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Preface

Developing a new drug is a high-risk and high-reward enterprise. The high risk is

reflected by the generally low success rate of turning a new molecular entity into an

approved drug. The success rate has fluctuated over time and has also varied across

therapeutic areas. While the success rate has improved in recent years for cancer

drugs due to the advent of targeted therapies, the rate has been disappointingly low

for certain disorders such as Alzheimer’s disease.
In addition to the high risk, the cost of developing a new drug has increased at a

pace faster than inflation. Tufts Center for the Study of Drug Development has

published a series of reports examining the average pretax industry cost to bring a

new medicine to the market. The most recent report, published in 2014, estimated

an average cost around 2.56 billion USD in 2013 money. By comparison, in 2003,

the cost was about 1.04 billion USD in 2013 money, based on the same method of

calculation. While some researchers have questioned these figures, these reports

nevertheless show a substantial increase in the cost of drug development over a

decade.

The low success rate and the high cost have motivated many pharmaceutical

companies to look for better methods to make portfolio decisions including whether

to invest in a particular new molecular entity and how to make Go/No-Go decisions.

Since the majority of development programs are likely to fail, it is important to be

able to terminate a program with a low probability of success as early as possible.

Making efficient decisions requires designing efficient trials. Developing inno-

vative designs that can enable good quantitative decisions at the earliest time

possible has been the focus of much research in recent years. Many books have

been written about clinical trial designs to support drug development. Therefore, we

have decided to focus on methods for making quantitative decisions in this book.

Because of the inseparable relationship between designs and decisions, we also

spend a good portion of this book discussing design options.

At Pfizer, the journey to quantitative decisions began during the first decade of

the twenty-first century. The implementation began with proof-of-concept studies.

Teams designing these early studies were required to present, to a technical review
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committee, the operating characteristics of their trials/decision rules with respect to

the target product profile. The move to assess the probability of success in late-stage

trials was firmly in place by the year 2010 with the establishment of a Probability of

Technical and Regulatory Success (PTRS) Council.

Many statisticians and scientists played a critical role in the above journey. The

input from commercial colleagues helped solidify the need to quantitatively incor-

porate the target product profile when designing a trial and setting up the subse-

quent decision rule. We have learned a great deal from the early pioneer advocates

at Pfizer. Their work inspired us to write this book. We are particularly indebted to

Mike Brown, Alan Clucas, Vlad Dragalin, Wayne Ewy, Bradley Marchant, Ken

Kowalski, Mike K Smith, Jonathan French, Cyrus Hoseyni, Richard Lalonde, Scott

Marshall, Peter Milligan, Mohan Beltangady, Phil Woodward, Joanna Burke, Neal

Thomas, and Liam Ratcliffe for their scientific and organizational leadership.

The book has 13 chapters. Chapter 1 offers a high-level overview of clinical

testing and regulatory review of a pharmaceutical product. Chapter 2 reviews the

Frequentist approach to the testing of hypotheses and in particular the two-action

decision problem. In the context of drug development, the two actions correspond

to progressing or not progressing a drug for further development. Chapter 3 dis-

cusses the metrics commonly used to characterize the performance of a diagnostic

test. Chapter 4 draws an analogy between successive trials conducted during the

clinical testing of an investigational product and a series of diagnostic tests. Under

this analogy, the condition to diagnose by a clinical trial is the existence of a

clinically meaningful effect of the investigational product. We have found this

analogy particularly useful to explain to our nonclinical colleagues why replication

is such an important concept in drug development and to show why replication is

not as easy as many people might hope.

The predictive power of a diagnostic test depends on the existing information

concerning the prevalence of the condition to be diagnosed in a relevant population.

Similarly, the predictive power of a clinical trial depends on available prior

knowledge concerning the investigational product. Articulating such prior knowl-

edge is the topic of Chap. 5. In Chap. 6, we describe metrics that are useful to

evaluate designs and associated decision rules for efficacy assessment at various

stages of premarketing development. The focus on efficacy is due to the generally

well-defined endpoints to decide the beneficial effect of a new drug. Chapter 7

covers the proof-of-concept stage, while Chaps. 8 and 9 cover the dose-response

and confirmatory stage, respectively.

Chapter 10 focuses on assessing the design of a trial for comparative effective-

ness assessment. By comparative effectiveness, we mean the comparison of differ-

ent active treatments to determine which treatment works best. This focus reflects

the increasing importance of these comparisons in the market place due to the need

to justify the price and to qualify for reimbursement.

The metrics used in Chaps. 7–10 do not include any cost consideration explic-

itly. But, cost is an integral part of drug development strategy optimization.

Incorporating cost into design consideration is the topic of Chap. 11 with two

example approaches. The first one optimizes a benefit-cost efficiency score that
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measures the cost-effectiveness of a proof-of-concept trial design. The second

approach combines costs and potential commercial returns to assess drug develop-

ment options. The chapter includes a detailed discussion on the calculation of the

expected net present value which could be of interest to readers without much

exposure to product valuation.

In Chap. 12, we examine the bias that can be produced by the use of Phase 2

results that have been selected because of a favorable outcome. We have hinted at

this source of bias in earlier chapters and have dedicated Chap. 12 to this issue. We

offer recommendations on how to correct for this bias when using prior positive

results to design the next trial.

In the final chapter of the book, we include selected topics that affect design and

decision choices at all stages of drug development. Examples include adaptive

designs, benefit-risk, and economic assessment. These are all active research areas.

Even though we offer some references, it is not our intent to cover these areas in

detail in this book.

The book is written for readers with a broad range of responsibilities in drug

development. While the book contains a lot of technical details for quantitative

scientists, it also contains plenty of concepts presented in a unified framework

which, we believe, can help less quantitative readers make more quantitative

decisions.

We hope you will enjoy reading the book as much as we did writing it.

Kalamazoo, MI, USA Christy Chuang-Stein

Cambridge, UK Simon Kirby

May 2017
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Chapter 1

Clinical Testing of a New Drug

Nearly 60 percent of Americans—the highest ever—are
taking prescription drugs.

Washington Post, November 3, 2015

1.1 Introduction

A research study reports an increase in the overall use of prescription drugs among

adults (those �20 years old) between 2011 and 2012 from that between 1999 and

2000 in the United States (USA) (Kantor et al. 2015). In 1999–2000, an estimated

51% of the US adults reported using any prescription drug. The estimated figure for

2011–2012 is 59%. During the same period, the prevalence of polypharmacy (use

of �5 prescription drugs) increased from 8.2 to 15%. Many factors contribute to

this increase, factors such as better disease prevention and management, lifestyle

change, an aging population, and an increase in the percentage of people who are

either overweight or obese. The number of new prescription drugs developed and

approved for public use every year has also greatly contributed to this increase.

Developing a new drug is a high-risk and high-reward enterprise. The high risk is

reflected by the low success rate of turning a new molecular entity (NME) into an

approved drug. The success rate fluctuated over time and varied across therapeutic

areas. For example, the US Food and Drug Administration published the Critical

Path Initiative document in 2004 (FDA 2004), in which FDA quoted a “current”

success rate around 8% and a historical success rate of 14%.

Understandably, the success rate varies substantially across therapeutic areas

(DiMasi et al. 2010, 2013). For example, the success rate of drugs for treating

common bacterial infections is generally higher than that for drugs treating disor-

ders of the central nervous system. This is in part due to the heavy use of the

minimum inhibitory concentration (MIC) to help determine the appropriate dose

and schedule for an NME for bacterial infections. For a microorganism studied

in vitro, the MIC for an antibacterial agent is the lowest concentration of the agent

which prevents detectable growth of the organism in agar or broth media under
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standardized conditions (Clinical and Laboratory Standards Institute 2003). In

addition to MIC, animal models can be used to predict human response to an

NME for many infections (Leggett et al. 1989; Craig 2003). So, if an NME could

deliver the desired MIC coverage without causing unacceptable side effects and if

the animal model shows promising results, the NME will likely become a viable

treatment option.

The success rate discussed above pertains to the clinical testing of an NME in

humans. However, after an NME is synthesized, it will first be screened for biologic

and pharmacologic activities. Preclinical testing in animals follows the biologic and

pharmacologic screening. Preclinical testing is necessary before an NME can be

tested in humans. Besides the need to understand the pharmacokinetic (PK) profile

of the NME in animals, preclinical evaluation assesses the NME for its general

toxicity, cardiac liability, carcinogenicity, and reproductive toxicity. Some of the

assessment could be done in vitro, but most is done in vivo using different animal

species. The International Council for Harmonisation (ICH) published a series of

guidance documents on the technical requirements for preclinical safety evaluation

of pharmaceuticals for human use. If preclinical testing suggests a reasonable PK

and toxicity profile at doses likely to be used by target patients, then the NME will

enter into the clinical testing stage.

Researchers have offered substantially different estimates for the success rates

for the discovery and preclinical testing stages. For example, Bains (2004) esti-

mated an approximately 30% cumulative success rate for discovery and preclinical

testing combined, while Hill (2008) stated a <1% success rate. Despite the differ-

ence, it is clear that the failure rate during the preclinical stage of drug development

is not negligible.

In addition to the high risk, the cost of developing a new drug has increased at a

faster pace than inflation. A study released by the Tufts Center for the Study of Drug

Development in 2014 suggests that the average pretax industry cost to bring a new

medicine to market was around USD2.56 billion in 2013 money (DiMasi et al.

2014). The study included 106 investigational new drugs from ten mid- to large-

size pharmaceutical companies, and the drugs were first tested in humans during

1995–2007. Cost included clinical development up to 2013. By comparison, in

2003, the cost was about USD1.04 billion in 2013 dollars. While some researchers

questioned these figures, the latest study used the same approach as that used in the

previous one (DiMasi et al. 2003) in estimating the development cost. The latest

study shows a substantial increase in the drug development cost over a 10-year

period.

The low success rate and the high cost have motivated many pharmaceutical

companies to look for better methods to make portfolio decisions. Such decisions

include whether to invest in a particular NME and how to make Go/No-Go

decisions concerning a particular development program. Since most development

programs are likely to fail, it is important to be able to terminate a program that has

a low probability to succeed as early as possible. Making efficient decisions

requires designing efficient trials to acquire the needed evidence. Developing
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innovative designs that can enable good quantitative decisions at the earliest time

has been the focus of much research in recent years.

Many books have been written about clinical trial designs to support drug

development. Therefore, we will focus on methods for making quantitative

decisions in this book. Because of the inseparable relationship between designs

and decisions, we will also spend a good portion of this book on clinical trial

designs.

In this chapter, we will offer a high-level review of clinical testing of a

pharmaceutical product. We will first discuss in Sect. 1.2 the four distinct phases

of clinical testing under a traditional development plan. We will discuss devia-

tions from the traditional development plan and new regulatory approval path-

ways in Sect. 1.3. Section 1.4 offers some examples of recent advancements

in clinical trial designs. We will conclude the chapter with a short summary in

Sect. 1.5.

1.2 Clinical Development

Clinical testing of an NME to support its marketing authorization is often charac-

terized by four phases as shown in Fig. 1.1. With some exceptions described in

Sect. 1.3, three of the four phases occur before the NME is approved for marketing

(premarketing) and the remaining one is afterward (postmarketing). The four

phases are conveniently labeled as Phase 1, Phase 2, Phase 3, and Phase 4. A

good description of the four phases can be found in an FDA guidance document

(FDA 1997).

Fig. 1.1 The four phases of clinical testing
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1.2.1 Phase 1

Phase 1 trials are where an NME is first tested in human subjects. These trials are

designed to investigate what the human body does to an NME in terms of

absorption, distribution, metabolism, and excretion (ADME). These are the

pharmacokinetic (PK) properties of the NME. The investigation is typically

conducted in healthy human volunteers, except for cytotoxic drugs. For cytotoxic

drugs, Phase 1 is generally conducted in patients with very few therapeutic

options due to the anticipated toxicities. When a drug is designed to target a

receptor, Phase 1 trials can include an investigation of what the NME does to the

receptor also.

Phase 1 trials in healthy subjects generally consist of single- and multiple-

ascending-dose cohorts. Trials studying the effect of a single dose on subjects

typically precede trials studying the effect of multiple doses. Some development

plans stack single-dose and multiple-dose studies in such a way that there is a lag

between exposing subjects to a single dose and exposing separate patients multiple

times to the same dose. This strategy is shown in Fig. 1.2.

Besides collecting blood samples for PK analysis, Phase 1 trials investigate the

common adverse reactions to an NME and what would be the NME’s dose-limiting

toxicities. We use the word “common” because the small number of subjects at this

stage does not offer much opportunity to observe rare drug reactions. A typical

ascending-dose trial (single dose or multiple doses) randomizes subjects to a fixed

dose or a control within a cohort. Observations from a cohort will be assessed to

decide if another cohort should be recruited to investigate the next higher dose in a

prespecified dose range. The allowed dose range for Phase 1 testing is determined

by the doses studied and adverse reactions observed in animal models.

Fig. 1.2 Interwoven single- and multiple-ascending-dose studies
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If the NME’s overall safety profile observed in Phase 1 is judged to be acceptable
relative to its potential (and yet to be observed) benefit, the development will

progress to the second stage (Phase 2). The number of volunteers included in

Phase 1 single- and multiple-ascending-dose studies typically ranges between

20 and 80, but could be higher if Phase 1 includes an assessment of the NME’s
mechanism of action or an early investigation of the NME’s efficacy. The latter is a
frequent feature of Phase 1 cancer trials. In these trials, a cohort of patients is often

recruited at the maximum tolerated dose (MTD) to assess the NME’s efficacy once

the MTD is established. A good reference on designs for Phase 1 cancer trials is the

book by Cheung (2011).

Other trials with a strong PK focus conducted early in the development process

include bioavailability studies, drug-drug interaction studies, food effect studies,

and PK studies in special populations such as subjects with impaired hepatic or

renal functions. Understanding an NME’s PK properties in individuals with hepatic

or renal function is particularly important when an NME is excreted from the body

through the liver or kidneys. Understanding how the body reacts to the NME under

many different, yet important, conditions is important to the planning of subsequent

trials.

1.2.2 Phase 2

Phase 2 investigates what a drug does to a patient with a target disorder (i.e.,

pharmacodynamics of the drug). Clinical trials at this stage are also designed to

determine dose(s) whose benefit-risk profile warrants further investigation later in

a confirmatory setting. Multiple doses within the dose range identified from

Phase 1 are studied at this stage.

Phase 2 is typically the time when a manufacturer first learns of the beneficial

effect of an NME. This stage has the highest attrition rate among the three

premarketing phases. Therefore, if an NME is not likely to become a treatment

option, it will be best to recognize this fact as soon as possible and stop further

testing of the NME for the disorder already investigated. This objective plus fewer

regulatory requirements at this stage offers opportunities for out-of-the-box

thinking.

Testing in Phase 2 can be further divided into two stages. The first stage aims to

establish the proof of concept (POC) of the NME, using a high dose (e.g., the

maximum tolerated dose identified in Phase 1) to investigate the NME’s efficacy.
Occasionally, a sponsormay use a biomarker to verify the conjecturedmechanism of

the NME in a proof of mechanism (POM) study. If the study cannot establish a

positive POM or POC, development of the NME in its current formulation for the

indication under study will stop. Because an NME is often created with the objective

to treat multiple disorders, discontinuing the development for one disorder does not
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necessarily mean terminating the development altogether. We have seen this in the

oncology area where an NMEmay be targeted for multiple cancer types (e.g., breast,

lung, and renal).

Following a positive POC, an NME will be further tested in a dose-ranging

study. A dose-ranging study typically includes a control and multiple doses of the

NME. A placebo is often used as the control at this stage. The new NME and the

placebo could be used alone as a monotherapy or added to a patient’s background
therapy.

This two-step process is often referred to as Phase 2a and Phase 2b (Sheiner

1997). To minimize the work necessary to initiate sites and obtain approvals from

multiple institutional review boards, some sponsors have opted to combine the POC

and the dose-response studies into one study with an unblinded interim analysis at

the end of the POC stage. The sponsors will review results from the POC stage and

may choose to use only data from the second stage to estimate the dose-response

relationship. This strategy has the potential to increase operational efficiency by

reducing the waiting period between Phase 2a and Phase 2b.

Depending on the target disorders, Phase 2 testing for a single disorder may

consist of 100–300 patients. Despite strong advocacy by researchers like Sheiner

(1997) to use a modeling approach to analyzing dose-response data, some sponsors

continue to rely on pairwise comparisons to design and analyze dose-response

studies. There have been renewed emphases from experts that the selection of

dose(s) should be regarded as an estimation problem and handled by a modeling

approach (EMA Dose Response Workshop 2014). Recent research (Pinheiro et al.

