithms can be applied to finish this task, such as normalized cut [12], ration
cut [18], etc.

In addition, the discrimination capability of the proposed graph is similar to
the one derived from label power set algorithms as in [16,17], while the proposed
graph is smoother and can capture label correlation. More specifically, a label
power set algorithm usually transforms a multi-label problem into a multi-class
problem in which each class corresponds to a label power set. For the multi-label
problem mentioned above, a label power set algorithm will transform it into a
multi-class problem with 4 different classes: ∅,

{
l1

}
,
{
l2

}
and

{
l1, l2

}
, and each

instance is associated with one class. Since a multi-class problem belongs to the
single-label learning problem, the similarity between instances can be measured
by Eq. 1. The resulting graph is shown in Fig. 1(b), which includes 4 unconnected
subgraphs. The partitions of the graph (ellipses of dash line) are similar to the
ones in Fig. 1(a), hence they have similar discrimination capability. However, in
multi-class problems, the similarity between instances from different classes is
0, and there are no edges connecting them, such as the instance belonging to
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the class
{
l1

}
and the one belonging to the class

{
l1, l2

}
in Fig. 1(b). Although

these instances actually share some labels in common, such as the label l1 for
the class

{
l1

}
and the class

{
l1, l2

}
, the correlation is not considered by the

graph in Fig. 1(b). On the contrary, such kind of correlation is considered in
our graph as in Fig. 1(a) through the edges weight between 0 and 1. Therefore,
the proposed graph for a multi-label problem is smoother than the graph for a
multi-class problem transformed from a multi-label problem in [16,17] and can
capture label correlation.

2.3 Expression Capability

Though the proposed graph in Sect. 2.1 is a simple-graph, it has similar expres-
sion capability to a hypergraph, which has been successfully applied to capture
high order label correlation in [13,19].

Different from edges in a simple-graph, an edge, which is called hyperedge,
in a hypergraph connects more than two vertexes simultaneously. Hence multi-
label data can be described by a hypergraph as follows: in a hypergraph GH =
(VH ,EH), each vertex vi ∈ VH corresponds to an instance in the multi-label
data set, each hyperedge eq ∈ EH is a subset of VH , where eq = {vi | yq

i =
1, 1 ≤ i ≤ n}. The degree of each hyperedge d (eq) is defined as the number of
vertexes on that hyperedge, namely nq, and we may set the weight of a edge,
w (eq), equals to its degree.

If we apply Clique Expansion [1,13,19] to expand the hypergraph above, we
obtain a simple-graph GC = (VC ,EC), where VC = VH and EC = {e(i,i′) |
vi ∈ eq ∧ vi′ ∈ eq, eq ∈ EH}. The weight of e(i,i′) is defined as Eq. 4.

w
(
e(i,i′)

)
=

∑

vi∈eq∧vi′ ∈eq,eq∈EH

w (eq) =
Q∑

q=1

nq · [yq
i = 1 ∧ yq

i′ = 1] (4)

Normalizing it to obtain Eq. 5, we find that Eq. 5 is the same to the similarity
defined in Eq. 2

ŵ
(
e(i,i′)

)
=

∑
vi∈eq∧vi′ ∈eq,eq∈EH

w (eq)
∑

vi∈eq∨vi′ ∈eq,eq∈EH
w (eq)

=

∑Q
q=1 nq · [yq

i = 1 ∧ yq
i′ = 1]

∑Q
q=1 nq · [yq

i = 1 ∨ yq
i′ = 1]

(5)

Thus our proposed graph is the same to the simple-graph expanded from a
hypergraph by Clique Expansion. According to [1,13], both the hypergraph and
the expanded simple-graph, as well as the proposed graph, can capture similar
high order correlation and therefore they share similar expression capability for
multi-label data.

3 Graph-Margin Based Multi-label Feature Selection
(GMBA)

In Sect. 2, we propose a discriminative graph to describe multi-label data.
According to the similarity measure defined in Eq. 2, the graph reflects the rela-
tions of data in label space. However, these relations in label space are usually
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different from the one in feature space. We will illustrate this case in Fig. 2(a)
and (b). For an instance denoted by star in Fig. 2(a), its several nearest neighbors
in label space are represented by squares. That is to say, the similarity measured
by Eq. 2 between a square and the star is greater than a threshold smin, and
these squares are the closest instances to the star in the proposed graph as in
Fig. 2(a). However, if we estimate similarities among instances in feature space,
such as using a radial basis function, an instance represented by triangle could
be more similar (closer) to the star than squares. This means that the graph
built in feature space as in Fig. 2(b) is inconsistent with the graph in label space
as in Fig. 2(a).

