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Abstract. Given a large-scale and high-order tensor, how can we find
dense blocks in it? Can we find them in near-linear time but with a qual-
ity guarantee? Extensive previous work has shown that dense blocks in
tensors as well as graphs indicate anomalous or fraudulent behavior (e.g.,
lockstep behavior in social networks). However, available methods for
detecting such dense blocks are not satisfactory in terms of speed, accu-
racy, or flexibility. In this work, we propose M-Zoom, a flexible frame-
work for finding dense blocks in tensors, which works with a broad class
of density measures. M-Zoom has the following properties: (1) Scalable:
M-Zoom scales linearly with all aspects of tensors and is up to 114×
faster than state-of-the-art methods with similar accuracy. (2) Prov-
ably accurate: M-Zoom provides a guarantee on the lowest density of
the blocks it finds. (3) Flexible: M-Zoom supports multi-block detec-
tion and size bounds as well as diverse density measures. (4) Effective:
M-Zoom successfully detected edit wars and bot activities in Wikipedia,
and spotted network attacks from a TCP dump with near-perfect accu-
racy (AUC = 0.98). The data and software related to this paper are
available at http://www.cs.cmu.edu/∼kijungs/codes/mzoom/.
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1 Introduction

Imagine that you manage a social review site (e.g., Yelp) and have the records
of which accounts wrote reviews for which restaurants. How do you detect suspi-
cious lockstep behavior: for example, a set of accounts which give fake reviews to
the same set of restaurants? What about the case where additional information
is present, such as the timestamp of each review, or the keywords in each review?

Such problems of detecting suspicious lockstep behavior have been exten-
sively studied from the perspective of dense subgraph detection. Intuitively, in
the above example, highly synchronized behavior induces dense subgraphs in
the bipartite review graph of accounts and restaurants. Indeed, methods which
detect dense subgraphs have been successfully used to spot fraud in settings
ranging from social networks [5,10,13,14], auctions [20], and search engines [8].

Additional information helps identify suspicious lockstep behavior. In the
above example, the fact that reviews forming a dense subgraph were also written
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Fig. 1. M-Zoom is fast, accurate, and effective. Fast: (a) M-Zoom was 55×
faster with denser blocks than CrossSpot in Korean Wikipedia Dataset. Accurate:
(a) M-Zoom found 24× denser blocks than CPD. (b) M-Zoom identified network
attacks with near-perfect accuracy (AUC = 0.98). Effective: (c) M-Zoom spotted edit
wars, during which many users (distinguished by colors) edited the same set of pages
hundreds of times within several hours. (d) M-Zoom spotted bots, and pages edited
hundreds of thousands of times by the bots. (Color figure online)

at about the same time, with the same keywords and number of stars, makes the
reviews even more suspicious. A natural and effective way to incorporate such
extra information is to model data as a tensor and find dense blocks in it [12,19].

However, neither existing methods for detecting dense blocks in tensors nor
simple extensions of graph-based methods are satisfactory in terms of speed,
accuracy, or flexibility. Especially, the types of fraud detectable by each of the
methods are limited since, explicitly or implicitly, each method is based on only
one density metric, which decides how dense and thus suspicious each block is.

Hence, in this work, we propose M-Zoom (Multidimensional Zoom), a gen-
eral and flexible framework for detecting dense blocks in tensors. M-Zoom allows
for a broad class of density metrics, in addition to having the following strengths:

– Scalable: M-Zoom is up to 114× faster than state-of-the-art methods with
similar accuracy (Fig. 2) thanks to its linear scalability with all aspects of
tensors (Fig. 4).

– Provably accurate: M-Zoom provides a guarantee on the lowest density
of blocks it finds (Theorem 4), as well as shows high accuracy similar with
state-of-the-art methods in real-world datasets (Fig. 1a).

– Flexible: M-Zoom works successfully with high-order tensors and supports
various density measures, multi-block detection, and size bounds (Table 1).
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Table 1. M-Zoom is flexible. Comparison between M-Zoom and other methods for
dense-block detection. ✓ represents ‘supported’.

M-Zoom CrossSpot [12] CPD [17] Subgraph [16]

Data Matrix ✓ ✓ ✓ ✓

Tensor ✓ ✓ ✓

Density
measure

Average mass (ρari) ✓ ✓

Average mass (ρgeo) ✓ ✓

Suspiciousness ✓ ✓

Features Accuracy guarantee ✓ ✓

Multiple blocks ✓ ✓ ✓

Size bounds ✓ ✓

– Effective: M-Zoom successfully detected edit wars and bot activities in
Wikipedia (Figs. 1c and d), and also detected network attacks with near-
perfect accuracy (AUC =0.98) based on TCP dump data (Fig. 1b).