2010; Thomas et al. 2014) has shown that 300 patients in a dose-ranging study may

not be enough to adequately identify the optimal dose based on a preset criterion.

Ideally, Phase 2 studies should use the same endpoints to assess the benefit

associated with a dose as those to be used later in Phase 3. Unfortunately, this is not

always possible because the endpoint needed for Phase 3 such as survival and

serious morbidity may take a long time to obtain. In such a case, Phase 2 trials will

use a short-term endpoint that hopefully can predict the long-term clinical endpoint.

An example is the use of progression-free survival as the endpoint in Phase 2 and

overall survival in Phase 3 cancer trials.

Occasionally, a sponsor may have to conduct more than one study if the doses

chosen in the initial dose-response study are not adequate to estimate the dose-

response relationship. This could occur if the doses selected initially are too high

(e.g., near the plateau of the dose-response curve) or not low enough. To reduce the

chance of having to repeat a dose-response study, Pinheiro (2014) recommends

including four to seven doses in a wide dose range (e.g., the ratio of the maximum

dose to the minimum dose �10) in the dose-finding study.

At times, different dose-response studies may need to be conducted for different

diseases because a refractory disease may require a higher dose than a milder form

of the same disease that has not been previously treated. Similarly, higher doses

may be necessary to treat diseases considered to be harder to treat than diseases

more responsive to treatments.
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1.2.3 Phase 3

If the NME meets the efficacy requirement and passes the initial benefit-risk

assessment, it will be further tested to confirm its efficacy. This is the final stage of

clinical testing before an application is filed with regulatory agencies for approval.

By this time, a commercial formulation of the NME should be available so the final

testing could be conducted with the intended formulation. In the rare cases when the

commercial formulation differs from the formulation used in Phase 3, a PK study

will be required to show that the new formulation is bioequivalent to the previous

formulation in important PK properties. For convenience, we will refer to the NME

as a drug candidate (or simply a drug) from this phase on.

The US FDA generally requires two well-controlled trials to confirm a drug’s
effect for a target disease. This means two independent Phase 3 trials or, in some

cases, a Phase 3 trial plus a well-conducted high-quality Phase 2 dose-ranging

study. The primary reason for requiring two “confirmatory” trials is to ensure that a

beneficial result could be replicated.

There are situations, however, when one large well-controlled Phase 3 trial is

considered adequate to support marketing approval. This occurs when the first

study yields highly persuasive and robust results on a clinical endpoint (e.g.,

mortality and serious morbidity), and it is deemed unethical by the medical

community to repeat a similar study. Here, robust results mean low P-values
(described in Chap. 2) for the primary (clinical) and key secondary endpoints,

consistent results across multiple subgroups, and few issues associated with the

conduct of the studies. Interested readers should consult with the FDA guidance

(FDA 1998) on providing clinical evidence of effectiveness for human drug and

biological products.

Compared with previous phases, Phase 3 enrolls a greater number of patients

who are more heterogeneous in their demographic and baseline disease status.

Currently, nearly all Phase 3 studies are conducted in multiple countries and in

multiple geographic regions. It is at this stage that the majority of premarketing

safety data are collected. Since a major objective of Phase 3 trials is to confirm a

drug’s effect, analyses focus on testing prespecified hypotheses with adequate

control for the chance of making a false-positive decision. Operations at this

stage require carefully protecting a trial’s integrity so that trial results could be

trusted. The number of patients included at this stage typically ranges between 1000

and 5000. More patients will be needed if the drug is developed for multiple

disorders simultaneously. An example for multiple indications is the development

of antibiotics for multiple infections.

Drugs designed to reduce the risk of a clinical endpoint may require thousands, if

not tens of thousands of patients. On the other hand, drugs for orphan diseases will

enroll many fewer patients. An orphan disease in the United States is defined as a

condition that affects fewer than 200,000 people nationwide. Orphan diseases
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include well-known diseases such as cystic fibrosis and Lou Gehrig’s disease (also
called amyotrophic lateral sclerosis, or ALS) and less well-known rare diseases

such as Duchenne muscular dystrophy (DMD). DMD affects 1 in 3600 boys.

After a drug’s effect is confirmed and benefit-risk assessment supports its use

in the target population, the manufacturer will file a marketing application with

regulatory agencies, typically in multiple countries. Nearly all applications are for

the adult population initially. If the drug is likely to be used in the pediatric

population, a manufacturer often has an ongoing pediatric development program

or has a plan to initiate pediatric trials at the time of the initial marketing

application. The initial marketing application may be for a single indication or

for multiple indications. Once the application is approved, the drug can be made

available to the public.

As explained earlier, Phase 3 is the time when the majority of safety data are

collected. Safety data are crucial for sound benefit-risk assessment. The Interna-

tional Council for Harmonisation describes the extent of population exposure to

assess clinical safety for drugs intended for long-term treatment of non-life-

threatening conditions (ICH-E1 1994). For these conditions, ICH E1 expects

1500 individuals be exposed to the drug during the clinical development program.

Among the 1500 individuals, 100 patients should have been exposed to the drug

for at least 1 year. The exposure should be at the dose levels to be marketed. So,

for a new drug with a large treatment effect, the need for a reasonable safety

database will likely drive the sample size decisions for confirmatory trials.

1.2.4 Phase 4

The manufacturer of a marketed drug may choose to conduct additional studies to

further (1) investigate the drug in the indicated population(s) or in pediatric

patients with the indicated disorder(s), (2) compare the drug head to head with

an approved drug for the same disorder(s), (3) investigate the effect of the drug at

a lower/higher dose or with different administration schedules (e.g., once a day

instead of twice a day), (4) study the drug in combination with other drugs, or

(5) test the drug for other indications. Sometimes, a manufacturer conducts Phase

4 studies as a postmarketing commitment for regulatory approval. For example,

the manufacture may be asked to conduct additional safety studies in vulnerable

populations such as elderly, pediatric, obese, and pregnant patients.

Another way to characterize the four phases of drug development is by the

type of studies conducted during these 4 phases (see ICH E8 1997). The types of

studies conducted can be described as human pharmacology studies (Phase 1),

therapeutic exploratory studies (Phase 2), therapeutic confirmatory studies (Phase

3), and therapeutic use studies (Phase 4).
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1.3 Regulatory Review

Section 1.2 describes a traditional clinical development process. It usually takes

many years for an NME to go through the first three phases. Once a marketing

application is submitted, the manufacturer waits for the outcome of the regulatory

review. Regulators often send queries to the manufacturer during this period for

clarification or additional analyses.

In the United States, the FDA often arranges advisory committee meetings to

publicly discuss submissions of NMEs or submissions that include unusual or

controversial findings. Advisory committees will offer their recommendations to

the agency. While these recommendations are not binding, the FDA often chooses

to follow them. Before the turn of this century, the waiting period for a regulatory

decision in the United States could be substantial. The review time has been

significantly reduced since the beginning of the twenty-first century.

In Sects. 1.3.1 through 1.3.5, we will discuss deviations from the traditional

review process that can help bring a drug with a clinically meaningful effect on

serious conditions to the market faster in the United States.

In Sect. 1.3.6, we will review briefly procedures for drug approvals in the

European Union (EU).

1.3.1 Accelerated Approval

In 1992 the FDA instituted the accelerated approval regulations, allowing drugs for
serious conditions that filled an unmet medical need to be approved based on a

surrogate endpoint. A surrogate endpoint in this context is a measure of effect that

may correlate with a real clinical endpoint but does not necessarily have a

guaranteed relationship with the clinical endpoint.

Under the accelerated approval regulations, adequate and well-controlled studies

that demonstrate a drug’s effect on a surrogate or intermediate clinical endpoint

could provide the necessary evidence for the initial marketing approval. This is the

path for most cancer drug approvals in the past two decades. Even though the

ultimate goal of a cancer treatment is to prolong survival, the initial approval of a

cancer drug has been tumor shrinkage. The effect on tumor shrinkage is typically

studied in Phase 2 trials. Some of these Phase 2 studies include only patients

receiving the NME (i.e., a single arm) and rely on historical data to determine if

the NME has a beneficial effect on tumor shrinkage.

With an accelerated approval, the manufacturer of a new NME for cancer still

needs to conduct studies to confirm the ability of the drug to prolong survival. For

this reason, accelerated approval is sometimes called conditional approval since
there is a condition associated with the approval. A common industry practice is to
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start the clinical endpoint study once the effect of the NME on tumor shrinkage is

confirmed. Safety data from the ongoing clinical endpoint study can be used to help

augment the safety database to assist regulatory review. The use of interim safety

data in this fashion requires special care to protect the integrity of the clinical

endpoint study.

Once a confirmatory trial verifies the clinical benefit, the FDA will generally

remove the requirement. If the confirmatory trials fail to demonstrate a clinical

benefit, the accelerated approval may be withdrawn. A manufacturer often has a

chance to conduct multiple studies to confirm the clinical benefit before the

agency takes the step to withdraw the approved indication. Even if the approval

is allowed to remain for the indication, the product label will be modified to

clarify that trials failed to verify clinical benefit.

1.3.2 Breakthrough Therapy

In July 2012, the US Congress signed the FDA Safety and Innovation Act. The Act

allows FDA to designate a drug as breakthrough therapy if (1) the drug, used alone

or in combination with other drugs, is intended to treat a serious or life-threatening

disease or condition and (2) preliminary clinical evidence indicates that the drug

may demonstrate substantial improvement over existing therapies on at least one

clinically significant endpoint. A manufacturer can submit a request to the FDA to

designate a drug as breakthrough therapy. The agency has 60 days to grant or deny

the request. The submission should be done prior to the meeting with the agency to

review Phase 2 results.

The breakthrough therapy designation allows the manufacturer to receive inten-

sive guidance from the agency on the drug development program. It also signals the

agency’s commitment to the drug program at the senior management level includ-

ing an expedited review of the drug’s marketing application.

Having a drug designated as a breakthrough therapy is highly desirable. In

addition to a quicker agency’s response to requests for feedback and a faster

review timeline, a breakthrough designation increases the prestige of a drug. A

requirement for a breakthrough therapy is preliminary clinical evidence of sub-

stantial improvement over existing therapies on at least one clinically meaningful

endpoint. The preliminary clinical evidence could come from an early trial in a

small number of subjects. Pereira et al. (2012) reported findings from an empir-

ical investigation on how often very large treatment effects were replicated in

subsequent trials of the same comparison, disease, and outcome. They concluded

that most large treatment effects observed in small studies became much smaller

when additional trials were performed. This is a point that we will return to in

later chapters of this book (see Chap. 12).
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1.3.3 Priority Review

In the United States, the Prescription Drug User Act (PDUFA) came into effect in

1992. Under the Act, manufacturers of prescription drugs pay a fee when submit-

ting an application to market the drugs. In return, the FDA agreed to improve the

drug review time with specific goals. The FDA also created a two-tiered review

system timeline—standard review and priority review. The Act is renewable every
5 years. The 2002 amendments to PDUFA (second renewal) set a goal that a

standard review of a new drug application be accomplished within 10 months and

a priority review be completed within 6 months.

A priority review designation is granted to drugs that, if approved, would

contribute significantly to the treatment, diagnosis, or prevention of serious

conditions.

In the United States, a priority review voucher is awarded to any company that

has obtained approval for a treatment for a neglected tropical disease. The voucher,

allowed under a provision of the Food and Drug Administration Amendments Act

(H.R. 2007), is intended as an incentive to encourage companies investing in new

drugs and vaccines for neglected tropical diseases. The voucher is transferrable.

The awarding of a priority review voucher has created an interesting phenom-

enon in the United States, that is, the selling of the voucher by its holder to the

highest bidder in the open market. In some cases, the price paid for a voucher is

hundreds of millions of US dollars. The purchaser can use the voucher toward any

drug under regulatory review, hoping to get the drug to the market 6 months earlier

or ahead of a rival drug that is being reviewed for the same indication

contemporarily.

1.3.4 Fast Track

Another designation that a manufacture could seek of the FDA for their drug is

fast track. A manufacturer could initiate the request at any time during the

development process. The FDA will review the request and make a decision

within 60 days based on whether the drug fills an unmet medical need in a serious

condition.

A drug receiving the fast-track designation can expect to enjoy more frequent

and timely interactions with the FDA. The manufacturer of a fast-track drug can

submit sections of the new drug application for the agency review as they are being

completed (rolling submission). A fast-tracked drug is eligible for accelerated

approval and priority review, if other criteria described earlier are met. Because

of more frequent communications and faster resolutions of issues, a fast-track

designation often leads to earlier drug approval and access.
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1.3.5 Orphan Drug

The US Congress passed the Orphan Drug Act in 1983 to provide incentives for

developing treatments for orphan diseases (Kesselheim 2010). The incentives

include (1) a federal funding of grants and contracts to perform clinical trials of

orphan products, (2) a tax credit of 50% of clinical testing costs, (3) an exclusive

right to market the orphan drug for 7 years from the date of marketing approval,

(4) a priority review by the FDA, and (5) a waiver of the drug application fees.

Within the class of orphan drugs, the amount of data submitted to support regula-

tory approval varies greatly. For example, on October 23, 2015, the FDA approved

Strensiq (asfotase alfa) as the first treatment for perinatal, infantile, and juvenile-onset

hypophosphatasia (FDA Communication 2015). Asfotase alfa, administered via injec-

tion three or six times a week, works by replacing the enzyme responsible for forming

an essential mineral in the normal bone. The latter has been shown to improve patient

overall clinical outcomes.

The approval was based on results from 99 patients who received asfotase alfa

treatment for up to 6.5 years in four prospective, nonrandomized studies. Study

results showed that patients with the target condition and treated with asfotase alfa

had improved overall survival compared with control patients selected from a

natural history study group.

1.3.6 Drug Approval in the European Union (EU)

The first EU legislation on human medicine, triggered by the thalidomide catas-

trophe and adopted in 1965, was Council Directive 65/65 on the approximation of

the law relating to medicinal products. This was followed by two council direc-

tives in 1975. The first was on approximation of the laws of member states

relating to analytical, pharmacotoxicological, and clinical standards and protocols

with respect to the testing of proprietary medicinal products. The second was on

the approximation of provisions laid down by law, regulation, and administrative

action relating to medicinal products. The latter directive established a Committee

on Proprietary Medicinal Products as an advisory committee and introduced the

procedure now known as the mutual recognition procedure (Rägo and Santoso

2008). A further directive introduced the procedure known today as the central-

ized procedure. In 1995 the European Medicines Agency was founded to harmo-

nize the work of existing national medicine regulatory bodies and to protect

public and animal health by assessing medicines to rigorous standards and

providing partners and stakeholders with independent, science-based information

on medicines (EMA: History of EMA 2015).
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There are currently two main routes for authorizing medicines in the EU

(EMA: Authorisation of Medicines). The first is the centralized authorization

procedure whereby pharmaceutical companies submit a single marketing-

authorization application to EMA. For new products, two rapporteurs are

appointed from the member states. The rapporteurs write scientific evaluation

reports which are circulated to all other CHMP (Committee for Medicinal

Products for Human Use) members for comment. The CHMP reaches an opinion

on the benefit-risk assessment by consensus or majority. If a decision is reached

by a majority, then all CHMP members must accept the opinion. The second

route is to make use of individual country national authorization procedures. If a

company wishes to request marketing authorization in several EU member states

for a medicine that is outside the scope of the centralized procedure, it may use

the mutual recognition procedure (a decentralized procedure). Currently, the

great majority of new innovative medicines pass through the centralized

procedure.

Similarly to the situation in the United States, there are several provisions to

foster patients’ early access to new medicines that address public health needs and

are eligible for the centralized procedure. These include accelerated assessment

which reduces the review time for medicines of major public health interest with

particular regard to therapeutic innovation, conditional marketing authorization

which grants authorization before complete data are available, and compassionate

use which allows the use of an unauthorized medicine for patients with an unmet

medical need.

For additional information concerning regulatory review and approval of medic-

inal products in the EU, readers are encouraged to visit the EMA website (EMA:

Authorisation of Medicines).

1.4 Innovative Designs

In the Critical Path Initiative document mentioned earlier, the FDA identifies

opportunities to help lift the perceived stagnation of drug development. The agency

encourages innovations in many areas of drug discovery, development, and

manufacturing. In the area of clinical development, FDA encourages, among

several things, more efficient clinical trial designs.

Since the 1990s, the group sequential design has been used regularly for trials

involving mortality and serious morbidity, especially during the Phase 3 testing.