Fig. 2. A comparison of graphs built in different spaces. Each star, square or triangle
represents an instance. The edges connect two different shapes denote the similarity
between them. The shorter an edge is, the more similar two instances are. We omit the
edges that do not connect with the star.

Furthermore, for classification problems, the target of a classifier is using
features to divide instances into different classes, which means that we have to
use features to predict the partitions of the graph in label space. Although the
graph built in label space is discriminative as analyzed in Sect. 2.2, an incon-
sistent counterpart in feature space does not maintain its discrimination power
and may lead to wrong partition. Thus we propose a multi-label feature selection
algorithm GMBA, which will choose a subset of features that the graph built
in this feature subspace, as in Fig. 2(c), is similar to the one in label space, as
Fig. 2(a). In addition, a margin, as depicted in Fig. 2(c), is applied in GMBA to
guarantee the generalization capability of the selected features.

3.1 Loss Function

To evaluate the inconsistency described above, we design a loss function based on
margin. Firstly, we apply sim (i) and dissim (i) to represent the instance subsets
similar and dissimilar to (x i,y i) in label space respectively. They are described
in Eqs. 6 and 7.

sim (i) = {(x i′ ,y i′) | smulti (i, i′) ≥ smin, 1 ≤ i′ ≤ n and i �= i′} (6)
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dissim (i) = {(x i′ ,y i′) | smulti (i, i′) < smin, 1 ≤ i′ ≤ n and i �= i′} (7)

where smin is a given threshold and smulti (i, i′) is the similarity defined in Eq. 2.
Then, the loss function is designed in Eq. 8 to evaluate the inconsistency between
the graph in label space and the one in feature space for (x i,y i).

Loss (i) =
∑

i′∈neighbor(i)

smulti (i, i′) ‖x i − x i′‖2 + λ
∑

i′′∈dissim(i)

δ (i′, i′′) (8)

where neighbor (i) denotes a instance subset with k instances those are both
nearest to (x i,y i) in feature space and belong to sim (i). The first term of
Eq. 8 penalizes large distance between (x i,y i) and its neighbors (x i′ ,y i′) in
neighbor (i). The second term δ (i′, i′′) is a penalty defined in Eq. 9 and λ is the
tuning parameter.

δ (i′, i′′) =

(smulti (i, i′) − smulti (i, i′′)) · max
(
0,m (i) + ‖x i − x i′‖2 − ‖x i − x i′′‖2

) (9)

δ
(
i′, ii

′′
)

is the hinge loss penalizing (x i′′ ,y i′′), which is an instancec in
dissmiss (i) but closer to (x i,y i) than (x i′ ,y i′) to (x i,y i) in feature space.
The closer (x i′′ ,y i′′) to (x i,y i) in feature space and more dissimilar (x i′′ ,y i′′)
to (x i,y i) in label space, the larger the penalty. m (i) is the margin defined
in Eq. 10, where nh (i) and nm (i) are the nearest instances from sim (i) and
dissim (i) respectively to the (x i,y i) in feature spaces.

m (i) =
∣
∣
∣
∥
∥x i − xnh(i)

∥
∥2 − ∥

∥x i − xnm(i)

∥
∥2

∣
∣
∣ (10)

We will illustrate the penalty defined Eq. 9 for the case depicted in Fig. 2(b).
Assuming that the star represents (x i,y i), the margin m (i) is the absolute
value of the square Euclidean distance between the square marked nh and the
star minus the square Euclidean distance between the triangle marked nm and
the star. If the square Euclidean distance between any triangle and the star is
smaller than the square Euclidean distance between a square and the star plus
this margin, it will be penalized by Eq. 9.

3.2 Feature Ranking

Based on the loss function in Eq. 8, one can evaluate the inconsistency between
the graph in label space and the one in feature space by summing up the loss of
all training data as depicted in Eq. 11. The smaller Eq. 11 is, the more consistent
two graphs are. In addition, for feature selection, it is key to find a feature
subspace that minimize Eq. 11.