Reproducibility: Our open-sourced code and the data we used are available
at http://www.cs.cmu.edu/∼kijungs/codes/mzoom.

Section 2 presents preliminaries and problem definitions. Our proposed M-
Zoom is described in Sect. 3 followed by experimental results in Sect. 4. After
discussing related work in Sect. 5, we draw conclusions in Sect. 6.

2 Preliminaries and Problem Definition

In this section, we introduce definitions and notations used in the paper. We
also discuss density measures and give a formal definition of our problems.

2.1 Definitions and Notations

Let R(A1, A2, ..., AN ,X) be a relation with N dimension attributes A1, A2, ...,
AN , and a nonnegative measure attribute X (see the supplementary document
[1] for a running example and its pictorial description). We use Rn to denote
the set of distinct values of An in R, and use an ∈ Rn for a value of An. The
value of An in tuple t is denoted by t[An], and the value of X is denoted by
t[X]. The relation R can be represented as an N -way tensor. In the tensor, each
n-th mode has length |Rn|, and each cell has the value of attribute X, if the
corresponding tuple exists, and 0 otherwise. Let Bn be a subset of Rn. Then,
we define a block B(A1, A2, ..., AN ,X) = {t ∈ R : 1 ≤ ∀n ≤ N, t[An] ∈ Bn},
the set of tuples where each dimension attribute An has a value in Bn. B is
called ‘block’ because it forms a subtensor where each n-th mode has length
|Bn| in the tensor representation of R. The set of tuples of R with attribute
An = an is denoted by R(an) = {t ∈ R : t[An] = an}. We define the mass of R
as MR = Mass(R) =

∑
t∈R t[X], the sum of the values of attribute X in R. We

http://www.cs.cmu.edu/~kijungs/codes/mzoom
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Table 2. Table of symbols.

Symbol Definition

R(A1, A2, ..., AN , X) A relation with N dimension attributes and a measure attribute

N The number of dimension attributes in a relation

an A value of attribute An

Rn The set of distinct values of attribute An in R

t[An] (or t[X]) The value of attribute An (or X) in tuple t

R(an) The set of tuples with attribute An = an in R

MR (or Mass(R)) The mass of R

SR (or Size(R)) The size of R

VR (or V olume(R)) The volume of R

ρ(B,R) Density of block B in R

k The number of blocks we aim to find

[x] {1, 2..., x}

also define the size of R as SR = Size(R) =
∑N

n=1 |Rn| and the volume of R as
VR = V olume(R) =

∏N
n=1 |Rn|. Lastly, we use [x] = {1, 2..., x} for convenience.

Table 2 lists frequently used symbols.

2.2 Density Measures

In this paper, we consider three specific density measures although our method
is not restricted to them. Two of the density measures (Definitions 1 and 2) are
natural multi-dimensional extensions of classic density measures which have been
widely used for subgraphs. The merits of the original measures are discussed in
[7,15], and extensive research based on them is discussed in Sect. 5.

Definition 1 (Arithmetic Average Mass [7]). The arithmetic average mass
of a block B of a relation R is defined as ρari(B,R) = MB/(SB/N).

Definition 2 (Geometric Average Mass [7]). The geometric average mass
of a block B of a relation R is defined as ρgeo(B,R) = MB/V

(1/N)
B .

The other density measure (Definition 3) is the negative log likelihood of MB

on the assumption that the value on each cell (in the tensor representation) of
R follows a Poisson distribution. This proved useful in fraud detection [12].

Definition 3 (Suspiciousness [12]). The suspiciousness of a block B of a
relation R is defined as ρsusp(B,R) = MB(log(MB/MR) − 1) + MRVB/VR −
MB log(VB/VR).

Our method, however, is not restricted to the three measures mentioned
above. Our method, which searches for dense blocks in a tensor, allows for any
density measure ρ that satisfies Axiom 1.
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Axiom 1 (Density Axiom). If two blocks of a relation have the same cardinality
for every dimension attribute, the block with higher or equal mass is at least as
dense as the other. Formally,

MB ≥ MB′ and |Bn| = |B′
n|,∀n ∈ [N ] ⇒ ρ(B,R) ≥ ρ(B′,R).

2.3 Problem Definition

We formally define the problem of detecting the k densest blocks in a tensor.

Problem 1 (k-Densest Blocks). (1) Given: a relation R, the number of blocks
k, and a density measure ρ, (2) Find: k distinct blocks of R with the highest
densities in terms of ρ.

We also consider a variant of Problem 1 which incorporates lower and upper
bounds on the size of the detected blocks. This is particularly useful if the
unrestricted densest block is not meaningful due to being too small (e.g. a single
tuple) or too large (e.g. the entire tensor).