The rationale is that if there is enough evidence in an ongoing trial to demonstrate

the clinical benefit of a new drug on mortality or serious morbidity, it will not be

ethical to continue the trial. Similarly, if there is enough evidence to conclude that

the new drug is unlikely to produce a clinical benefit, there is no reason to further

expose patients to the drug considering the side effects inherent with all drugs.
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The group sequential design is an adaptive design in that interim data are used to

help decide whether some aspects of the trial should be changed (Jennison and

Turnbull 2000; Whitehead 1997). In the late 1980s, researchers began to work on

other adaptive designs beyond the traditional group sequential design.

1.4.1 Adaptive Design

Bauer et al. (2015) gave a historical overview of the history of confirmatory

adaptive designs over the 25 years since 1989. The overview offers a rich literature

on adaptive designs. The pace for research on adaptive designs accelerated after the

publication of the FDA’s Critical Path Initiative document in 2004.

Major research on adaptive features include (1) reestimating the sample size

because of uncertainties associated with design parameters (variability, background

rate, treatment effect) at the planning stage, (2) modifying the randomization ratio

that dictates how patients are randomized to various treatment groups, (3) choosing

among multiple treatments included in the study, (4) dropping or adding new

treatments (or doses), and (5) selecting a subpopulation for future enrollment.

Examples of adaptive features can be found in several recent books on adaptive

designs (e.g., Chang 2014; He et al. 2014; Menon and Zink 2015).

Both the European Medicine Agency and the FDA have published guidance

documents on adaptive designs. The EMA guidance (CHMP 2007) focuses on

adaptive designs for confirmatory trials, while the FDA guidance (FDA 2010)

covers adaptive designs for both the exploratory and confirmatory stages. At the

time this book was prepared, the FDA guidance on adaptive designs remained a

draft.

Readers who are interested in additional information on adaptive designs are

encouraged to read Sect. 13.1.

1.4.2 Master Protocol

Another emerging trend is the use of a master protocol to screen multiple drugs

simultaneously. Some refer to the resulting trial as a platform (or umbrella) trial.

A platform trial could also be used to investigate a product in patients with

different genotypes or phenotypes (enriched subpopulations). A more sophisti-

cated platform trial could be conducted to study multiple treatments in multiple

enriched patient subpopulations. Interim analyses are typically conducted in these

trials to decide if a particular treatment (often with a subpopulation) could be

graduated from the trial and further investigated in a confirmatory setting.

Alternatively, a treatment could be dropped from the trial and a new treatment

added to the trial, continuing the trial beyond the original set of treatments.
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Platform trials that allow the introduction of new treatments are also called

perpetual trials for this reason.

A well-known platform trial in the oncology area is the I-SPY 2 trial (Barker

et al. 2009), a Phase 2 neoadjuvant trial in women with large primary cancers of

the breast. Breast tumor is characterized by its response to three receptors

(estrogen, progesterone, and HER2), resulting in eight tumor signatures. The

trial investigates multiple regimens that include investigational products from

different companies. The primary endpoint is pathologic complete response at

6 months after treatment initiation. Within each tumor signature, adaptive ran-

domization to regimens is employed. The trial may graduate or terminate a

regimen according to a prespecified rule based on an interim Bayesian prediction

of Phase 3 success probability for the (regimen, signature) combination. If the

regimen remains in the trial after the interim decision, assignment to that regimen

will continue but be capped at a prespecified maximum number. One major

advantage of a trial like I-SPY 2 is the ability to learn during the trial on what

regimen benefits which patient subpopulation, and do this by borrowing informa-

tion from other (regimen, signature) combinations.

Because of the increasing collaborations between public and private sectors as

well as collaborations among private sectors in screening and developing drugs, we

can expect an increase in the use of platform trials in the near future.

1.5 Summary

In the United States, product development has changed substantially since 1962

when the US Congress passed the Kefauver-Harris (KH) Amendment to the Federal

Food, Drug, and Cosmetic Act of 1938 (Krantz 1966). The Amendment required

drug manufacturers to prove the effectiveness and safety of their drugs in adequate

and well-controlled investigations before receiving marketing approvals. This

Amendment set in motion the activities that led to the relatively mature state of

clinical testing for new drugs today.

Still, clinical development strategies continue to change. The pursuit of person-

alized medicine and targeted therapies means that manufacturers will look for more

nimble and adaptive pathways. Orphan diseases and rare diseases have begun to

attract the attention of mid- to large-size pharmaceutical companies. Because of the

cost and risk associated with developing new drugs, we can expect to see more

codevelopment between companies.

Increasingly, advocacy groups are putting pressure on pharmaceutical compa-

nies and regulators to move faster to make new drugs available, especially new

drugs for previously untreatable diseases. The strong advocacy by HIV patients in

1990s led to the rapid development and approval of many HIV drugs. More

recently, patients of children with rare genetic diseases have become strong advo-

cates for their children. They join together to form grassroots organizations to push
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for research on the genetic diseases inflicting their children. Some of their organi-

zations even provide funding to support basic research. Their active participation is

a new force that will undoubtedly influence the direction and outcome of drug

development.

A nimble clinical development requires an infrastructure to make nimble deci-

sions. The decisions at different stages of development need to be coordinated so

that latter decisions are built upon the earlier ones for best results. This means a

unified decision-making framework that is based on a core set of principles but also

capable of addressing the unique needs of different stages. It is this unified decision-

making framework that will be the focus of this book.
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Chapter 2

A Frequentist Decision-Making Framework

Those who ignore Statistics are condemned to reinvent it.
Bradley Efron

2.1 Introduction

The Frequentist approach to statistical inference involves probability via its long-

run frequency interpretation. Procedures for assessing evidence and making deci-

sions are calibrated by how they would perform were they used repeatedly. In this

chapter, we consider the Frequentist approach to the testing of hypotheses and in

particular to the two-action decision problem. In the context of drug development,

the two actions correspond to progressing or not progressing a drug for further

development.

2.2 Statistical Hypotheses

A statistical hypothesis can be defined as “an assertion or conjecture about the

distribution of one or more random variables” (Miller and Miller 2014). Here, a

random variable is a variable representing the outcome of an experiment. The

possible outcomes and their probabilities are represented by a probability distribu-

tion. Statistical hypotheses can be simple, if the statistical hypothesis completely

specifies the distribution, or composite if they do not.

An example of a simple hypothesis involving a drug could be if we conjecture

that the number of individuals recovering from a certain illness among a population

of patients treated with the drug follows a binomial distribution with a recovery

proportion and that the recovery proportion is equal to 0.6.

An example of a composite hypothesis is if we conjecture that a patient’s
diastolic blood pressure change when treated with a drug or a placebo can be

modeled by a Normal distribution with a known and common variance and that

the drug induces a greater decrease in diastolic blood pressure than the placebo.

© Springer International Publishing AG 2017

C. Chuang-Stein, S. Kirby, Quantitative Decisions in Drug Development, Springer
Series in Pharmaceutical Statistics, DOI 10.1007/978-3-319-46076-5_2

19



2.3 Testing a Statistical Hypothesis

To test a statistical hypothesis, it is necessary to have another hypothesis in case the

initial hypothesis is rejected. Such a hypothesis is referred to as the alternative

hypothesis and is frequently denoted by HA. The hypothesis being tested is referred

to as the null hypothesis and is usually denoted by H0. The objective is to gather

enough evidence to decide whether H0 should be rejected in favor of HA or not to

reject H0. The latter occurs when the observed results are consistent with what

could have been expected under H0. In drug development, H0 and HA are usually

chosen in such a way that there is a strong desire to reject H0 and thus conclude HA.

In this sense, the hypothesis-testing paradigm is like the criminal justice system

where every defendant is assumed innocent until proven guilty. The prosecutor

bears the burden to collect enough evidence in order to prove beyond a reasonable

doubt about the defendant’s guilt.
To test a statistical hypothesis, sample data are generated from an experiment

and a test statistic is calculated from the data. The test statistic is used to decide

whether to accept or reject the null hypothesis. Possible values of the test statistic

are divided into two sets: an acceptance region and a rejection region for H0. The

rejection region is also known as the critical region. Usually the rejection region

includes large or extreme values of the test statistic.

The above procedure can lead to two possible types of error. Rejecting the null

hypothesis when it is true is called a Type I error, and the probability of this error

is usually denoted by α. Accepting the null hypothesis when it is false is called a

Type II error, and the probability of this is usually denoted by β. The possible

outcomes of a hypothesis test, expressed in terms of correct or incorrect deci-

sions, are illustrated in Table 2.1.

We first illustrate hypothesis testing by considering a simple null hypothesis and

a simple alternative hypothesis. Consider the example about the number of indi-

viduals recovering from a particular illness after treatment with a drug. Assume that

the number can be modeled by a binomial distribution with the parameter θ. Here θ
represents the proportion of the population that will recover with the drug treat-

ment. A null hypothesis can be that θ is equal to 0.6. Symbolically we can write:

H0 : θ ¼ 0:6

We can take as our simple alternative hypothesis that the recovery proportion is

equal to 0.9 and write it as:

Table 2.1 Possible outcomes

of a hypothesis test
Decision H0 true H0 false

Accept H0 Correct Type II error

Reject H0 Type I error Correct
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HA : θ ¼ 0:9

Accepting the null hypothesis means accepting the assertion of a 60% recovery

rate. Rejecting the null hypothesis means accepting the assertion of a 90% recovery

rate. A Type I error corresponds to rejecting a recovery rate of 60% when this rate is

true. A Type II error corresponds to accepting the 60% recovery rate when the true

recovery rate is actually 90%.

Suppose that we decide to take a simple random sample of 14 subjects from the

population with the illness of interest and treat them with the drug. Furthermore,

suppose that we choose a testing procedure that will reject H0 if 12 or more of the

14 subjects recover from the illness, otherwise we will accept H0. Using binomial

distributions, we can calculate the Type I error and Type II error rates associated

with this testing procedure. These error probabilities are 0.04 and 0.16,

respectively.

To illustrate a composite null and alternative hypothesis, we reconsider the

blood pressure example. We assume that the change in diastolic blood pressure

(posttreatment—baseline) for drug and placebo can both be modeled by Normal

distributions, and we also assume that there is a common known variance for the

two Normal distributions. A greater change (reduction) results in a more negative

value for the change from baseline endpoint.

Let μdrug denote the mean change in blood pressure among patients receiving the

drug and μplacebo the mean change in blood pressure among patients receiving the

placebo. We take as our null hypothesis that the difference μdrug� μplacebo is greater
than or equal to zero, i.e., the drug is not more effective than the placebo in reducing

the blood pressure. Symbolically we write:

H0 : μdrug � μplacebo � 0

For our alternative hypothesis, we speculate that the difference μdrug� μplacebo is
less than 0. Symbolically we write:

HA : μdrug � μplacebo < 0

Accepting H0 means accepting the hypothesis that the drug is not more effective

in reducing the diastolic blood pressure than the placebo. Rejecting H0 means

accepting the hypothesis that the drug is more effective than the placebo in reducing

the blood pressure.

To illustrate a possible testing procedure for this example, we assume that the

standard deviation of the change from baseline in diastolic blood pressure over the

period of interest is known to be 5 mmHg. Suppose that 2� n subjects are randomly

assigned to drug or placebo so that each treatment group has n subjects. A possible

test statistic is given by:
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�X drug � �X placeboffiffiffiffiffi
2σ2
n

q ð2:1Þ

In (2.1), �Xdrug is the sample mean change in diastolic blood pressure among

patients on drug, �Xplacebo is the sample mean change in diastolic blood pressure

among patients on placebo, and σ is the known standard deviation of change in

diastolic blood pressure (assumed to be 5 mmHg). The test statistic is negative

when the mean reduction on drug is greater than that on placebo. It becomes more

negative as the reduction in diastolic blood pressure on drug becomes greater

compared to placebo.

We can design a study to randomize 26 subjects in equal proportions to receive

either the drug or the placebo. With n¼ 13, we can define a rejection region to consist

of any value of the test statistic less than�1.645. The maximum probability of a Type I

error under H0 is 0.05, occurring when μdrug� μplacebo¼ 0. The Type II error rate

depends on the value of the true difference under HA. It can be shown that the

probability of a Type II error is approximately 0.18 when μdrug� μplacebo¼ � 5mmHg.

There are many ways to construct tests. A popular test is the likelihood ratio

test (Lindgren 1993) which constructs the ratio of the Maximum Likelihood (the

maximum probability of the observed data for a model) for values of the

parameter(s) under H0 to the Maximum Likelihood for any possible values of

the parameter(s). Assuming that H0 assigns values to k of r parameters, �2 times

the log of the likelihood ratio constructed above has a large sample chi-square

distribution with k degrees of freedom under the null hypothesis and some general

regularity conditions about the distributions.

2.4 Decision-Making

In drug development, accepting or rejecting a null hypothesis often leads to

different actions. In the example of a simple null and alternative hypothesis

involving the recovery rate from an illness, accepting the null hypothesis could

mean stopping further development of a drug. Rejecting the null hypothesis could

mean continuing the drug’s development. A Type I error then corresponds to the

decision to continue the development when the recovery rate with the drug treat-

ment is only 60%. A Type II error corresponds to the decision to stop the develop-

ment when the recovery rate is 90%.

The properties of a hypothesis test are affected by three main factors. They are

sample size and Type I and II error rates. For a composite null hypothesis, we

typically control the largest possible Type I error rate under the null hypothesis.

For a simple alternative hypothesis, there is a single Type II error probability for

a testing procedure. For a composite alternative hypothesis, as noted in the blood

22 2 A Frequentist Decision-Making Framework



pressure example, the Type II error rate will vary according to the value(s) of

parameter(s) permissible under the alternative hypothesis.

It is a common practice to control the Type I error rate and to evaluate the

Type II error rate for different values of the sample size.

2.5 Losses and Risks

When decisions are made, it is possible to think of losses associated with each

decision. Here, a loss can be positive or negative (a reward or a penalty). For the

simple null and alternative hypothesis example on the recovery rate, we can denote

the truth (true rate of recovery) by θ1 for θ ¼ 0.6 or θ2 for θ ¼ 0.9. We can also

denote the decision to stop development of the drug by d1 (decision 1) and the

decision to continue by d2 (decision 2). We can then summarize possible combi-

nations of truth and decision as in the table below with each having an associated

loss represented by L(di, θj) for i, j ¼ 1, 2 (Table 2.2).

We can go one step further and define the risk associated with the decision

procedure for each true state of nature. For a given true state of nature, the risk is the

expected loss from the decision procedure. Under this definition, the risk for each

true state of nature is given below (Table 2.3).

The risk when the true recovery rate is equal to θ1 (θ ¼ 0.6) is given by the loss

when decision 1 is made (a correct decision to stop development) multiplied by the

probability of this correct decision (i.e., 1 � α) plus the loss when decision 2 is

made (an incorrect decision to continue development) multiplied by the probability

of this incorrect decision (i.e., α).
Similarly, the risk when the true recovery rate is equal to θ2 (θ ¼ 0.9) is given by

the loss when decision 1 is made (an incorrect decision to stop) multiplied by the

probability of this decision (i.e., β) plus the loss when decision 2 is made (a correct

decision to continue) multiplied by the probability of this decision (i.e., 1 � β).
It should be noted that these risks are conditional on the true state of nature. To

go further and obtain an overall risk, we would need to assign probabilities to the

true state of nature as done in the Bayesian approach to inference.

Table 2.3 Risk for each true

state of nature
True state of nature

θ1 θ2
L(d1, θ1) � (1 � α) + L(d2,
θ1) � α

L(d1, θ2) � β + L(d2,
θ2) � (1 � β)

Table 2.2 Losses for

combinations of decision and

true state of nature

True state of nature

Decision θ1 (θ ¼ 0.6) θ2 (θ ¼ 0.9)

d1 (stop development) L(d1, θ1) L(d1, θ2)

d2 (continue development) L(d2, θ1) L(d2, θ2)
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While in principle a loss can be assigned to each state of nature and decision, this

can be challenging in practice. This is because of the many factors involved and the

uncertainties about these factors. Similarly, in the context of drug development, the

reward or penalty associated with each state of nature and decision to stop or

continue may be difficult to determine. By comparison, the probabilities of correct

and incorrect decisions conditional on the true state of nature are easier to calculate.

2.6 The Power Function of a Test

In most situations, a drug developer is interested in a composite null hypothesis and

a composite alternative hypothesis. It is therefore useful to define a power function

that gives the probability of rejecting H0 for various values of the parameter of

interest.