Loss (G) =
n∑

i=1

Loss (i) (11)
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However, it suffers from the complexity of O
(
2D

)
to find the best subspace for

Eq. 11. As a result, according to [9,10], we evaluate the fitness of features by a
weight vector ω and find the best ω by gradient descent method. Specifically,
searching for the best ω can be formulated as Eq. 12

min
ω

Loss (ω,G) = min
ω

n∑

i=1

Loss (ω.i) (12)

where

Loss (ω.i) =
∑

i′∈neighbor(i)

smulti (i, i′) ‖x i − x i′‖2ω + λ
∑

i′′∈dissim(i)

δ (ω, i′, i′′)

(13)
δ (ω, i′, i′′)

= (smulti (i, i′) − smulti (i, i′′)) · max
(
0,m (i) + ‖x i − x i′‖2ω − ‖x i − x i′′‖2ω

)

(14)

and ‖z‖ω =
√∑D

d=1 (ωdzd)2.
Then Eq. 12 can be solved by the gradient descent and the algorithm is summa-
rized as follows.

Step 1: Initialize ω = (1, 1, 1, ..., 1), and set the number of iterations I.
Step 2: For i =1, 2, ... , I.
(a) Pick up an instance (x i,y i), and find sim (i) and dissim (i) according to
Eqs. 2, 6 and 7.
(b) Find k nearest instances to (x i,y i) in feature space from sim (i) as
neighbor (i).
(c) Find nh(i) and nm(i) from sim (i) and dissim (i) respectively.
(d) Calculate m (i) according to Eq. 10
(e) For d =1, 2, ... , D

∇d = 2ωd
∑

i′∈neighbor(i) smulti (i, i′)
∥
∥xd

i − xd
i′
∥
∥2 + λ

∑
i′∈dissim(i)

∂δ(ω,i′,i′′)
∂ωd ,

where
∂δ(ω,i′,i′′)

∂ωd is the partial derivative of δ (ω, i′, i′′) given in Eqs. 15 and 16

∂δ (ω, i′, i′′)
∂ωd

=

{
0, m (i) + ‖x i − x i′‖2 < ‖x i − x i′′‖2
diff (d) , otherwise

(15)

diff (d) = 2ωd (smulti (i, i′) − smulti (i, i′′))
(∥
∥xd

i − xd
i′
∥
∥2 − ∥

∥xd
i − xd

i′′
∥
∥2

)
(16)

(f)ω = ω − β∇/ ‖∇‖, where β is a decay factor.
Step 3: Ranking features based on ω. The greater the ωd, the better the Fd.

4 Experiments

To demonstrate the effectiveness of the proposed GMBA, we empirically com-
pare the GMBA with the multi-label F-Statistic (MLFS)[6] and the multi-label
ReliefF (MLRF) [6].
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In addition, spectral feature selection framework (SPEC) [25] is an algorithm
which selects features based on the graph structure for single label problems. It
measures features according to Eq. 17.

φ
(
Fd

)
=

(
x̂ d

)T

LGx̂d =
∑

1≤i,i′≤n

ssingle (i, i′)
√

d (i) d (i′)

∥
∥
∥x̂d

i − x̂d
i′

∥
∥
∥
2

(17)

where d (i) is the degree of vertex vi, x̂
d = D

1
2 xd

∥
∥
∥D

1
2 xd

∥
∥
∥

is the normalized feature

vector and LG = D
− 1

2
G LGD

− 1
2

G is the normalized Laplacian matrix. The smaller
the Eq. 17, the better the Fd. We adapt it to multi-label problems by replacing
the ssingle (i, i′) with the proposed similarity smulti (i, i′), so that it will select
features consistent with the proposed graph structure for multi-label data.

4.1 Data Sets

Eight benchmark multi-label data sets from different domains are used for exper-
iments, which are downloaded from MULAN1. Details about data sets are listed
in Table 1. All numerical features are normalized with zero mean and unit vari-
ance in experiments. Features with variance 0 are eliminated.