Problem 2 (k-Densest Blocks with Size Bounds). (1) Given: a relation R, the
number of blocks k, a density measure ρ, lower size bound Smin, and upper size
bound Smax, (2) Find: k distinct blocks of R with the highest densities in terms
of ρ (3) Among: blocks whose sizes are at least Smin and at most Smax.

Even when we restrict our attention to a special case (N=2, k=1, ρ=ρari,
Smin=Smax), exactly solving Problems 1 and 2 takes O(S6

R) time [9] and is NP-
hard [3], resp., infeasible for large datasets. Thus, we focus on an approximation
algorithm which (1) has linear scalability with all aspects of R, (2) provides accu-
racy guarantees at least for some density measures, and (3) produces meaningful
results in real-world datasets, as explained in detail in Sects. 3 and 4.

3 Proposed Method

In this section, we propose M-Zoom (Multidimensional Zoom), a scalable, accu-
rate, and flexible method for finding dense blocks in a tensor. We present
the details of M-Zoom in Sect. 3.1 and discuss its efficient implementation in
Sect. 3.2. After analyzing the time and space complexity in Sect. 3.3, we prove
the quality guarantees provided by M-Zoom in Sect. 3.4.

3.1 Algorithm

Algorithm 1 describes the outline of M-Zoom. M-Zoom first copies the given
relation R and assigns it to Rori (line 1). Then, M-Zoom finds k dense blocks
one by one from R (line 4). After finding each block from R, M-Zoom removes
the tuples in the block from R to prevent the same block from being found
again (line 5). Due to these changes in R, a block found in R is not necessarily



M-Zoom: Fast Dense-Block Detection in Tensors with Quality Guarantees 269

Algorithm 1. M-Zoom

Input : relation: R, number of blocks: k, density measure: ρ,
lower size bound: Smin, upper size bound: Smax

Output: k dense blocks
1 Rori ← copy(R)
2 results ← ∅
3 for i ← 1..k do
4 B ← find single block(R, ρ, Smin, Smax) � see Algorithm 2
5 R ← R − B

6 Bori ← {t ∈ Rori : ∀n ∈ [N ], t[An] ∈ Bn}
7 results ← results ∪ {Bori}
8 return results

Algorithm 2. find single block in M-Zoom

Input : relation: R, density measure: ρ,
lower size bound: Smin, upper size bound: Smax

Output: a dense block
1 B ← copy(R)
2 Bn ← copy(Rn), ∀n ∈ [N ]
3 snapshots ← ∅
4 while ∃n ∈ [N ] s.t. Bn �= ∅ do
5 if B is in size bounds (i.e., Smin ≤ SB ≤ Smax) then
6 snapshots ← snapshots ∪ {B}
7 a∗

i ← ai ∈ ⋃N
n=1 Bn with maximum ρ(B − B(ai),R) � see Algorithm 3

8 B ← B − B(a∗
i )

9 Bi ← Bi − {a∗
i }

10 return B ∈ snapshots with maximum ρ(B,R)

a block of the original relation Rori. Thus, instead of returning the blocks found
in R, M-Zoom returns the blocks of Rori consisting of the same attribute values
with the found blocks (lines 6–7). This also enables M-Zoom to find overlapped
blocks, i.e., a tuple can be included in two or more blocks.

Algorithm 2 describes how M-Zoom finds a single dense block from the
given relation R. The block B is initialized to R (lines 1–2). From B, M-Zoom
removes attribute values one by one in a greedy way until no attribute value is
left (line 4). Specifically, M-Zoom finds the attribute value ai that maximizes
ρ(B − B(ai),R), which corresponds to the density when tuples with Ai = ai

are removed from B (line 7). Then, the attribute value, denoted by a∗
i , and the

tuples with Ai = a∗
i are removed from Bi and B, respectively (lines 8–9). Before

removing each attribute value, M-Zoom adds the current B to the snapshot list
if B satisfies the size bound (i.e., Smin ≤ SB ≤ Smax) (lines 5–6). As the final
step of finding a block, M-Zoom returns the block with the maximum density
among those in the snapshot list (line 10).



270 K. Shin et al.

Algorithm 3. Greedy Selection Using Min-Heap in M-Zoom

Input : current block: B, density measure: ρ, min-heaps: {Hn}N
n=1

Output: attribute value to remove
1 for each dimension n ∈ [N ] do
2 a′

n ← an with minimum key in Hn � key= MB(an)

3 a∗
i ← a′

i ∈ {a′
n}N

n=1 with maximum ρ(B − B(a′
i),R)

4 delete a∗
i from Hi

5 for each tuple t ∈ B(a∗
i ) do

6 for each dimension n ∈ [N ]\{i} do
7 decrease the key of t[An] in Hn by t[X] � key= MB(t[An])

8 return a∗
i

3.2 Efficient Implementation of M-Zoom

In this section, we discuss an efficient implementation of M-Zoom focusing on
the greedy attribute value selection and the densest block selection.