Consider the blood pressure example which has a null hypothesis of:

H0 : μdrug � μplacebo � 0

and an alternative hypothesis of:

HA : μdrug � μplacebo < 0

Figure 2.1 shows the power function for 13 patients per group and the decision

rule of rejecting H0 when the test statistic in (2.1) takes a value less than �1.645.

It can be seen from Fig. 2.1 that the maximum Type I error rate under the null

hypothesis occurs when μdrug� μplacebo¼ 0, and the power under the alternative

hypothesis increases rapidly as the difference in mean change (drug—placebo)

becomes more negative. As described earlier, the power when the difference in

mean diastolic blood pressure decrease is equal to �5 mmHg is approximately

Fig. 2.1 Power function for the example described in text
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0.82 (¼ 1–0.18). In general, it is desirable to conduct experiments that have high

power for values of interest under the alternative hypothesis.

2.7 Determining a Sample Size for an Experiment

The power curve displayed in Fig. 2.1 is for a particular sample size, i.e., 13, for

each group. Different sample sizes will give different power curves as illustrated in

Fig. 2.2. As shown in Fig. 2.2, as sample size increases, the probability to reject H0

for any μdrug� μplacebo< 0 increases.

The sample size used for the power curve in Fig. 2.1 was chosen by requiring a

maximum Type I error rate of 5% and a Type II error rate of approximately 18%

when μdrug� μplacebo¼ � 5 mmHg. Such a sample size could be found by trial and

error, but in many cases it is possible to write a closed-form expression for the

sample size. Using the blood pressure example, we will illustrate an analytical

approach that could be used to determine sample size on many occasions.

In the blood pressure example, we assume that we are interested in an experi-

ment that will have 80% power to reject the null hypothesis when

μdrug� μplacebo¼ � 5. We want the Type I error rate for our decision rule to be

controlled at the 5% level. The experiment will randomize the same number of

patients to receive the drug and the placebo. We need to decide the sample size

required for each group.

Let n denote the number of patients in each treatment group. When

μdrug� μplacebo¼ 0, the difference in sample mean changes from baseline

�X drug � �X placebo has a Normal distribution with mean 0 and a variance equal to 2σ2

n .

We will denote this Normal distribution byN 0; 2σ
2

n

� �
. This distribution is portrayed by

the curve on the right in Fig. 2.3.

Fig. 2.2 Power curves for different sample sizes
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Under the alternative hypothesis that the true difference is equal to �5, the

distribution for the difference in sample mean changes is N �5; 2σ
2

n

� �
. This distri-

bution has the same shape asN 0; 2σ
2

n

� �
, but is situated 5mmHg to the left of the curve

for N 0; 2σ
2

n

� �
. This distribution is represented by the curve on the left in Fig. 2.3.

For the Type I error rate to be 0.05, we can use the critical value of �1.645 for

the test statistic. This critical value is the 5th percentile of a standard Normal

distribution N(0;1), because the test statistic in (2.1) has a N(0;1) distribution

when μdrug� μplacebo¼ 0. This translates to the requirement in (2.2) for �X drug �
�X placebo to reject the null hypothesis. We note this requirement by the vertical line in

Fig. 2.3. The area under the curve ofN 0; 2σ
2

n

� �
to the left of the vertical line is 0.05.

�X drug � �X placebo < �1:645�
ffiffiffiffiffiffiffi
2σ2

n

r
ð2:2Þ

To obtain the sample size needed to give a power of 80% when

μdrug� μplacebo¼ � 0.5, the Normal curves should be shaped in such a way that

the area to the left of the vertical line under the curve on the left [i.e., curve for

N �5; 2σ
2

n

� �
] is 0.80. This means that the vertical line should have an X-coordinate

of �5þ Z0:20 �
ffiffiffiffiffi
2σ2
n

q
. Here, Z0.20¼ 0.842 is the upper 20th percentile of the

standard Normal distribution. This new requirement plus that in (2.2) lead to the

Eq. (2.3):

Fig. 2.3 Overlap of distributions under null and alternative hypotheses which gives desired Type I

and Type II error rates

26 2 A Frequentist Decision-Making Framework



�1:645�
ffiffiffiffiffiffiffi
2σ2

n

r
¼ �5þ 0:842�

ffiffiffiffiffiffiffi
2σ2

n

r
ð2:3Þ

Substituting 5 for σ in (2.3), we can solve for n, which is found to be 13 (rounding
up to the nearest integer). The Eq. (2.3) leads to the familiar sample size formula for

a continuous endpoint for n (per group) in Eq. (2.4) with α ¼ 0.05, β ¼ 0.20,

Δ ¼ �5, and σ ¼ 5 for the blood pressure example:

n ¼ 2σ2 � Zα þ Zβ

� �2
Δ2

ð2:4Þ

More generally, suppose θ is a measure of the true treatment effect and we are

interested in testing:

H0 : θ � θ0

against the one-sided alternative hypothesis:

HA : θ > θ0

for a maximum Type I error rate of α. If we can assume that the estimator f(θ) of the
treatment effect or a monotonic function of the effect follows a Normal or approx-

imately Normal distribution, then we can solve the general expression in (2.5) for

the total sample size ntot needed to have 100� (1� β)% power when θ¼ θA:

f θ0ð Þ þ Zα � σ θ0ð Þffiffiffiffiffiffiffi
ntot

p ¼ f θAð Þ � Zβ � σ θAð Þffiffiffiffiffiffiffi
ntot

p ð2:5Þ

In (2.5),
σ θð Þffiffiffiffiffi
ntot

p is the standard error of the estimator for f(θ). The result in (2.5) is

available in Dupont and Plummer (1990).

Kirby and Chuang-Stein (2011) used the general result in (2.5) to derive a

number of common sample size expressions. They also considered other possible

approaches to sample sizing.

It is sometimes of interest to see for a test the treatment effect that gives a

particular power for a given sample size and Type I error. This can be derived by,

for example, solving for Δ in (2.4) as shown in (2.6):

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2 Zα þ Zβ

� �2
n

s
ð2:6Þ
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2.8 Multistage Tests and the Use of a No-Decision Region

The discussion so far assumes that acceptance of the null hypothesis is equivalent to

the rejection of the alternative hypothesis and vice versa, but this is not always the

case. In some situations, a no-decision region may be used such that the null

hypothesis is neither accepted nor rejected when results land in this region. In

drug development, the outcome of a clinical trial may not lead to a decision to stop

developing the drug or continue to the next stage of development. Instead, it may

lead to further data being gathered at the current stage of development. This idea is

frequently used in a group sequential trial where a particular test may be carried out

at each of multiple stages. Possible outcomes at each stage include the option to

collect more data rather than to accept the null or alternative hypothesis (Jennison

and Turnbull 2000).

2.9 One-Sided Versus Two-Sided Tests

In the blood pressure example, we tested H0: μdrug� μplacebo� 0 versus HA:

μdrug� μplacebo< 0. We considered a decision rule that called for the rejection of

H0 if the test statistic was less than�1.645. Because the rejection region consists of

only those values of the test statistic that are quite negative, the test is called a one-

sided test. When the test is one sided, the allowed Type I error rate α is completely

spent in one tail of the null distribution in determining the critical value for the test

statistic. This is illustrated in Fig. 2.3.

There are situations when the null and alternative hypotheses are stated as H0:

μdrug� μplacebo¼ 0 and HA: μdrug� μplacebo 6¼ 0. Under these hypotheses, very

positive and very negative values of the test statistic in (2.1) would be consistent

with the alternative hypothesis. So, two critical values would be needed, one for

each tail of the null distribution. When the test statistic has a Normal distribution

or could be approximated by a Normal distribution, a common practice is to split

the allowed Type I error rate into two equal portions and assign one portion to

each tail of the null distribution. For example, if the Type I error rate is set at the

5% level, each tail of the null distribution will get 2.5% probability, resulting in

1.96 and �1.96 as the critical values for the test statistic. The corresponding test

is called a two-sided test.

For confirmatory trials, sponsors are typically required to formulate their tests

as two-sided tests even though only one direction is of any practical interest. The

real difference between a one-sided and a two-sided test is the critical values used
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to reject the null hypothesis. In the blood pressure example, the drug will be

deemed effective if the test statistic in (2.1) is less than �1.96 under a two-sided

test and less than �1.645 under a one-sided test when the allowed Type I error

rate is 5%. Thus, it is harder to conclude a positive treatment effect under a

two-sided test.

Despite the above, one can generally apply approaches developed for one-sided

tests to two-sided tests as long as one uses the appropriate critical value. For

example, we can use the sample size formulae in (2.4) and (2.5) to determine the

sample size for a two-sided test if we replace Zα by Zα/2. The term Zβ remains the

same for a two-sided test.

2.10 P-Values

A P-value is one of the most fundamental concepts in hypothesis testing. A P-value
is defined as the probability of obtaining a result equal to or “more extreme” than

what was actually observed, assuming that the null hypothesis is true. In the blood

pressure example, assume that the test statistic has a value of tobs, then the P-value
for the one-sided test is:

max μdrug�μplacebo�0f gPr
�
Z < tobs μdrug � μplacebo

�� � ð2:7Þ

In (2.7), Z represents a random variable that has a standard Normal distribution N
(0;1). The maximum in (2.7) occurs when μdrug� μplacebo¼ 0 and the P-value is

given by Φ(tobs). Here Φ(�) denotes the cumulative distribution function of the

standard Normal distribution.

When the test is two-sided, the calculation of the P-value is a bit more

involved. If tobs< 0, then the two-sided P-value is 2�Φ(tobs). If tobs> 0,then

the two-sided P-value is 2�Φ(�tobs).
Since the P-value is calculated under the null hypothesis, a small P-value

suggests the occurrence of an infrequent event under the conditions described by

the null hypothesis. If the P-value is lower than the allowed Type I error rate, one

can reject the null hypothesis since a testing procedure that calls for the rejection of

the null hypothesis when the P-value is less than α will have an actual Type I error

rate smaller than α. The allowed Type I error rate is also called the significance

level.

The advantage of a P-value is that it is flexible and can be used to make decisions

for any given Type I error rate. For this reason, a P-value is typically reported when
hypotheses are tested.
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2.11 Summary

Except for the Center for Devices and Radiological Health, regulatory decisions on

pharmaceutical products in the United States have been made within the Frequentist

framework. One major advantage of the Frequentist approach is that validity comes

within each positive trial and there is no need to make any assumption about data

outside of the trial. The testing procedures are generally well understood, and their

behaviors under various scenarios could be characterized with the help of simula-

tions, if closed-form solutions do not exist.

The Frequentist framework can incorporate results from previous trials. In

practice, a sponsor regularly uses estimates of treatment effect and variability

obtained from past trials to design future trials. The estimates could come from a

single trial or a meta-analysis of multiple trials. Once a trial is designed and

conducted, subsequent analyses of the trial data are generally Frequentist in nature.

Although the Frequentist framework has tended to be dominant until now for

regulatory decisions at the Center for Drug Evaluation and Research in the United

States (Price and LaVange 2014), there are some signs that this position may be

changing for at least some situations. For example, a report of a 2014 meeting about

rare diseases mentions that Bayesian statistics may constitute an option for rare

disease designs (FDA 2014). The Bayesian approach to inference is introduced in

Chap. 5.

Although we focused on significance tests and P-values in this chapter, it is

important to remember that estimation and prediction are equally important in a

Frequentist analysis. Estimation includes reporting both the point and interval

estimates for the parameter of interest. Estimation helps us judge if the observed

difference is clinically meaningful. As we pointed out earlier, it is possible to have a

significant P-value for any amount of difference as long as the sample size is large

enough. Prediction allows us to draw inference based on sensible interpolation.

Therefore, the interpretation of the results from an experiment should not and could

not rely on significance tests or P-values alone.
Some researchers have recommended discounting the estimated treatment effect

from past trials when using them to plan future trials. This is because of the

presence of a selection bias. We will return to this topic in Chap. 12.
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Chapter 3

Characteristics of a Diagnostic Test

Diagnosis is foundation of therapy—and of personalized
medicine.

Janet Woodcock, CDER Director, FDA

3.1 Introduction

In medicine, a diagnostic test is often performed to diagnose a disease or to

subclassify a disease regarding its severity and susceptibility to treatment. In recent

years, companion diagnostics have also been developed to preselect patients for

specific treatments based on their own biology. For example, when the

FDA approved crizotinib for patients with ALK-positive advanced non-small cell

lung cancer and vemurafenib for late-stage (metastatic) or unresectable melanoma

with the BRAF V600E mutation, it stipulated that the targeted conditions be

detected by FDA-approved tests.

A diagnostic test is typically based on the result from a laboratory assay. The

assay measures the amount of the target entity in a sample and compares the amount

to a cutoff value. The result is then expressed as a binary outcome—yes or no,

present or absent, abnormal or normal, and positive or negative.

When setting up an assay, a laboratory must take into account the clinical

intentions of its users, optimizing the analytical procedure and selecting the oper-

ating characteristics of the assay appropriately (Oliver and Chuang-Stein 1993). For

a medical test, a key factor in deciding the above is the clinical decision points. The

laboratory will set up the assay in such a way that the result is the most precise at or

near the points where clinical decisions are to be made. An example is the upper and

lower limits of the reference range for a safety laboratory test, when the primary

consideration is to confidently identify a result as clinically abnormal or not. In this

case, the precision of the assay far away from the reference range is generally less

important.

In this chapter, we will first review the metrics commonly used to characterize

the performance of a diagnostic test. We will discuss what it means when a

diagnostic test returns a positive or a negative result. We illustrate this by using
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different decision rules. We will conclude the chapter with some additional

remarks.

3.2 Sensitivity and Specificity

Sackett et al. (1985) described a case of using the level of creatine kinase (CK) as a

means to diagnose myocardial infarction (MI). The data came from a study

conducted at the coronary care unit at the Royal Infirmary in Edinburgh in the

1970s. All patients who came to the hospital and were suspected of having had an

MI within the previous 48 h were admitted to the unit. There was a need to

differentiate, as quickly as possible, between patients who actually had had an MI

and those who had not. This would enable better patient triage and management.

The staff in the coronary care unit thought that high levels of CK might help

them identify an MI sooner than measurements of enzymes (such as aspartate

aminotransferase) that arose later following an MI. To confirm this, they measured

the CK level on admission and in the next two mornings on 360 consecutive

patients who were admitted to the unit and lived long enough to have the blood

samples taken.

Using ECG and autopsy, 230 patients were judged to very probably or possibly
have had an MI. For simplicity, we will simply say that these patients had had an

MI. The remaining 130 patients were judged to not have had an MI.

The CK values among patients who have had an MI are generally higher than

those among patients who have not had an MI. However, the distributions of the

two sets of values overlap. The question is what cutoff to use when using CK as the

basis for diagnosing an MI. One of the possible levels is 80 IU (international unit),

i.e., declaring an MI to have occurred when CK� 80 IU and not to have occurred if

CK< 80 IU. The accuracy of this decision rule, applied to the 360 patients, is given

in Table 3.1. The contents of Table 3.1 come from Sackett et al.

Among the 230 patients who have had an MI, using the decision rule will have

correctly diagnosed an MI in 215 patients. This gives a correct positive rate of 93%

(¼215/230). Among the 130 patients who have not had an MI, the rule will have

made a correct diagnosis in 114 patients, yielding a correct negative rate of 88%

(¼114/130).

If a lower threshold, e.g., 40 IU, is used, we will get different results. The new

results are given in Table 3.2. The correct positive rate is now 99% (¼228/230) and

the correct negative rate is 67% (¼87/130). A lower threshold makes it easier to

declare a patient to have had an MI, thus producing a higher correct positive rate

among patients who have had an MI. However, the lower threshold also makes it

easier to declare an MI in patients who have not had an MI, resulting in a lower

correct negative rate.

Conversely, if a higher threshold than 80 IU is used, one can expect the correct

positive rate to decrease while the correct negative rate to increase.
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The correct positive rate of a diagnostic test is called the sensitivity of the test.

The correct negative rate is called the specificity of the test. The figures we gave

above are estimates of these measures based on a single sample. Using the notation

in the parentheses in Table 3.1, sensitivity is given by a/(a + c) and specificity given

by d/(b + d).

While it is desirable for a diagnostic test to have high sensitivity and high

specificity, there is usually a trade-off between these two metrics as illustrated in

the MI–CK example. One way to see how sensitivity and specificity trade off with

each other is to plot sensitivity against 1-specificity for various cutoff points. The

resulting curve is called a receiver operating characteristic (ROC) curve. Because

1-specificity represents the false-positive rate (i.e., rate of an undesirable outcome),

an ROC curve that ascends quickly to 100% on the Y-axis (sensitivity) while

moving only slightly away from the origin on the X-axis (1-specificity) represents
a highly desirable diagnostic test. In this sense, the ROC curve could be used to not

only evaluate a diagnostic test but also to compare between two diagnostic tests.