Table 1. Summary of 8 benchmark data sets

Name Instance Features Labels Domain Name Instance Features Labels Domain

bibtex 7395 1836 159 text mediamill 43907 120 101 video

emotions 593 72 6 music medical 978 1449 45 text

enron 1702 1001 53 text scene 2407 294 6 image

genebase 662 1186 27 biology yeast 2417 103 14 biology

4.2 Classifiers and Parameters

Binary Relevance [2] (1st order algorithm) and Classifier Chain [11] (high order
algorithm) are used as multi-label learning strategy respectively, 3-Nearest Neigh-
bor (3-NN) classifier in scikit-learn2 is applied as the base classifier. Number of
neighbors for MLRF and neighbor (i) in GMBA are set 3. The threshold smin and
tuning parameter λ are 1. The number of iterations I equals to the number of train-
ing data n. The decay factor β is 0.9. Experiments3 are carried on under the envi-
ronment of Python 2.7.

1 http://mulan.sourceforge.net/.
2 http://scikit-learn.org/stable/.
3 Codes can be acquired at https://github.com/Faustus-/ECML2016-GMBA.

http://mulan.sourceforge.net/
http://scikit-learn.org/stable/
https://github.com/Faustus-/ECML2016-GMBA
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4.3 Evaluations

Three different measurements [24], i.e., Hamming loss (↓), micro (↑) and macro
(↑) F1-Measure, are applied to validate the performance of the selected features
for multi-label learning. (↓) denotes the smaller the better, while (↑) denotes the
larger the better. Except for mediamill and bibtex, all results reported in this
paper are the average of 10-cross validation. Since the big size of mediamill and
bibtex, we randomly select 1800 instances and other 10 percent of total instances
for training and testing respectively. The results reported are the average of 10
trials of experiments.

4.4 Results

Experimental results are shown in Figs. 3, 4, 5 and 6. For space limitation, we
display the Hamming Loss for the bibtex, emotions, enron and genebase, macro
F1-Measure metrics for mediamill, medical, scene and yeast when the multi-
label learning strategy is Binary Relevance. We also display the Hamming Loss
for mediamill, medical, scene and yeast, macro F1-Measure metrics for bibtex,
emotions, enron and genebase when the multi-label learning strategy is Classifier
Chain. Complete results of micro F1-Measure metrics are displayed in Figs. 5
and 6.

Experimental results show that features selected by proposed GMBA obtain
better classifying performance than others in most cases. For emotions and scene
data sets, all algorithms achieve similar performance, which might result from
the fact that there are only 6 labels, causing a weak discrimination power of
graphs built in the label space. In addition, GMBA and the adapted SPEC are
suitable for more data sets than MLFS and MLRF, since the performance of
MLFS and MLRF vary from different data sets.

5 Discussions and Conclusions

According to experimental results, GMBA performs better than other algo-
rithms, and both GMBA and SPEC are suitable for more data sets than MLFS
and MLRF. In addition, while GMBA and SPEC all aim to find a feature subset
that the graph built in this subspace is consistent with the graph built in label
space, GMBA is superior to the SPEC in most cases. This results from the mar-
gin we applied in GMBA, since a margin usually leads to better discrimination
and generalization, such as LMNN in [20] and the classic SVM. More specifically,
as illustrated in Fig. 2(c), similar instances are pushed close to each other and
dissimilar instances are pulled away from them according to the margin. In this
way, the margin makes features in this subspace become more discriminative.

In conclusion, based on the graph and the large margin theory, the proposed
GMBA can capture high order label correlation and guarantee generalization
capability. Experimental results on different real world data sets indicate the
effectiveness and good performance of the proposed algorithm.
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Fig. 3. Hamming loss (↓). The first 4 diagrams show the hamming loss of applying
the Binary Relevance while the rest show the results from the Classifier Chain. Y-axis
corresponds to different metrics and X-axis denotes the percentage of features selected.
The horizontal lines are the results of classifying with all features
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Fig. 4. macro F1-Measure (↑). The first 4 diagrams show the macro F1-Measure of
applying the Binary Relevance while the rest show the results from the Classifier Chain.
Y-axis corresponds to different metrics and X-axis denotes the percentage of features
selected. The horizontal lines are the results of classifying with all features
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Fig. 5. The micro F1-Measure (↑) of applying the Binary Relevance. Y-axis corresponds
to the metrics and X-axis denotes the percentage of features selected. The horizontal
lines are the results of classifying with all features
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Fig. 6. The micro F1-Measure (↑) of applying the Classifier Chain. Y-axis corresponds
to the metrics and X-axis denotes the percentage of features selected. The horizontal
lines are the results of classifying with all features
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