Attribute Value Selection Using Min-Heaps. Finding the attribute value
ai ∈ ⋃N

n=1 Bn that maximizes ρ(B − B(ai),R) (line 7 of Algorithm 2) can be
computationally very expensive if all possible attribute values (i.e.,

⋃N
n=1 Bn)

should be considered. However, due to Axiom 1, which is assumed to be satisfied
by considered density measures, the number of candidates is reduced to N if
MB(ai) is known for each attribute value ai. Lemma 1 states this.

Lemma 1. If we remove a value of attribute An from Bn, removing an ∈ Bn

with minimum MB(an) results in the highest density. Formally,

MB(a′
n)

≤ MB(an),∀an ∈ Bn ⇒ ρ(B−B(a′
n),R) ≥ ρ(B−B(an),R),∀an ∈ Bn.

Proof. Let B′ = B−B(a′
n) and B′′ = B−B(an). Then, |B′

n| = |B′′
n|,∀n ∈ [N ].

In addition, MB′ ≥ MB′′ since MB′ = MB − MB(a′
n)

≥ MB − MB(an) = MB′′ .
Hence, by Axiom 1, ρ(B − B(a′

n),R) ≥ ρ(B − B(an),R). ��
By Lemma 1, if we let a′

n be an ∈ Bn with minimum MB(an), we only have
to consider values in {a′

n}Nn=1 instead of
⋃N

n=1 Bn to find the attribute value
maximizing density when it is removed. To exploit this, our implementation of
M-Zoom maintains a min-heap for each attribute An where the key of each value
an is MB(an). This key is updated, which takes O(1) if Fibonacci Heaps are used
as min-heaps, whenever the tuples with the corresponding attribute value are
removed. Algorithm 3 describes in detail how to find the attribute value to be
removed based on these min-heaps, and update keys in them. Since Algorithm 3
considers all promising attribute values (i.e., {a′

n}Nn=1), it is guaranteed to find
the value that maximizes density when it is removed, as Theorem 1 states.

Theorem 1. Algorithm 3 returns ai ∈ ⋃N
n=1 Bn with maximum ρ(B −

B(ai),R).
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Proof. Let a∗
i be ai ∈ ⋃N

n=1 Bn with maximum ρ(B − B(ai),R). By Lemma 1,
a∗
i exists among {a′

n}Nn=1, all of which are considered in Algorithm 3. ��
Densest Block Selection Using Attribute Value Ordering. As explained
in Sect. 3.1, M-Zoom returns the densest block among snapshots of B (line 10
of Algorithm 2). Explicitly maintaining the list of snapshots, whose length is at
most SR, requires O(N |R|SR) computation and space for copying them. Even
maintaining only the current best (i.e., the one with the highest density so far)
cannot avoid high computational cost if the current best keeps changing. Instead,
our implementation maintains the order by which attribute values are removed as
well as the iteration where the density was maximized, which requires only O(SR)
space. From these and the original relation R, our implementation restores the
snapshot with maximum density in O(N |R| + SR) time and returns it.

3.3 Complexity Analysis

The time and space complexity of M-Zoom depend on the density measure
used. In this section, we assume that one of the density measures in Sect. 2.2,
which satisfy Axiom 1, is used.

Theorem 2. The time complexity of Algorithm 1 is O(kN |R| log L) if |Rn| = L,
∀n ∈ [N ], and N = O(log L).

Proof. See Appendix B.

As stated in Theorem 2, M-Zoom scales linearly or sub-linearly with all
aspects of relation R as well as k, the number of blocks we aim to find. This
result is also experimentally supported in Sect. 4.4. In our experiments, the actual
running time scaled sub-linearly with k as well as L since the number of tuples
in R decreases as M-Zoom finds blocks (line 5 in Algorithm 1).

Theorem 3. The space complexity of Algorithm 1 is O(kN |R|).
Proof. See the supplementary document [1]. ��

M-Zoom requires up to kN |R| space for storing k found blocks, as stated in
Theorem 3. However, since the blocks are usually far smaller than R, as seen in
Tables 4 and 5 in Sect. 4, actual space usage is much less than kN |R|.