Readers interested in learning more about the practical aspects of analyzing ROC

curves should read the book by Gonen (2007).

3.3 Positive and Negative Predictive Value

The performance of a diagnostic test is measured by its ability to give correct

diagnoses among a sample of “cases” (with the condition of interest) and a sample

of “controls” (without the condition). When a diagnostic test is used in practice, a

critical question is how to interpret its result. Does a positive result provide

definitive evidence for the presence of a condition? If the test returns a negative

result, can one confidently rule out the presence of the condition?

Table 3.1 Results from diagnosing an MI based on CK � 80 IU

Myocardial infarction

Present Absent

Diagnosis of an MI by CK MI present (CK � 80 IU) 215 (a) 16 (b)

MI absent (CK < 80 IU) 15 (c) 114 (d)

Total 230 (a + c) 130 (b + d)

Table 3.2 Results from diagnosing an MI based on CK � 40 IU

Myocardial infarction

Present Absent

Diagnosis by CK Present (CK � 40 IU) 228 43

Absent (CK < 40 IU) 2 87

Total 230 130
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The above questions can be answered by the positive predictive value (PPV) and

the negative predictive value (NPV) of the test. In the example of using CK� 80 IU

to diagnose anMI, the PPV is the probability of having had anMI when CK� 80 IU.

The NPV is the probability of not having had an MI when CK < 80 IU. These

probabilities can be derived from Bayes’ rule as shown in (3.1) below:

PPV¼ Pr MIjCK� 80ð Þ ¼ Pr CK� 80jMIð Þ�Pr MIð Þ
Pr CK� 80ð Þ

¼ Pr CK� 80jMIð Þ�Pr MIð Þ
Pr CK� 80jMIð Þ�Pr MIð ÞþPr CK� 80jNoMIð Þ�Pr NoMIð Þ

¼ Sensitivity�Pr MIð Þ
Sensitivity�Pr MIð Þþ 1�Specificityð Þ� 1�Pr MIð Þð Þ

ð3:1Þ

For a validated diagnostic test, we know its sensitivity and specificity. The one

new term in (3.1) is the probability of having an MI, i.e., the prevalence of MI in an

underlying population. The Bayes’ rule starts with the population prevalence and

updates the population-based estimate with the test result about an individual.

In Table 3.3, we give the PPV for various combinations of sensitivity and

specificity and MI prevalence. We include the two sets of sensitivity and specificity

from choosing 40 IU and 80 IU as the cutoff. We also include additional sets of

(0.80, 0.80), (0.80, 0.90), (0.90, 0.90), and (0.90, 0.95).

Table 3.3 shows some interesting trends. First, the PPV can be quite low when

the prevalence is low. Second, the PPV is highly dependent on the prevalence rate.

As the prevalence increases, the PPV also increases. Third, the PPV increases as

sensitivity increases. Similarly, the PPV increases as specificity increases.

Similarly, one can derive the NPV through Bayes’ rule. Using the MI–CK

example, the NPV is given in (3.2):

NPV ¼ Specificity� 1� Pr MIð Þð Þ
1� Sensitivityð Þ � Pr MIð Þ þ Specificity� 1� Pr MIð Þð Þ ð3:2Þ

We provide, in Table 3.4, the NPV for the same choices of sensitivity, specific-

ity, and prevalence as in Table 3.3. The NPV is nearly 100% for all sensitivity and

Table 3.3 PPV of a diagnostic test with various combinations of sensitivity and specificity and

the prevalence rate

Sensitivity/specificity

Prevalence of the condition

0.05 0.10 0.15 0.20 0.25 0.30

0.99/0.67 0.14 0.25 0.35 0.43 0.50 0.56

0.93/0.88 0.29 0.46 0.58 0.66 0.72 0.77

0.80/0.80 0.17 0.31 0.41 0.50 0.57 0.63

0.80/0.90 0.30 0.47 0.59 0.67 0.73 0.77

0.90/0.90 0.32 0.50 0.61 0.69 0.75 0.79

0.90/0.95 0.49 0.67 0.76 0.82 0.86 0.89
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specificity combinations considered in Table 3.4 when prevalence is 5%. Like the

PPV, the NPV increases with sensitivity and specificity. Unlike the PPV, the NPV

decreases as the prevalence rate increases.

3.4 Value of a Follow-Up Test

Table 3.3 shows that for a condition with a 10% prevalence rate in a pertinent

population, a positive diagnosis from a test with a sensitivity of 93% and a

specificity of 88% will be right about 46% of the time. This means that approxi-

mately half of the time a positive result by this test in the underlying population

represents a false-positive diagnosis. When the false-positive rate is this high, it will

be logical to employ a second test, perhaps one with a high performance quality, to

confirm the positive finding before taking any important action. This logic has led

healthcare professionals to follow up a positive skin test for tuberculosis with a

chest x-ray and a suspicious mammogram with another mammogram or perhaps a

biopsy.

The value of a follow-up test can be assessed quantitatively using the PPV

concept. Assume that in the above example, a second test with a sensitivity of

90% and a specificity of 95% is performed following a positive result from the first

test. The PPV of the second test can be calculated using the expression in (3.1) with

46% as the prevalence rate. This new prevalence rate is the PPV of the first test. The

PPV of the second test can be found to be 94% as shown below. This is a much

higher figure than the previous 46%:

PPV ¼ 0:90� 0:46

0:90� 0:46þ 1� 0:95ð Þ � 1� 0:46ð Þ ¼ 0:94

If one employs a third test with sensitivity equal to 90% and specificity equal to

95% after two consecutive positive tests, then the PPV of the third test is 99.6%. In

other words, three consecutive positive results can almost assure that the positive

finding is true.

Table 3.4 NPV of a diagnostic test with various combinations of sensitivity and specificity and

the prevalence rate

Sensitivity/specificity

Prevalence of the condition

0.05 0.10 0.15 0.20 0.25 0.30

0.99/0.67 1.00 1.00 1.00 1.00 1.00 0.99

0.93/0.88 1.00 0.99 0.99 0.98 0.97 0.97

0.80/0.80 0.99 0.97 0.96 0.94 0.92 0.90

0.80/0.90 0.99 0.98 0.96 0.95 0.93 0.91

0.90/0.90 0.99 0.99 0.98 0.97 0.96 0.95

0.90/0.95 0.99 0.99 0.98 0.97 0.97 0.96
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In the above example, if the first test returns a negative result, an individual

could feel 99% confident that the condition is absent. When this happens, there is

generally no need to employ a second test to confirm the negative finding.

3.5 When Two Tests Are Being Done Simultaneously

In Sect. 3.4, we assume that tests were performed sequentially. What can we say

about the quality of the conclusion if we apply two tests independently, but

simultaneously, and declare a positive finding only if both tests return a positive

result? For now, we assume that the rule will declare a negative finding if at least

one test produces a negative result.

We will first calculate the sensitivity and specificity of the decision rule. Since

the rule requires both tests to be positive, the sensitivity is the product of the two

individual sensitivity rates, i.e., 0.93� 0.90¼ 0.84. Next, specificity is the proba-

bility that at least one test gives a negative result when the condition is absent. This

probability is 1� 1� 0:88ð Þ� 1� 0:95ð Þ¼0:99: With a 10% prevalence rate, we

can find the PPV and NPV of the new decision rule to be:

PPV ¼ 0:84� 0:10

0:84� 0:10þ 1� 0:99ð Þ � 0:90
¼ 0:90

NPV ¼ 0:99� 0:90

1� 0:84ð Þ � 0:10þ 0:99� 0:90
¼ 0:98

It is interesting to note that both the PPV and the NPV of this decision rule are

less than their counterparts of the sequential strategy in Sect. 3.3. In addition to an

inferior performance, the simultaneous rule uses more resources on most occasions

because it always starts with two tests.

A slight modification of the above rule is to declare a positive finding if both tests

return a positive result and declare a negative finding if both tests return a negative

result. This decision rule draws no conclusion when the two tests provide discordant

results. When this happens, a third test is often performed to break the tie.

Since the rule requires concordant results to make a diagnosis, the sensitivity is

still 0.84. The specificity is now 0.88� 0.95¼ 0.84. The performance of this

modified decision rule is described in Table 3.5.

38 3 Characteristics of a Diagnostic Test



Using Table 3.5, we can calculate the PPV and NPV of the modified rule:

PPV¼ Pr DiseasejPositive outcome from ruleð Þ

¼ Pr PositivejDiseaseð Þ� 0:10

Pr PositivejDiseaseð Þ� 0:10þPr PositivejNo diseaseð Þ� 0:90

¼ 0:84� 0:10

0:84� 0:10þ 0:01� 0:90
¼ 0:90

NPV ¼ PrðNo diseasejNegative outcome from ruleÞ

¼ PrðNegativejNo DiseaseÞ � 0:90

PrðNegativejdiseaseÞ � 0:10þ PrðNegativejNo diseaseÞ � 0:90

¼ 0:84� 0:90

0:01� 0:10þ 0:84� 0:90
� 1:00

Because the rule requires two negative results to give a negative conclusion, the

NPV of the modified rule is higher than that of the first rule in this section. As noted

earlier, the modified rule allows the possibility of no conclusion. The probability of

this outcome is approximately 15% whether the disease (condition) is present or

absent.

3.6 Summary

In this chapter, we examine the performance of a diagnostic test and the test’s
predictive value. A diagnosis test is essentially a decision rule that uses data to

make a (generally) binary prediction. The rule can give rise to erroneous conclu-

sions. Our ability to quantify the likelihood of these errors allows us to better

formulate rules and choose among them.

We have illustrated in this chapter how the predictive value of a diagnostic test

depends on the prevalence of the condition the test is set to diagnose. When the

prevalence is extremely low (e.g., <1%), the positive predictive value of a diag-

nostic test is typically very low. This is why it is not recommended to conduct HIV

screening in people who are in committed monogamous relationships and who are

not intravenous illicit drug users.

Table 3.5 Probabilities of

various outcomes from a rule

that requires concordant

results from two simultaneous

tests to make either a positive

or negative decision

True disease state

Yes No

Rule outcome Positive 0.84 0.01

Indecision 0.15 0.15

Negative 0.01 0.84
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Although we did not discuss reproducibility in this chapter, reproducibility is an

important requirement of a diagnostic test. For a diagnostic test, reproducibility

means that the test will produce similar results upon rerunning the sample. This

requires the assay to have sufficient precision and be free from a systematic drift

from the truth. For this reason, a researcher often needs to recalibrate their assay by

running control samples between separate batch runs of real samples.

We want to point out that reproducibility described above is different from

taking readings from different samples of the same individual. In the latter case,

the biologic variability existing among samples from the same individual could

result in noticeably different results. A common example is the circulating choles-

terol in plasma.
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Chapter 4

The Parallel Between Clinical Trials

and Diagnostic Tests

Using preliminary research to approve new treatments has
high costs in morbidity and healthcare dollars.

British Medical Journal, November 23, 2015

4.1 Introduction

During the clinical development of a new drug, a sponsor conducts a series of

clinical trials to assess the safety and efficacy of the drug. We discussed the nature

and objectives of these trials in Chap. 1. Although designed differently, these trials

all aim to understand the new drug better.

At the end of Phase 3 testing, the sponsor needs to decide, based on the collective

evidence, whether the drug meets prespecified safety and efficacy requirements to

warrant a new drug application (or a biologic license application in the case of a

biologic). Once an application is filed, regulators will review and decide, based on

results submitted from the sponsor, whether the drug has a favorable benefit-risk

profile to be worthy of commercialization. A prerequisite for approval is a high

level of confidence that the drug is beneficial, when balancing its risks against its

benefits.

The end of Phase 3 is not the only time when a sponsor needs to make a decision

about the likely effect of a new drug. As development progresses, a sponsor needs

to decide whether to move the drug to the next phase of testing. More than that, at

the end of each trial, a sponsor needs to assimilate the new information with

existing knowledge to decide on the next step. This may include conducting a

trial similar to the one just completed but with certain aspects of the trial modified.

Chapter 2 describes the Frequentist decision-making framework. For clinical

trials, the framework is often formulated in terms of choosing between two hypoth-

eses, the null hypothesis and the alternative hypothesis. For a superiority trial, the

null hypothesis states that the new drug is not effective (i.e., the absence of an

effect), and the alternative hypothesis states that the drug is effective (i.e., the

presence of an effect). A trial is designed so that the ensuing test has a desired

power to reject the null hypothesis when the drug exhibits a certain level of

effectiveness. Occasionally, the decision rule will make an error in rejecting the
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null hypothesis, but the probability of this error is controlled at a prespecified level.

The latter is called the Type I error rate (see Chap. 2).

Since a major objective of all efficacy trials in drug development is to ascertain

the effect of a new drug, each trial acts like a diagnostic test with a goal to detect

(or diagnose) the presence of a clinically meaningful drug effect. Consider using the

trial results to test the simple null hypothesis H0: treatment effect ¼ 0 versus a

simple alternative hypothesis HA: treatment effect ¼ a prespecified clinically

meaningful value. Treating the hypothesis test like a diagnostic test, the power of

a hypothesis test in the Frequentist decision-making framework is the sensitivity of

the diagnostic test and the Type I error rate takes the place of 1-specificity.

The above analogy between clinical trials and diagnostic tests offers us the

opportunity to apply properties pertaining to diagnostic tests in Chap. 3 to clinical

trials. Building on the discussion in Chap. 3, we will discuss first why replication is

such a critically important concept in drug development in this chapter. We will

then show why replication is not as easy as some might hope. Finally, we will

reiterate the difference between statistical power and the probability of getting a

positive trial. This last point becomes more important as a new drug moves through

the various development stages as we will illustrate later in Chap. 9.

4.2 Why Replication Is Necessary

No isolated experiment, however significant in itself, can suffice for the experimental

demonstration of any natural phenomenon; for the “one chance in a million” will undoubt-

edly occur, with no less and no more than its appropriate frequency, however surprised we

may be that it should occur to us. Sir R. A. Fisher

Zuckerman et al. (2015) discussed the twenty-first Century Cures Act, a proposal

that was eventually signed into law by the president of the United States on

December 13, 2016 to jump-start the process of finding new cures for the thousands

of diseases that lacked effective treatments. Zuckerman et al. questioned whether

the bill, if passed and signed into law, would increase the availability of new

medical products that do not necessarily work. They used Alzheimer’s disease as

an example. They examined data from three Alzheimer’s drugs (semagacestat,

bapineuzumab, and latrepirdine) that failed Phase 3 testing between 2010 and

2015. They singled out Alzheimer’s drugs because Alzheimer’s disease is a disorder
with a large unmet medical need. At the time this book went into publishing

(May 2017), there had been no new Alzheimer’s drug on the market since

memantine was last approved in 2003. Besides, all the available Alzheimer’s
drugs approved as of May 2017 (a total of four) treat only symptoms associated

with the disease and do not delay disease progression.

The Twenty-first Century Cures Act proposes to allow drug approval based on

Phase 2 trial data for serious or life-threatening diseases. While this has become a

practice for cancer drugs, the Act proposes to extend this provision to other thera-

peutic areas also. Citing the three consecutive late-stage failures of the Alzheimer’s

42 4 The Parallel Between Clinical Trials and Diagnostic Tests

http://dx.doi.org/10.1007/978-3-319-46076-5_2
http://dx.doi.org/10.1007/978-3-319-46076-5_3
http://dx.doi.org/10.1007/978-3-319-46076-5_3
http://dx.doi.org/10.1007/978-3-319-46076-5_9


drugs mentioned above, Zuckerman et al. considered this proposal problematic. All

three aforementioned drugs had promising results in small Phase 2 trials but failed to

replicate the results in large Phase 3 trials.

Zuckerman et al. are not alone. Kesselheim et al. (2015) examined the impact of

the proposed Act on the approval of drugs intended to treat the central nervous

system (CNS). They examined the failure rates of 379 CNS drugs that entered into

Phase 1 trials between 1990 and 2012. They found that CNS drugs were signifi-

cantly more likely than non-CNS drugs to fail at the Phase 3 stage. They concluded

that the lack of efficacy of CNS drugs in general reinforced the importance of

conducting Phase 3 trials when it was ethically acceptable to do so.