3.4 Accuracy Guarantee

In this section, we show lower bounds on the densities of the blocks found by M-
Zoom on the assumption that ρari (Definition 1) is used as the density measure.
Specifically, we show that Algorithm 2 without size bounds is guaranteed to find
a block with density at least 1/N of maximum density in the given relation
(Theorem 4). This means that each n-th block returned by Algorithm 1 has
density at least 1/N of maximum density in R − ⋃n−1

i=1 (i-th block). Let B(r)



272 K. Shin et al.

be the relation B at the beginning of the r-th iteration of Algorithm 2, and
a
(r)
i ∈ B

(r)
i be the attribute value removed in the same iteration.

Lemma 2. If a block B′ satisfying ∀ai ∈ ⋃N
n=1 B

′
n, MB′(ai) ≥ c exists, there

exists B(r) satisfying ∀ai ∈ ⋃N
n=1 B

(r)
n , MB(r)(ai)

≥ c.

Proof. See Appendix C. ��
Theorem 4 (1/N-Approximation Guarantee for Problem 1). Given a
relation R, let B∗ be the block B ⊂ R with maximum ρari(B,R). Let B′ be the
block obtained by Algorithm 2 without size bounds (i.e., Smin = 0 and Smax =
∞). Then, ρari(B′,R) ≥ ρari(B∗,R)/N .

Proof. ∀ai ∈ ⋃N
n=1 B

∗
n, MB∗(ai) ≥ MB∗/SB∗ . Otherwise, a contradiction would

result since for ai with MB∗(ai) < MB∗/SB∗ ,

ρari(B∗ − B∗(ai),R) =
MB∗ − MB∗(ai)

(SB∗ − 1)/N
>

MB∗ − MB∗/SB∗

(SB∗ − 1)/N
= ρari(B∗,R).

Consider B(r) where ∀ai ∈ ⋃N
n=1 B

(r)
n , MB(r)(ai)

≥ MB∗/SB∗ . Such B(r) exists
by Lemma 2. MB(r) ≥ (SB(r)/N) (MB∗/SB∗) = (SB(r)/N)(ρari(B∗,R)/N).
Hence, ρari(B′,R) ≥ ρari(B(r),R) = MB(r)/(SB(r)/N) ≥ ρari(B∗,R)/N. ��

Theorem 4 can be extended to cases where a lower bound exists. In these
cases, the approximate factor is 1/(N+1), as stated in Theorem 5.

Theorem 5 (1/(N +1)-Approximation Guarantee for Problem 2). Given
a relation R, let B∗ be the block B ⊂ R with maximum ρari(B,R) among
blocks with size at least Smin. Let B′ be the block obtained by Algorithm 2 with
lower size bound (i.e., 1 ≤ Smin ≤ SR and Smax = ∞). Then, ρari(B′,R) ≥
ρari(B∗,R)/(N + 1).

Proof. See the supplementary document [1]. ��

4 Experiments

We designed and performed experiments to answer the following questions:

– Q1. How fast and accurately does M-Zoom detect dense blocks in real data?
– Q2. Does M-Zoom find many different dense blocks in real data?
– Q3. Does M-Zoom scale linearly with all aspects of data?
– Q4. Which anomalies or fraud does M-Zoom spot in real data?
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Table 3. Summary of real-world datasets.

StackO. Youtube KoWiki EnWiki Yelp Netflix YahooM. AirForce

N 3 3 3 3 4 4 4 7

|R1| 545K 3.22M 470K 44.1M 552K 480K 1.00M 3

|R2| 96.7K 3.22M 1.18M 38.5M 77.1K 17.8K 625K 70

|R3| 1.15K 203 101K 129K 3.80K 2.18K 84.4K 11

|R4| - - - - 5 5 101 7.20Ka

|R| 1.30M 18.7M 11.0M 483M 2.23M 99.1M 253M 648K
a |R5|=21.5K, |R6|=512, |R7|=512

4.1 Experimental Settings

All experiments were conducted on a machine with 2.67 GHz Intel Xeon E7-
8837 CPUs and 1TB RAM. We compared M-Zoom with CrossSpot [12], CP
Decomposition (CPD) [17] (see Appendix A for details), and MultiAspectForen-
sics (MAF) [19]. M-Zoom and CrossSpot1 were implemented in Java, and
Tensor Toolbox [4] was used for CPD and MAF. Although CrossSpot was
originally designed to maximize ρsusp, it can be extended to other density mea-
sures. These variants were used depending on the density measure compared
in each experiment. In addition, we used CPD as a seed selection method of
CrossSpot, which outperformed HOSVD used in [12] in terms of both speed
and accuracy. We used diverse real-world datasets, grouped as follows:

– User behavior logs: StackO.(user,post,timestamp,1) represents who marked
which post as a favorite when on Stack Overflow. Youtube(user,user,date,1)
represents who became a friend of whom when on Youtube. KoWiki(user,page,
timestamp,#revisions) and EnWiki(user,page,timestamp,#revisions) repre-
sent who revised which page when how many times on Korean Wikipedia and
English Wikipedia, respectively.

– User reviews: Yelp(user,business,date,score,1), Netflix(user,movie,date,sco-
re,1), and YahooM.(user,item,timestamp,score,1) represent who gave which
score when to which business, movie, and item on Yelp, Netflix, and Yahoo
Music, respectively.

– TCP dumps: From TCP dump data for a typical U.S. Air Force LAN, we
created a relation AirForce(protocol,service,src bytes,dst bytes,flag,host count
,src count,#connections). See the supplementary document [1] for the
description of each attribute.

Timestamps are in hours in all the datasets. Table 3 summarizes all the datasets.

1 We referred the open-sourced implementation at http://github.com/mjiang89/
CrossSpot.

http://github.com/mjiang89/CrossSpot
http://github.com/mjiang89/CrossSpot
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Fig. 2. Only M-Zoom achieves both speed and accuracy. In each plot, points
represent the speed of different methods and the highest density (ρari) of three blocks
found by the methods. Upper-left region indicates better performance. M-Zoom gives
the best trade-off between speed and density. Specifically, M-Zoom is up to 114 ×
faster than CrossSpot with similarly dense blocks.

4.2 Q1. Running Time and Accuracy of M-Zoom

We compare the speed of different methods and the densities of the blocks found
by the methods in real-world datasets. Specifically, we measured time taken to
find three blocks and the maximum density among the three blocks. Figure 2
shows the result when ρari was used as the density measure. M-Zoom clearly
provided the best trade-off between speed and accuracy in all datasets. For
example, in YahooM. Dataset, M-Zoom was 114 times faster than CrossSpot,
while detecting blocks with similar densities. Compared with CPD, M-Zoom
detected two times denser blocks 2.8 times faster. Although the results are not
included in Fig. 2, MAF found several orders of magnitude sparser blocks than
the other methods, with speed similar to that of CPD. M-Zoom also gave the
best trade-off between speed and accuracy when ρgeo or ρsusp was used instead
of ρari (see the supplementary document [1]).

4.3 Q2. Diversity of Blocks Found by M-Zoom

We compare the diversity of dense blocks found by each method. Ability to
detect many different dense blocks is useful since distinct blocks may indicate
different anomalies or fraud. We define the diversity as the average dissimilar-
ity between the pairs of blocks, and the dissimilarity of two blocks is defined
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Fig. 3. M-Zoom detects many different dense blocks. The dense blocks found
by M-Zoom and CPD have high diversity, while the dense blocks found by CrossSpot
tend to be almost same.

(a) Number of
Tuples (|R|)

(b) Number of
Attributes (N)

(c) Cardinality of
Attributes (|Rn|)

(d) Number of
Blocks to Find (k)

Fig. 4. M-Zoom is scalable. (a) (b) M-Zoom scales linearly with the number of
tuples and the number of attributes. (c) (d) M-Zoom scales sub-linearly with the
cardinalities of attributes and the number of blocks we aim to find.

as dissimilarity(B,B′) = 1 − |(⋃N
n=1Bn)∩(

⋃N
n=1B

′
n)|

|(⋃N
n=1Bn)∪(

⋃
N
n=1B

′
n)| . Diversities were measured

among three blocks found by each method using ρari as the density metric.
As seen in Fig. 3, in all datasets, M-Zoom and CPD successfully detected

distinct dense blocks. CrossSpot, however, found the same block repeatedly
or blocks with slight difference, even when it started from different seed blocks.
Although using CPD for seed-block selection in CrossSpot improved the diver-
sity, the effect was limited in most datasets. Similar results were obtained when
ρgeo or ρsusp was used instead of ρari (see the supplementary document [1]).

4.4 Q3. Scalability of M-Zoom

We empirically demonstrate the scalability of M-Zoom, mathematically ana-
lyzed in Theorem 2. Specifically, we measured the scalability of M-Zoom with
regard to the number of tuples, the number of attributes, the cardinalities of
attributes, and the number of blocks we aim to find. We started with finding
one block in a randomly generated 10 millions tuples with three attributes each
of whose cardinality is 100 K. Then, we measured the running time by changing
one factor at a time while fixing the others. As seen in Fig. 4, M-Zoom scaled
linearly with the number of tuples and the number of attributes. Moreover, M-
Zoom scaled sub-linearly with the number of blocks we aim to find as well as the
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cardinalities of attributes due to the reason explained in Sect. 3.3. These results
held regardless of the density measure used.

4.5 Q4. Anomaly/Fraud Detection by M-Zoom in Real Data

We demonstrate the effectiveness of M-Zoom for anomaly and fraud detection
by analyzing dense blocks detected by M-Zoom in real-world datasets.