Other authors have commented on the difficulty in replicating large treatment

effects observed in earlier trials. Pereira et al. (2012) conducted an empirical

evaluation to investigate when very large treatment effects were reported and

how often they were replicated in subsequent trials of the same comparison,

disease, and outcome. They concluded that most large treatment effects were

observed in small studies and pertaining to nonfatal outcomes, and the observed

effect sizes became typically much smaller when additional trials were performed.

They concluded that well-validated large effects were uncommon.

It is easy to understand the difficulty in replicating an earlier positive result using

the diagnostic test analogy. Our first efficacy trial is usually a small proof-of-

concept (POC) trial. This trial often has lower sensitivity or specificity or both.

This is by design because of the small sample size. For illustration, we will consider

a test with 80% sensitivity and 90% specificity. This corresponds to a Type I error

rate of 10% and a power of 80%.

Table 3.3 shows the positive predictive value (PPV) of the test under various

assumed prevalence rates of the condition to be diagnosed. In the case of a POC

trial, the condition to diagnose is the presence of a clinically meaningful drug effect.

The PPV of the POC trial gives the likelihood that the new drug is sufficiently

effective if the POC trial yields a positive result. As we have learned in Chap. 3,

the PPV is highly dependent on the “prevalence rate” of the condition to be

diagnosed. In the context of drug development, we can estimate this prevalence

rate by the success rate of drugs for the same disease. If the new drug is from a class

of drugs with a lot of existing information on its members, we can use the success

rate of drugs in the same class as an estimate for the prevalence rate.

For convenience, we use 10% as the prevalence (success) rate. According to

Table 3.3, the PPV of the POC trial is 47%. In other words, the chance that the drug

is effective (i.e., having a clinically meaningful effect) if the trial returns a positive

result could be less than 50%. For diseases with very few prior therapeutic suc-

cesses such as the Alzheimer’s disease, the overall success rate could be much

lower than 10%. A 5% overall success rate would result in a 30% PPV for the POC

trial.

The above results show why we need to be particularly cautious when the overall

success rate among drugs intended for a specific disease is very low. This is because

what we have observed in the small POC trial could have actually come from an

ineffective drug. Unfortunately, sponsors often behave in the opposite way. When a
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sponsor observes promising results in a POC trial while rivals fail in their attempts,

the sponsor often feels ecstatic and decides to go straight into Phase 3, convinced

that they have solved the biologic secrets that have eluded their competitors.

If the positive POC trial is followed with another trial, the second trial will have

a much higher PPV as illustrated in Chap. 3. In the current example, assume that the

second trial has a sensitivity of 80% (80% power) and a specificity of 95% (5%

Type I error rate). With a prevalence rate now set at 47%, the second trial will have

a PPV of 93%.

This example shows the necessity of replicating an early positive finding

because replication can greatly enhance our confidence that a drug is effective. A

high confidence that a drug is effective is important to both the developer and the

regulators.

4.3 Why Replication Is Hard

The example above did not state how likely a positive finding can be replicated.

Because our ability to replicate a previous positive finding seems to be limited,

researchers have been interested in estimating the probability of a successful

replication. One way to phrase the question is—suppose the treatment effect was

found significant at the one-sided 2.5% level and we plan to conduct an identical
study with the same protocol (with the sample size)—what is the probability that we

will again have a significant result, i.e., have a one-sided P-value <0.025?

4.3.1 Conditional Replication Probability

For the remainder of this chapter, we assume that a drug is being compared with a

placebo and the efficacy endpoint follows a Normal distribution with a known and

common standard deviation in the two treatment groups. Higher values on the

efficacy endpoint represent a more desirable outcome. P-value refers to one-sided

P-value when the context is clear. As with other chapters in this book, we will work
with a one-sided significance level in this chapter for a superiority trial. For a

confirmatory trial that requires a two-sided significance level of 5%, we will work

with a one-sided significance level of 2.5%.

One approach, taken by O’Neill (1997) and Hung and O’Neill (2003), is to first

estimate the treatment effect size based on the P-value from the first trial. Com-

puting the estimated treatment effect from the P-value is possible because there is a
one-to-one correspondence between the two for a given sample size n per group.

Let �X drug and �X placebo denote the sample mean response in the drug and placebo

group, D ¼ �X drug � �X placebo, and d denote an observed value for D. The one-sided
P-value is related to the observed treatment effect size d/σ through the relationship
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in (4.1). In (4.1), Φ(�) is the cumulative distribution of the standard Normal

distribution. In (4.1) and other equations in this chapter, P is short for the

one-sided P-value from a completed study. When we need to use P for P-value
(again, one sided) from a future study, we will use the notation P (new study):

P ¼ 1� Φ
d

σ

ffiffiffi
n

2

r� �
ð4:1Þ

From (4.1), one can derive the observed effect size as a function of the P-value
and the sample size as in (4.2). In (4.2), Φ�1(�) is the inverse function of Φ(�):

d

σ
¼ Φ�1 1� Pð Þ �

ffiffiffi
2

n

r
ð4:2Þ

O’Neill (1997) and Hung and O’Neill (2003) calculated the replication proba-

bility by assuming that the true effect size in the second trial was the same as that

observed in the first study. For convenience, we will call the probability, calculated

under this condition and given below, the conditional replication probability:

Conditional replication probability

¼ Pr P new studyð Þ < 0:025 j true treatment effect ¼ d

σ

� �

One can think of the conditional replication probability as the value of the power

function for testing H0: treatment effect ¼ 0 versus HA: treatment effect > 0,

evaluated at the effect size d/σ. The result is given in (4.3). In (4.3), 1.96 is the

upper 2.5th percentile of the standard Normal distribution, which is the critical

value that the standardized test statistic needs to exceed in order to reject the null

hypothesis of no treatment effect at the one-sided significance level of 2.5%:

Conditional replication probability¼ 1�Φ 1:96� d

σ

ffiffiffi
n

2

r� �

¼ 1�Φ 1:96�Φ�1 1�Pð Þ� � ð4:3Þ

Suppose that the first study has 64 patients per group in a two-arm parallel-group

study. This sample size has 81% power to detect an effect size of 0.5 at a one-sided

2.5% significance level. Table 4.1 gives the conditional replication probability for

various one-sided P-values for this sample size. We would like to point out that

while the estimated effect size d/σ is a function of the sample size, the conditional

replication probability in (4.3) is not.

A striking result in Table 4.1 is the 50% conditional replication probability if the

result from the first trial is just barely significant. The conditional replication

probability increases as the P-value from the first trial decreases.
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The probabilities in Table 4.1 were calculated assuming that the true treatment

effect in the second trial was the same as the observed treatment effect in the first

trial. While the observed treatment effect is a consistent estimate for the true

treatment effect, this estimate has an inherent sampling variability. There is no

guarantee that the true effect size in the second trial will be equal to the observed

effect size from the first trial, especially if the sample size in the first trial is small.

The need to incorporate the uncertainty in the estimate into consideration prompted

the idea of an average replication probability that will be described in the next

section.

4.3.2 Average Replication Probability

Chuang-Stein (2006) introduced the idea of averaging the power function over the

likely values of the treatment effect, using the likelihood of these values as the weight.

Consider the example in the previous section. Instead of assuming the observed

treatment effect d to be the true treatment effect in the new trial, a more realistic

approach is to consider a range of possible true treatment effect, based on our

knowledge from the first trial. In the case of a continuous variable, one could consider

a Normal distribution like the one in Fig. 4.1 to describe the range as well as the

likelihood of the treatment effect.

So, instead of calculating the probability of a significant result conditioning on

the observed treatment effect being the true effect, one could first calculate the

probability at any plausible value and then derive a weighted average of these

probabilities using the likelihood of the plausible values as weight. This process,

formulated mathematically in (4.4), produces an average of the conditional repli-

cation probabilities. We will call this the average replication probability.

Table 4.1 Conditional replication probability conditioning on the true effect size being the same

as that observed in the first trial

One-sided P-value in the

first trial

Estimated treatment effect size (d/σ)
from the first trial

Conditional replication

probability

0.0001 0.657 0.961

0.0005 0.582 0.908

0.000625 0.570 0.897

0.001 0.546 0.871

0.0025 0.496 0.802

0.005 0.455 0.731

0.01 0.411 0.643

0.025 0.346 0.500
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Average replication probability ¼
Z

Pr P newstudyð Þ < 0:025
D

σ

����
� �

f Dð ÞdD

ð4:4Þ

Chuang-Stein (2006) proposed to useN d; 2nσ
2

� �
to describe the uncertainty in our

knowledge regarding the true treatment effect. This choice is intuitive because this

is the sampling distribution for the observed treatment effect.

When the difference in the mean response in the two treatment groups follows a

Normal distribution, the assumption of a Normal distribution N d; 2nσ
2

� �
to represent

uncertainty about the location parameter (i.e., μdrug� μplacebo, difference in the popu-

lation mean response) results in a closed-form expression for (4.4). The closed-form

expression is derived from the fact that the unconditional distribution of
�X drug � �X placebo is N d; 4nσ

2
� �

: The inclusion of the uncertainty in the treatment effect

doubles the variance of the distribution of �X drug � �X placebo. Using this distribution, one

can calculate the unconditional probabilityPr �Xdrug � �Xplacebo > 1:96�
ffiffi
2
n

q
σ

� 	
, yield-

ing the result in (4.5):

Average replication probability¼ 1�Φ
1ffiffiffi
2

p 1:96� d

σ

ffiffiffi
n

2

r� �� �

¼ 1�Φ
1ffiffiffi
2

p 1:96�Φ�1 1�Pð Þ� �� � ð4:5Þ

The difference between (4.3) and (4.5) is the extra term1=
ffiffiffi
2

p
inside the function

Φ(�) in (4.5). When the first trial produces a significant treatment effect, the term

inside the cumulative function Φ(�) is negative. The term 1/ √ 2 shrinks the absolute
value of the term, leading to a larger value forΦ(�) and a smaller average replication

probability. Like the conditional replication probability, the average replication

Fig. 4.1 The range of

likely values for the true

effect and their likelihood

approximated by a normal

distribution
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probability does not depend on n. This is because all the information about the first

trial is conveyed through the P-value when σ is assumed known.

For our example, the average replication probabilities are given in Table 4.2. For

comparison purpose, we include the conditional replication probabilities in

Table 4.2 also.

4.3.3 When the Second Trial Has a Different Sample Size

The calculations in Sects. 4.3.1 and 4.3.2 assume that the second trial has the same

sample size as the first one. But, this does not need to be the case. In drug

development, a sponsor may want to replicate an earlier positive efficacy result

with a larger study (e.g., using the same protocol and same investigators, but a

different sample size). This is similar to employing a diagnostic test with a higher

quality to confirm an earlier positive finding. In addition, a larger trial may offer a

better chance to observe adverse drug reactions.

Suppose that the first study has m patients per group and the second study

plans to enroll n patients per group. The unconditional distribution of
�X drug � �X placebo is now N d; 2

n þ 2
m

� �
σ2

� �
: Under this distribution, the probability

Pr �Xdrug � �Xplacebo > 1:96�
ffiffi
2
n

q
σ

� 	
is given by the right hand side of (4.6):

Average replication probability

¼ 1�Φ

ffiffiffiffiffiffiffiffiffiffiffiffi
n

mþ n

r
1:96�

ffiffiffiffi
m

n

r
� Φ�1 1� Pð Þ

� �� �
ð4:6Þ

Returning to our earlier example, suppose a team is choosing between 100 and

200 patients per group in the second trial to replicate a previous positive finding

based on 64 patients per group. The team wonders what the average replication

probability would be. The team could substitute 64 for m and 100 (200) for n in

(4.6) and arrive at the results in Table 4.3.

Table 4.2 Average replication probability for various one-sided P-values

One-sided P-value in the

first trial

Conditional replication

probability

Average replication

probability

0.0001 0.961 0.893

0.0005 0.908 0.827

0.000625 0.897 0.815

0.001 0.871 0.788

0.0025 0.802 0.725

0.005 0.731 0.668

0.01 0.643 0.602

0.025 0.500 0.500
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The average replication probability increases as the sample size for the new trial

increases. This is easy to understand since the power of a hypothesis test increases

with sample size and the average replication probability is just a weighted average

of the statistical power at possible values of the treatment effect.

We would like to remind our readers that we work on the P-value scale in this

chapter. For an observed treatment effect in a smaller study to produce the same

P-value as that in a larger study, the observed treatment effect in the smaller

study has to be numerically larger (assuming that larger values are more desir-

able). This can be seen from (4.2). This is different from the situation when we

work on the treatment effect scale and hope to replicate the treatment effect

observed in an earlier trial.

4.4 Differentiate Between Statistical Power

and the Probability of a Successful Trial

Assuming that the success of a trial is defined by having a P-value smaller than the

prespecified significance level, the average replication probability can be regarded

as the probability of getting a successful trial. This probability takes into account

our knowledge about the effect of a new treatment and the uncertainty in our

knowledge. While the calculation of the average replication probability builds on

the concept of statistical power, it differs from statistical power because the average

replication probability does not condition on a specific treatment effect.

As the development program progresses, we will have more information about a

new drug. The information could be integrated to convey our cumulative knowl-

edge about the drug. This integrated knowledge could take the place of the

distribution f(�) in (4.4).

Another difference between statistical power and the success probability is that

we can make the statistical power close to 100% by simply increasing the sample

size. By comparison, if evidence about a new drug is scanty or prior evidence

Table 4.3 Average probability of replicating an earlier positive finding in a new trial with two

possible choices of sample size per group

One-sided P-value
in the first trial

Average replication

probability, n ¼ 100

Average replication

probability, n ¼ 200

0.0001 0.953 0.988

0.0005 0.911 0.971

0.000625 0.902 0.967

0.001 0.883 0.958

0.0025 0.833 0.930

0.005 0.784 0.899

0.01 0.723 0.855

0.025 0.620 0.771
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suggests a very weak treatment effect, then the success probability will be low even

if the next trial has a very large sample size. In this regard, the success probability

offers useful information beyond statistical power, especially when the develop-

ment has moved to the late stage. We will revisit this point in Chap. 9 and

particularly in Sect. 9.3.

4.5 Summary

Replication is a cornerstone for establishing credible scientific evidence. This is

part of the reason why the US Food and Drug Administration requires at least two

adequate and well-controlled studies, each convincing on its own, to establish the

effectiveness of a new pharmaceutical product.

In this chapter, we examine replication from different perspectives. From

our experience, we have found the analogy between clinical trials at the various

stages of a product development and diagnostic tests with different precision very

useful. It is easy to communicate to nonstatistician colleagues the critical role of

replication by using this analogy. This analogy is not new. It was used in a paper

by Lee and Zelen (2000) at the turn of the century. Despite its early use, the

analogy does not appear to have been broadly picked up by statisticians or drug

developers.

Chuang-Stein and Kirby (2014) encouraged statisticians to remain cool-headed

in the presence of overwhelming positive but isolated trial results. They also

encouraged statisticians to help dispel the myth surrounding the shrinking or

disappearing treatment effect to nonstatistician colleagues. The latter is the focus

of Chap. 12.

For simplicity, we dichotomized a drug to having a clinically meaningful

treatment effect or not. This simplification reflects the binary outcome of the

drug approval process. At times, the threshold for a meaningful treatment effect

may be determined by an effect necessary to make the drug commercially com-

petitive. Despite the implicit assumption of a threshold for the dichotomization, we

did not incorporate any requirement on the size of the estimated treatment effect

in any replication probability calculation in this chapter. We will discuss the

inclusion of this additional requirement as part of the definition of a successful

trial in Sect. 9.3.
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Chapter 5

Incorporating Information from Completed

Trials in Future Trial Planning

Data! Data! Data! I can’t make bricks without clay.
Sir Arthur Conan Doyle

5.1 Introduction

In Chap. 4 we looked at calculating the average replication probability by averaging

the conditional replication probability for a given treatment effect using a weight

which reflects the likelihood of the given treatment effect. In this chapter we

consider the Bayesian approach to inference which allows distributions for

unknown parameters such as a parameter representing a treatment effect. In this

framework the average replication probability with likelihood replaced by a prior

distribution for the treatment effect becomes a probability known as an assurance

probability (O’Hagan et al. 2005). We consider how a prior distribution may be

obtained from the results of a previous trial and used to calculate an assurance

probability for a new trial.

We proceed to look at various closed-form expressions for assurance probabili-

ties where the probability of interest is the probability of a statistically significant

result at some prespecified significance level. When a closed-form expression for an

assurance calculation is not available, we illustrate how a simulation approach can

be used to carry out the calculation. We also consider assurance calculations where,

in addition to requiring that a null hypothesis is rejected, a second requirement is

placed on the observed treatment effect.