M-Zoom spots edit wars and bot activities in Wikipedia. Table 4 lists
the first three dense blocks found by M-Zoom in EnWiki and KoWiki Datasets.
As seen in the third dense block visualized in Fig. 1c, the dense blocks detected
in KoWiki Dataset indicate edit wars. That is, users with conflicting opinions
revised the same set of pages hundreds of times within several hours. On the
other hand, the dense blocks detected in EnWiki Dataset indicate the activities
of bots, which changed the same pages hundreds of thousands of times. Figure 1d
lists the bots and pages corresponding to the second found block.

Table 4. M-Zoom detects anomalous behaviors in Wikipedia. The tables list
the first three blocks detected by M-Zoom in KoWiki and EnWiki Datasets, which
correspond to edit wars and bot activities, respectively.

Korean Wikipedia (KoWiki)

# Volume Mass Density (ρari)

1 2×2×2 546 273
2 2×2×3 574 246
3 11×10×16 2,305 187

English Wikipedia (EnWiki)

# Volume Mass Density (ρgeo)

1 1×1,585×6,733 1.93M 8,772
2 8×12×67.9K 2.43M 13.0K
3 1×1×90 17.6K 3,933

M-Zoom spots network intrusions. Table 5 lists the first three blocks found
by M-Zoom in AirForce Dataset. Based on the provided ground truth labels,
all of the about 3 millions connections composing the blocks were attacks except
only one normal connection. This indicates that malicious connections form
dense blocks due to the similarity in their behaviors. Based on this observa-
tion, we could accurately separate normal connections and attacks based on the
densities of blocks they belong (i.e., the denser block a connection belongs, the

Table 5. M-Zoom identifies network attacks with near-perfect accuracy. The
first three blocks found by M-Zoom in AirForce Dataset consist of attacks.

# Volume Density (ρgeo) # Connections # Attacks (Ratio)

1 2 2,050,505 2,263,941 2,263,941 (100 %)

2 1 263,295 263,295 263,295 (100%)

3 8,100 263,072 952,383 952,382 (99.9 %)
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more suspicious it is). Especially, we got the highest AUC (Area under the curve)
0.98 with M-Zoom, as shown in Fig. 1b, because M-Zoom detects many differ-
ent dense blocks accurately, as shown in previous experiments. For each method,
we used the best density measure that leads to the highest AUC.

5 Related Work

Dense Subgraph/Submatrix/Subtensor Detection. The densest subgraph
problem, the problem of finding the subgraph which maximizes ρari or ρgeo (see
Definitions 1 and 2), has been extensively studied in theory (see [18] for surveys).
The two major directions are max-flow based exact algorithms [9,16] and greedy
algorithms [7,16] giving a 1/2-approximation to the densest subgraph. Variants
allow for size restrictions [3], providing a 1/3-approximation to the densest sub-
graph for the lower bound case. Another related line of research deals with dense
blocks in binary matrices or tensors where the definition of density is designed
for the purpose of frequent itemset mining [22] or formal concept mining [6,11].

Anomaly/Fraud Detection based on Dense Subgraphs. Spectral
approaches make use of eigendecomposition or SVD of the adjacency matrix
for dense-block detection. Such approaches have been used to spot anomalous
pattens in a patent graph [21], lockstep followers in a social network [14], and
stealthy or small-scale attacks in social networks [23]. Other approaches include
NetProbe [20], which used belief propagation to detect fraud-accomplice bipar-
tite cores in an auction network, and CopyCatch [5], which used one-class
clustering and sub-space clustering to identify “Like” boosting in Facebook.
In addition, OddBall [2] spotted near-cliques in links among posts in blogs
based on egonet features. Recently, Fraudar [10], which generalizes densest
subgraph-detection methods so that the suspiciousness of nodes and edges can
be incorporated, spotted follower-buying services in Twitter.

Anomaly/Fraud Detection based on Dense Subtensors. Spectral meth-
ods for dense subgraphs can be extended to tensors where tensor decomposition,
such as CP Decomposition and HOSVD [17], is used to spot dense subtensors.
MAF [19], which is based on CP Decomposition, detected dense blocks cor-
responding to port-scanning activities based on network traffic logs. Another
approach is CrossSpot [12], which finds dense blocks by starting from seed
blocks and growing them in a greedy way until ρsusp (see Definition 3) con-
verges. CrossSpot spotted retweet boosting in Weibo, outperforming HOSVD.

Our M-Zoom non-trivially generalizes theoretical results regarding the dens-
est subgraph problem, especially [3], for supporting tensors, various density mea-
sures, and multi-block detection. As seen in Table 1, M-Zoom provides more
flexibility than other methods for dense-block detection.