We assume that for a treatment to be successful, the true treatment effect needs

to be greater than some minimum value. We go on to consider the PPV and NPV of

a new trial using a prior distribution for the treatment effect. These quantities give

summaries of the worth of a positive or negative result from a planned trial with

respect to correctly identifying whether the true treatment effect is at least as big as

desired.

It may be the case that there are a number of previous clinical trials which can be

considered similar to a planned trial. If this is the case, then a Bayesian hierarchical
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model can be used to derive a meta-analytic predictive prior (Schmidli et al. 2014).

We briefly outline this approach.

There are times when it may not be possible or appropriate to use the results from

previous trials of the same drug to derive a prior distribution for an unknown

treatment effect. In such cases, we need to consider alternative approaches. For

example, for a Phase 2 proof-of-concept study of an unprecedented compound,

one alternative is to consider using a prior distribution representing the treatment

effect sizes observed in previous Phase 2 proof-of-concept studies for other unprec-

edented compounds. Another alternative is to elicit a prior distribution from

experts.

For Phase 2b and Phase 3 trials, other alternative approaches include using PK/

PD modeling and/or model-based meta-analysis (MBMA) to obtain a plausible

prior distribution for the treatment effect expected in Phase 2b or Phase 3 trials. We

include two examples of an MBMA using a PK/PD model in this chapter.

5.2 The Bayesian Approach to Inference

The Bayesian approach to inference enables relevant information to be included in

an analysis. This is done by using prior distributions which represent existing

understanding or beliefs for any unknown parameters (Hobbs and Carlin 2008).

Inference is conducted on the posterior distribution for the parameters given the

data using Bayes’ rule. Using θ to denote the unknown parameters and y a vector of
data, Bayes’ rule generates the posterior distribution of θ given y, i.e., p(θ|y) as
shown in (5.1):

p θjyð Þ ¼ p θ; yð Þ
p yð Þ ¼ p yjθð Þp θð ÞR

p yjθð Þp θð Þdθ ð5:1Þ

The posterior distribution p θjyð Þ is equal to the likelihood of the data, p(y| θ),
multiplied by the prior distribution for the parameters, p(θ), and divided by the

probability of the data. Thus prior information about the parameters is combined

with data to produce an updated distribution for the parameters. Such a posterior

distribution may then be used as a prior distribution with future data. The posterior

distribution for the parameters can be used to calculate values and probabilities of

interest for the parameters.

The integral in (5.1) and further required integrals may be difficult to solve

directly but can be evaluated numerically using modern Markov chain Monte Carlo

methods (Lunn et al. 2013) as programmed in statistics packages such asWinBUGS

(WinBUGS) and OpenBUGS (OpenBUGS) and in the SAS procedure PROC

MCMC (SAS 2013).
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5.3 Bayesian Average Power and Assurance

O’Hagan et al. (2005) defined assurance asZ
P Rjθð Þp θð Þdθ ð5:2Þ

where R is an event of interest, such as rejecting the null hypothesis; p(R| θ) is the
probability of R given θ; and p(θ) is the prior probability distribution for θ. If we let
R represent rejection of a null hypothesis, then the assurance probability is the

expected (or average) power where the averaging is with respect to the prior

distribution. The average replication probability described in Chap. 4 is a special

case of assurance where average is with respect to the sampling distribution of bθ
obtained from the previous trial.

Thus, if we have a prior distribution, we can use (5.2) to calculate the expected

power for a new trial with a particular trial design. The advantage of calculating the

expected power, as summarized in Chap. 4, is that given a relevant prior, the

assurance probability takes account of uncertainty in the treatment effect to give

a more realistic assessment of the probability of rejecting the null hypothesis.

Suppose there is a previous trial with data that can be considered exchangeable

with the data to be produced from a planned trial, then we can use the results from

the previous trial to generate a prior distribution for the treatment effect for the

planned trial. Informally, exchangeable here means that the data to be obtained in

the planned trial are expected to be similar to that obtained in the previous trial. One

way to generate a prior distribution using data from a previous trial is to start with a

so-called vague, objective, or reference prior and to combine this prior with the data

from the trial using Bayes’ rule as described above. Such a prior is only weakly

informative about the treatment effect so that the posterior distribution obtained is

dominated by the data from the trial. The posterior distribution then becomes the

prior distribution for the next trial and can be used in a calculation of an assurance

probability.

As an example, we consider the mean of a Normal distribution with known

variance. If we initially start with a Normal prior distribution with mean μ0 and

variance τ20 and combine this with the likelihood for n independent observations

y1 , . . . yn from a Normal distribution with mean θ and known variance σ2, the
posterior distribution is Normal with mean

μn ¼
1

τ20
μ0 þ

n
σ2 �y

1
τ2
0

þ n
σ2

ð5:3Þ
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and variance τ2n where

1

τ2n
¼ 1

τ20
þ n

σ2
ð5:4Þ

and �y is the mean of {yi, i ¼ 1,. . .,n}. Letting the prior precision 1
τ2
0

become small

corresponds to the use of a vague prior distribution, and the posterior distribution

then tends to a Normal distribution with mean �y and variance σ2

n . This distribution is

the same as the sampling distribution of the mean from a Normal distribution with a

known variance.

Trying to define a vague prior is an old problem in statistics, and some care needs

to be taken to ensure that the prior used is not more informative than desired. For

many common situations, suitable vague priors are readily available (Lunn et al.

2013). When there are a number of previous trials which can be considered to be

similar to the planned trial, we can alternatively consider the use of a Bayesian

hierarchical model to generate a suitable prior distribution. We will return to this

topic later in this chapter.

5.4 Closed-Form Expressions for Assurance

and the Simulation Approach

One closed-form expression for the assurance probability for rejecting the null

hypothesis

H0 : μdrug � μplacebo � 0

versus the one-sided alternative

HA: μdrug � μplacebo > 0

using a critical value for a one-sided test has already been given in Chap. 4 for the

case where the difference in sample mean response in two treatment groups follows

a Normal distribution and a Normal “prior”N d; 2σ
2

n

� �
is used. Assuming a one-sided

significance level of α, the assurance probability can be written slightly more

generally as in (5.5). For a confirmatory trial, α typically takes the value of 0.025:

P �Xdrug � �Xplacebo >
ffiffiffi
τ

p
Zα

� � ¼ 1� Φ

ffiffiffi
τ

p
Zα � dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ þ 2

nσ
2

q
0
B@

1
CA ð5:5Þ
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In (5.5), τ ¼ σ2

ndrug
þ σ2

nplacebo
is the variance for the difference in sample means for the

planned trial when ndrug and nplacebo subjects receive drug and placebo, respectively.
This result is similar to that presented in Eqs. (4.5) and (4.6).

One can compare the expression in Eq. (5.5) to the power function for declaring

a significant treatment effect when the true effect is given by d in (5.6):

Power treatment effect is dð Þ ¼ 1�Φ

ffiffiffi
τ

p
Zα � dffiffiffi
τ

p
� �

ð5:6Þ

When
ffiffiffiffi
τ

p
Zα ¼ d (the numerator of the expression inside Φ(�) in (5.5) and (5.6)

is equal to 0), both the assurance and the power are 50%. When
ffiffiffiffi
τ

p
Zα > d, both the

assurance and the power are less than 50%, but the assurance will be greater than

the power. When
ffiffiffiffi
τ

p
Zα < d, both the assurance and the power are greater than 50%

with power greater than the assurance.

For a noninferiority trial, we test the null hypothesis that Δ� �Δ∗ where Δ
is the true difference in treatment means and Δ* (>0) is the prespecified

noninferiority margin. For a difference in means which is Normally distributed

and the same prior as used above for testing for superiority, it can be shown that the

assurance probability can be calculated as

P �Xdrug � �Xplacebo > �Δ∗ þ ffiffiffi
τ

p
Zα

� � ¼ 1� Φ

ffiffiffi
τ

p
Zα � d � Δ∗ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ þ 2

nσ
2

q
0
B@

1
CA ð5:7Þ

Similarly to the expression in (5.5), α is typically set at 0.025 for confirmatory

noninferiority trials.

Further examples of closed-form expressions for assurance calculations are

given in O’Hagan et al. (2005).

In general, closed-form expressions for the assurance probability may not be

available. When this is the case, we can use simulation to estimate an assurance

probability to the desired degree of precision. To illustrate this, we consider the case

of a one-sided test for superiority as above but now assume that the common

variance is unknown with a prior distribution. In this case we can simulate an

assurance probability (with N simulation runs) using the following steps:

1. Set counters for iteration number I and number of significant results P, initiating
the counters to zero.

2. Sample Δ and σ2 from their joint prior distribution (if the priors are assumed

independent, then the joint distribution is the product of the priors).

3. Simulate a difference in sample means (�x drug � �x placebo

�
and a sample variancebσ2 using the sampled Δ and σ2.

4. Increment P if the test statistic t ¼ �xdrug��xplaceboffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ2
ndrug

þ bσ2
nplacebo

q � tα,ndrugþnplacebo�2
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5. Increment I. If I < N then go to Step 2.

6. Estimate the assurance probability by dividing P by N.

The above steps produce an estimate for the assurance probability which in this

case is defined as the probability of rejecting a null hypothesis. One can also use the

above steps to calculate the probability that the treatment effect is statistically

significant and the true treatment effect is at least equal to some value Δmin. This

joint probability can be obtained by adding the requirement that Δ>Δmin at Step 4.

Instead of defining a trial success by a statistically significant treatment effect,

one could require additionally that the observed (or estimated) treatment effect be

greater thanΔ0. In this case, we need to add the requirement �x drug � �x placebo > Δ0 at

Step 4 when calculating the assurance probability.

Throughout the rest of the book, we use the simulation approach to calculate

assurance and related probabilities. We take this approach for consistency and ease

of generalization because closed-form expressions for assurance probabilities only

exist for simple situations. In practice the precision of simulation results can be

made sufficiently high by employing a large number of simulation runs. In addition,

we feel that describing the simulation steps can help readers better understand the

definition of an expression and the impact of the various components making up the

expression.

5.5 PPV and NPV for a Planned Trial

The positive predictive value (PPV) and negative predictive value (NPV), intro-

duced in Chap. 3, can be written for a required minimum true treatment effect,Δmin,

as

PPV ¼ P Δ � ΔminjPosð Þ ¼ P Pos and Δ � Δminð Þ
P Posð Þ

and

NPV ¼ P Δ < ΔminjNegð Þ ¼ P Neg and Δ < Δminð Þ
P Negð Þ

where Pos represents rejection of the null hypothesis and Neg represents failure to

reject the null hypothesis. Both the numerator and denominator in each case can be

derived from assurance calculations given a prior probability distribution for the

treatment effect.

To illustrate we take a modified example from the literature (Kowalski et al.

2008a, b). The example relates to a compound SC-75416 which was a selective

COX-2 inhibitor being developed for the treatment of acute and chronic pain. The

endpoint of interest in a planned dental pain study was TOTPAR6, the total pain

58 5 Incorporating Information from Completed Trials in Future Trial Planning

http://dx.doi.org/10.1007/978-3-319-46076-5_3


relief over the first 6 h post tooth extraction. TOTPAR6 is a time-weighted sum of

the pain relief (PR) scores over the 6 h period [see Eq. (5.9) in Sect. 5.8]. The PR

score at each hourly time point is measured on a 5-point Likert scale (0–4, PR ¼ 0,

no relief; PR ¼ 4, complete relief). Therefore TOTPAR6 can take a value between

0 and 24.

The prior distribution for the treatment effect was derived from a PK/PD model,

a topic we will return to later in this chapter but for now we simply note that the

modeling gave a Normal prior distribution for the treatment effect (over 400 mg

ibuprofen) with mean 3.27 and standard deviation 0.60. We assume that the

difference in mean TOTPAR6 for a new study is Normally distributed and that

the common standard deviation of TOTPAR6 is 7. The new study is planned to be a

parallel group study with 100 patients in each of the two groups (SC-75416 and

ibuprofen).

Suppose that a successful trial is defined by rejecting the one-sided null

hypothesis

μdrug � μplacebo � 0

at the 2.5% significance level.We require the true treatment effect to be at least three

points in favor of the drug treatment (over 400 mg ibuprofen) for the new drug to be

of interest. We can use the simulation steps similar to those described in Sect. 5.4 to

calculate the probabilities in Table 5.1 with the prior described above [i.e., N(3.27;
(0.6)2)]. As the common standard deviation is assumed known and is not estimated, a

Z-test is used for the difference in means. The results obtained below differ little

from those that would be obtained if the standard deviation was estimated and a t-test
used. In general there will be little difference between the use of a Z-test and a t-test
for the sample sizes usually used in clinical trials.We assume that failure to reject the

null hypothesis results in a No-Go decision, and rejection of the null hypothesis leads

to a Go decision.

Based on 10,000 simulation samples using the statistics package R (R Core

Team 2014), we obtained the estimated probabilities in Table 5.2.

We can see that the probability for rejecting the null hypothesis is 0.88, but we

can also see that this includes a probability of 0.25 of rejecting the null hypothesis

when the true treatment effect is not as big as the desired 3-point difference.

We can work out the estimated PPV and NPV using the estimated probabilities

in Table 5.2. Doing this we obtain

PPV ¼ 0:63

0:88
¼ 0:72
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and

NPV ¼ 0:08

0:12
¼ 0:67

Thus a positive result gives a probability of 0.72 that the true treatment effect is

greater than or equal to the required three points. We can compare this with the

probability of getting a difference of at least three points before the trial, which was

0.67. A positive result would increase our confidence that the true treatment

difference is at least three points. Similarly a negative result increases the proba-

bility of a treatment difference less than 3 from 0.33 to 0.67.

5.6 Forming a Prior Distribution from a Number

of Similar Previous Trials

It may be the case that the results from a number of previous trials are available

when a new trial is being planned. If the parameters representing the treatment

effects can be viewed as exchangeable, then we can consider using a Bayesian

hierarchical model. As described previously exchangeable is informally taken to

mean similar.

A Bayesian hierarchical model (Spiegelhalter et al. 2004) assumes that param-

eters of interest are drawn from some common prior distribution. The Normal

Table 5.1 Classification of decisions for combinations of decision and truth

Truth

Δ< 3 Δ� 3 Total

Decision Do not reject H0 Correct No-Go Incorrect No-Go P(No-Go)

Reject H0 Incorrect Go Correct Go P(Go)

Total P(Δ< 3) P(Δ� 3) 1.00

Table 5.2 Estimated probabilities for combinations of decision and truth for 10,000 simulated

trials

Truth

Δ< 3 Δ� 3 Total

Decision Do not reject H0 0.08 0.04 0.12

Reject H0 0.25 0.63 0.88

Total 0.33 0.67 1.00
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hierarchical model assumes that the parameters representing the treatment effect in

the different trials, say θ1 , . . . , θK, have a Normal distribution so

θk � N μ; τ2
� �

k ¼ 1, . . . ,K

The parameters μ and τ are in turn assigned prior distributions, usually vague and
estimated from the data.

A prior for a new trial can be formed by using the posterior distribution for θ
obtained from combining the data for the previous trials with the hierarchical prior

distribution. The posterior distribution for θ is a predictive distribution for the

treatment effect in a new trial. The predictive distribution may be derived using

the MCMC method or by using mixtures of standard priors which allow for good

approximations (Schmidli et al. 2014).

Bayesian hierarchical modeling can also be used to derive a predictive distribu-

tion for a response for a marketed biological drug when it is desired to develop a

biosimilar. In this case the trial results for the marketed drug are used to derive the

predictive distribution for the response which is expected to be similar to that for

the biosimilar. In this setting a nonparametric model for the responses in different

trials may be more appropriate than the assumption of a Normal distribution (Lunn

et al. 2013).

5.7 Standard Prior Distributions

It may be the case that there are no previous data for a compound that can

satisfactorily be relied upon to form a prior distribution for a treatment effect. For

example, this may arise for a Phase 2 proof-of-concept study when no previous

efficacy data exist. In these circumstances it may be possible to obtain a relevant

standard prior distribution using data from other compounds.