6 Conclusion

In this work, we propose M-Zoom, a flexible framework for finding dense blocks
in tensors, which has the following advantages over state-of-the-art methods:
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– Scalable: M-Zoom is up to 114× faster than competitors with similar
accuracy due to its linear scalability with all input factors (Figs. 2 and 4).

– Provably accurate: M-Zoom provides lower bounds on the densities of the
blocks it finds (Theorem 4) as well as high accuracy in real data (Fig. 2).

– Flexible: M-Zoom supports high-order tensors, various density measures,
multi-block detection, and size bounds (Table 1).

– Effective: M-Zoom successfully detected fraud based on a TCP dump with
near-perfect accuracy (AUC =0.98), and anomalies in Wikipedia (Fig. 1).

Reproducibility: Our open-sourced code and the data we used are at http://
www.cs.cmu.edu/∼kijungs/codes/mzoom.
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A CP Decomposition (CPD)

In a graph, dense subgraphs lead to high singular values of the adjacency
matrix [23]. The singular vectors corresponding to the high singular values
roughly indicate which nodes form dense blocks. This idea can be extended
to tensors, where dense blocks are captured by components in CP Decomposi-
tion [17]. Let A(1) ∈ R

|R1|×k, A(2) ∈ R
|R2|×k, ..., A(N) ∈ R

|RN |×k be the factor
matrices obtained by the rank-k CP Decomposition of R. For each i ∈ [k], we
form a block with every attribute value an whose corresponding element in the
i-th column of A(n) is at least 1/

√|Rn|.

B Proof of Theorem 2

Proof. In Algorithm 3, lines 1–3 take O(N) for all the density measures con-
sidered (i.e., ρari, ρgeo, and ρsusp) if we maintain and update aggregated values
(e.g., MB , SB , and VB) instead of computing ρ(B−B(a′

i),R) from scratch every
time. In addition, line 4 takes O(log |Rn|) and lines 5–7 take O(N |B(a∗

i )|) if we
use Fibonacci heaps. Algorithm 2, whose computational bottleneck is line 7, has
time complexity O(N |R| + N

∑N
n=1 |Rn| +

∑N
n=1 |Rn| log |Rn|)) since lines 1–4

of Algorithm 3 are executed SR =
∑N

n=1 |Rn| times, and line 7 is executed N |R|
times. Algorithm 1, whose computational bottleneck is line 4, has time com-
plexity O(kN |R| + kN

∑N
n=1 |Rn| + k

∑N
n=1 |Rn| log |Rn|)) since Algorithm 2 is

executed k times.
Assume |Rn| = L, ∀n ∈ [N ], and N = O(log L). The time complexity of Algo-

rithm 1 becomes O(kN(|R|+NL+L log L)). Since N = O(log L), by assumption,

http://www.cs.cmu.edu/~kijungs/codes/mzoom
http://www.cs.cmu.edu/~kijungs/codes/mzoom
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and L ≤ |R|, there exists a constant c such that |R|+NL+L log L ≤ c|R| log L =
O(|R| log L). Thus, the time complexity of Algorithm 1 is O(kN |R| log L). ��

C Proof of Lemma 2

Lemma 3. a
(r)
i minimizes Mass(B(r)(aj)) among aj ∈ ⋃N

n=1 B
(r)
n .

Proof. From Theorem 1, ρari(B(r) − B(r)(a(r)
i ),R) ≥ ρari(B(r) − B(r)(aj),R),

∀aj ∈ ⋃N
n=1 B

(r)
n . Thus, Mass(B(r) − B(r)(a(r)

i )) = ρari(B(r) − B(r)(a(r)
i ),R)

(Size(B(r))−1)/N ≥ ρari(B(r)−B(r)(aj),R)(Size(B(r))−1)/N = Mass(B(r)−
B(r)(aj)). Then, Mass(B(r)(a(r)

i )) = Mass(B(r)) − Mass(B(r) −B(r)(a(r)
i )) ≤

Mass(B(r)) − Mass(B(r) − B(r)(aj)) = Mass(B(r)(aj)), ∀aj ∈ ⋃N
n=1 B

(r)
n . ��

Proof of Lemma 2.

Proof. Let r be the first iteration in Algorithm 2 where a
(r)
i ∈ ⋃N

n=1 B
′
n.

Since B(r) ⊃ B′, Mass(B(r)(a(r)
i )) ≥ Mass(B′(a(r)

i )) ≥ c. By Lemma 3,
∀aj ∈ ⋃N

n=1 B
(r)
n , Mass(B(r)(aj)) ≥ Mass(B(r)(a(r)

i )) ≥ c. ��
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