For the particular case of a Phase 2 proof-of-concept study, we can consider

using a mixture distribution (Cornfield 1969) which represents efficacy results for

previous similar compounds. To illustrate we conjecture that for a particular pain

compound, we can find previous dental pain study results for other relevant

compounds that lead to using the following mixture prior for the endpoint

TOTPAR6. We place a lump of 20% of the prior at the value 0 to represent the

proportion of similar compounds found to have no effect. We then take the

remaining 80% to be a Normal distribution centered at the assumed historical

average among compounds with some effect which we take to be 2.5 with a

standard deviation of 0.8. The standard deviation is also assumed to come from

the same historical results. The mixture prior distribution is as shown in Fig. 5.1

with the lump centered at 0 and given a width of 0.1. The use of 0.1 as the width

makes the point mass visible as a bar in Fig. 5.1.
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To show the effect of this prior, we use it with the same planned dental pain study

as considered above but consider the study now as a proof-of-concept study without

any previous efficacy data for the compound and use a Z-test with a one-sided 5%

significance level. Estimated probabilities from the simulation approach for 10,000

samples for a given random number seed are given in Table 5.3.

We can see that the PPV is 0.20/0.61 ¼ 0.33 so that there is a one third chance

that the true treatment effect is at least three points on the TOTPAR6 scale after a

positive outcome from the POC trial in this case.

5.8 Elicitation of a Prior Distribution from Experts

Another option when no previous data for a compound that can satisfactorily be

relied on to form a prior distribution exists is to elicit a prior distribution from

experts.

Kinnersley and Day (2013) give an overview of methods of elicitation. After

noting that an expert can be defined in a number of ways, they go on to consider

frameworks for conducting an elicitation session. They list six steps described in

Fig. 5.1 Mixture prior distribution, for example, in text

Table 5.3 Estimated probabilities for combinations of decision and truth for 10,000 simulated

trials

Truth

Δ< 3 Δ� 3 Total

Decision Do not reject H0 0.38 0.01 0.39

Reject H0 0.41 0.20 0.61

Total 0.79 0.21 1.00
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Choy et al. (2009) which are present in a number of frameworks. These six

steps are:

• Determining the purpose and motivation for using prior information

• Specifying the relevant expert knowledge available

• Formulating the statistical model

• Designing effective and efficient numerical encoding

• Managing uncertainty

• Designing a practical elicitation protocol

Kinnersley and Day note the observation by Kynn (2008), however, that none of

the frameworks for elicitation use the more prescriptive questioning advocated by

her on the basis of her assessment of the recent advances in the psychology and

cognitive models literature.

Kinnersley and Day include in their paper a protocol developed for an elicitation

session for a hypothetical clinical trial using the SHELF (O’Hagan et al. 2006)

system. The protocol contains sections on endpoint definition, evidence, plausible

treatment effect range, a description of the chips in bins elicitation method (Gore

1987), probability distribution fitting for each expert, group elicitation, probability

distribution fitting for the group with feedback, and chosen distribution with

discussion.

Walley et al. (2015) describe elicitation of prior distributions for the placebo

response and treatment effect for a case study in chronic kidney disease. The prior

distribution for the placebo response was equivalent to approximately 113 subjects

in a parallel study design and was used both to assess the study design and in the

analysis. In contrast the prior distribution for the treatment effect was used only to

assess the study design.

Kinnersley and Day conclude in their paper that further empirical research on the

feasibility of conducting elicitation is required as well as more research to establish

the measurement of science properties of the available elicitation instruments in the

clinical trial domain.

5.9 Prior Distributions from PK/PD Modeling and

Model-Based Meta-Analysis

It may be the case, particularly for Phase 2b and Phase 3 trials, that there is not a

previous trial for the same endpoint and same population as intended for a Phase 3 trial.

This can come about because of the practice of using shorter-term endpoints in early

Phase 2 trials and the tendency for the patient population to become more

heterogeneous as development moves to Phase 3. In these cases it may be considered

inappropriate to extrapolate a Phase 2 result to a different endpoint and/or to a markedly

different population.
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PK/PD modeling is the modeling of a pharmacodynamic (PD) response (what

the drug does to the body for a certain response) using pharmacokinetic (PK)

(what the body does to the drug) data. The most common PK data used in PK/PD

modeling are drug concentrations. PK/PD modeling may be able to address the

issues of using a different endpoint or enrolling a different population by applying

a plausible model for the PK/PD relationship for the endpoint of interest in

different types of individuals. Such a model may be assumed from known clinical

pharmacology theory or modeling strength borrowed from other compounds

expected to have a similar PK/PD relationship. If the model is fitted using a

Bayesian approach, then the posterior distribution for the treatment effect can be

obtained from the model.

Model-based meta-analysis (MBMA) is the meta-analysis of data using a model

(Lalonde et al. 2007). While it can be argued that most meta-analyses assume a

parametric model, the terminology is taken here to mean a model based on clinical

pharmacology theory. Thus a PK/PD analysis as described above could be a meta-

analysis combining data from different sources using an appropriate PK/PD model.

Alternatively a model-based meta-analysis might be a meta-analysis of dose-

response relationships using a dose-response model. The idea is to borrow strength

about unknown relationships from other compounds that can be considered similar

to the compound of interest. If the fitting is carried out using Bayesian methods,

then a posterior distribution for the treatment effect of interest can be obtained.

An example of an MBMA involving the use of a PK/PD model is given by the

COX-2 inhibitor compound development program referred to in Sect. 5.5

(Kowalski et al. 2008a). For this compound a logistic-normal PK/PD model was

developed to model the pain relief (PR) scores at time tj described in Sect. 5.5. The
model was

logit Pr PRij � m
� 		ηi� �� ¼ f p tj;m

� �þ f d cij
� �þ tj

� �χ
ηi ð5:8Þ

where PRij denotes pain relief for the ith subject at time tj on the 5-point scale (0–4)
represented by m, ηi is a random effect for the ith subject, fp(tj,m) is a function

describing the placebo-time effect, fd(cij) is a function describing the drug effect as

a function of the observed plasma concentration cij, and χ (the exponent of tj) is a
variance scale parameter to allow for interpatient variability to depend on time.

Kowalski et al. (2008a) proposed submodels for fp and fd. It was assumed that all

nonsteroidal anti-inflammatory drugs (NSAIDs, which include COX-2 inhibitors)

can achieve the same maximum drug effect and they differ only in potency.

Kowalski et al. estimated the logit model in (5.8) for m¼ 1,. . .,4 using data from
SC-75416, rofecoxib and valdecoxib post-oral surgery pain studies. Three of the

valdecoxib studies contained 400 mg ibuprofen as an active control. They used the

estimated logit model together with a dropout model to simulate PR scores and

dropout time for each of 50,000 hypothetical patients at each of the doses of the

drugs included in the studies. The simulated PR scores after the simulated dropout
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time were set to missing and replaced by the last “observed” simulated PR score

before dropout.

The PR score-time profile for each hypothetical patient (indexed by i) was used
to calculate the TOTPAR6 for the patient using the equation in (5.9). In (5.9), t0 is
set to 0. The mean of the 50,000 TOTPAR6s is an estimate for the population mean

at a specific dose of a drug. These estimates were compared to their observed

counterparts from studies to check for the goodness of fit of the models. The means

were then used to simulate data to evaluate study designs:

TOTPAR6i ¼
X6

j¼1
PRij � tj � tj�1

� � ð5:9Þ

Milligan et al. (2013) gave an example of using PK/PD modeling to estimate the

clinical benefit and risk of a new anticoagulant when planning a Phase 2 dose-

ranging study of the drug in patients following total hip and knee replacement

surgery. Benefit of the new anticoagulant was to be measured in terms of venous

thromboembolism (VTE) prevention, and risk was to be measured in terms of major

bleeding (MB) incidence. At the time the Phase 2 study was planned, there were no

data on the drug’s effect on VTE prevention and MB risk. But there were data on

the drug’s effect in inhibiting thrombin generation through an in vitro PD assay.

The development team built a PK/PD model, linking results from the in vitro PD

assay to clinical outcomes of VTE and MB. Data used in the estimation of the

model came from 21 other anticoagulant compounds. The model is a logistic

regression model that specifies the same shape of the dose-response relationship

but different potencies across different compounds.

The fitted model was used to predict the effect of the new anticoagulant on

VTE and MB at various doses, based on the drug’s effect in inhibiting thrombin

generation. This information was used to determine the dose range for the Phase 2

dose-ranging study. The PK/PD modeling together with a design that allowed

doses to be dropped or added led to a successful Phase 2 trial.

The development of PK/PD models to synthesize prior data requires collaboration

among multiple disciplines. The process demands good clinical, pharmacological, and

statistical principles. Close collaboration will have the best chance to produce the most

interpretable models that take into consideration sources of variability and are trans-

parent in their assumptions.

5.10 Discussion

The focus of this chapter is on how to incorporate information from completed trials

to help plan future trials of a new drug. Here, completed trials could mean trials

involving the new drug under investigation or any trials that may provide pertinent

information on the new drug. The examples of a new COX-2 inhibitor and a new
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anticoagulant show how studies of other drugs could be used to help predict the

effect of a new drug.

The Bayesian approach begins with a prior distribution that represents our

knowledge or belief about the parameter (or parameters) of interest. The prior is

joined by the likelihood function of trial data to form the posterior distribution. This

posterior distribution can then be used as a prior distribution for planning the next

trial and calculating assurance and/or other probabilities.

We also discuss how to select the prior. We review several options in this

chapter. If an informative prior cannot be obtained, then diffuse or noninformative

priors can be used.

The process to identify a prior raises the question of whether the sampling

distribution of an estimate for the parameter (or parameters) could play the role

of a prior distribution. After all, the majority of the commonly used approaches

produce unbiased and consistent estimates. The standard deviation of the sampling

distribution describes our uncertainty about using the estimate(s) as an approxima-

tion to the parameter(s) of interest. So for the purpose of describing our uncertainty

about the parameter(s), the sampling distribution could be a reasonable choice for

this objective.

In Chaps. 3 and 4, we used the sampling distributions to calculate the average

replication probability and the average power. The calculation of these quantities is

exactly the same as that of assurance except that the sampling distributions were

used instead of a posterior distribution arising from an expert-provided prior or a

noninformative prior. While the origins of the prior distributions differ under these

two approaches, we believe both approaches are valuable in incorporating our

uncertainty about the parameters when planning a future trial or assessing the

operating characteristics of a study design in conjunction with a decision rule.
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Chapter 6

Choosing Metrics Appropriate for Different

Stages of Drug Development

Without a standard there is no logical basis for making a
decision or taking action.

Joseph M. Juran

6.1 Introduction

There are many ways to design a study and set up a decision rule. Some decision

rules, while appearing different, actually have very similar properties. It is, there-

fore, helpful to have metrics that can summarize important properties of a study

design and decision rule so that designs and decision rules can be compared.

In the Frequentist framework, Type I and Type II error rates can be viewed as the

default metrics. In the diagnostic world, sensitivity and specificity are well-

accepted metrics. As we illustrated in Chap. 5, the ability to incorporate prior

information into the design and decision process makes it possible to develop

metrics that also incorporate prior information.

Chapter 1 discusses the objectives of the various stages of clinical development.

As studies and decision rules are designed to address diverse objectives, it is natural

to expect metrics chosen for different development stages to reflect these diverse

objectives. Consequently, while some metrics may be relevant to all stages, others

may be more appropriate for one stage than for others.

In this chapter, we will focus on metrics for determining if a new drug is

efficacious. The focus on efficacy is due to the generally well-defined endpoints

to decide the beneficial effect of a new drug. Nevertheless, the approach is equally

applicable to safety endpoints if there are specific safety endpoints that can be used

to anchor design considerations and decision rules.

In Sect. 6.2, we will focus on metrics for a proof-of-concept study. We will focus

on dose-ranging studies and confirmatory trials in Sects. 6.3 and 6.4, respectively.

We will differentiate among three success probabilities, which we will call the

probability of study success (POSS), the probability of program success (POPS),

and the probability of compound success (POCS). The latter two are the subjects of

Sect. 6.5. We will discuss briefly the use of the expected net present value as

another metric in Sect. 6.6, but leave the detailed illustration of its calculation to
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Sect. 11.3. In Sect. 6.6, we will also offer our readers several points to consider

when selecting distributions to describe our knowledge about the effect of a

new drug.

6.2 Metrics for Proof-of-Concept Studies

In Table 2.1, we described the two types of error associated with testing a simple

null hypothesis H0 against a simple alternative hypothesis HA. The probabilities of

these two types of error as well as those of correct decisions under H0 and HA are

given in parentheses in Table 6.1.

The probabilities in Table 6.1 are conditional probabilities, conditioning on H0

or HA being true. The marginal probabilities are 100% in each column. A common

choice for the Type I error rate α in a POC study is 10% and a common choice for

the Type II error rate β is 20%. While β is twice the value of α in this case, the ratio

of the actual likelihood of a false-negative to a false-positive error depends on how

often H0 (or HA) is true.

For example, if past experience in developing drugs for a particular disorder

suggests a 10% success rate (i.e., H0 of no drug effect is correct 90% of the time),

this probability could be used in conjunction with the conditional probabilities in

Table 6.1 to construct the unconditional probabilities in Table 6.2.

The probability of correct decisions is 0.90� (1� α) + 0.10� (1� β). The prob-
ability of incorrect decisions is 0.90� α + 0.10� β. For α ¼ 0.10 and β ¼ 0.20,

these probabilities are 89% and 11%. Under the same assumptions, the probability

of a false positive (9%) is 4.5 times that of a false negative (2%).

Since POC is usually the first time a sponsor investigates the efficacy of a drug,

any speculation on the likelihood that the drug possesses a sufficient effect is likely

to come from external sources. Occasionally, a sponsor may be able to construct a

portfolio prior from other drugs for the same indication or drugs with the same

mode of action. This is possible in a well-understood disease area with many

Table 6.1 Type I and Type II errors and their rates in testing H0 versus HA

H0 true H0 false

Accept H0 Correct decision (1 � α) Type II error (β)

Reject H0 Type I error (α) Correct decision (1 � β)

Total probability 1.00 1.00

Table 6.2 Unconditional

probabilities of various

actions in testing H0 versus

HA

H0 true H0 false

Accept H0 0.90� (1� α) 0.10� β

Reject H0 0.90� α 0.10� (1� β)

Total probability 0.90 0.10
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treatment options. When a portfolio prior is possible and considered reasonable,

one could consider a decision rule based on the posterior probability that the drug

effect exceeds a prespecified threshold. One can evaluate the properties of such a

Bayesian decision rule as one does a Frequentist one.

More often, an informative prior is not possible or not considered reliable. In

such cases, it will be better to focus on the operating characteristics of a Frequentist

decision framework laid out in Table 6.1. Nevertheless, it is useful to bear in

mind that because of the generally low success rate in drug development, a sponsor

is more likely to commit a false-positive error than a false-negative error at this

stage.

6.3 Metrics for Dose-Ranging Studies

According to Ruberg (1995a, b), the primary objectives of a dose-ranging study are

to detect a dose-response relationship, to identify clinical relevance of the response,

to select a target dose, and to estimate the dose-response relationship. Since some of

these objectives can be addressed together, the characteristics of a design and a

chosen analytical strategy to address these objectives can be assessed by the

following three metrics.

Metric #1 Probability to correctly detect a positive dose-response relationship.

Metric #2 Probability to correctly identify a target dose, given that a positive

dose-response relationship has been concluded. A target dose could be

a dose with a minimum treatment effect or a dose that has a desired

effect from the commercial perspective.

Metric #3 Relative average prediction error obtained by averaging the absolute

differences between the estimated and the true dose-response values at

each of the doses included in the study and dividing the average by the

absolute value of a prespecified target effect.

The above three metrics were used by Pinheiro et al. (2010) in assessing

different design options and analytical strategies in dose-ranging studies. The

second metric measures the accuracy of dose selection, while the third metric

assesses the average adequacy of the estimated effect at the doses included in the

study.

Calculating the above metrics requires (1) estimating a dose-response relation-

ship, (2) using the estimated dose-response relationship or a testing strategy to

identify a target dose, and (3) testing for a positive dose-response relationship. The

required activities do not need to follow this order because one can test a positive

dose-response relationship without first fitting a dose-response model as we show in

Sect. 6.3.2.
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6.3.1 Estimating a Dose-Response Relationship

Estimating a dose-response relationship is fundamental in the analysis of a dose-

ranging study. This is implied in the ICH E4 guidance document, which states that

dose-response study designs should emphasize the “elucidation of the dose-

response function.” In this section, we will review some common dose-response

models used to explore the dose-response relationship.

Let E(Yi) denote the mean response at the dose di. For convenience, we assume

that large values of Yi are more desirable.

6.3.1.1 Emax Model

After examining the dose-response curves for a large number of small molecules,

Thomas et al. (2014a, b) concluded that the dose-response curves could be

described by the sigmoid Emax model for greater than 95% of the time when a

positive dose-response relationship exists. Even though the Emax model originally

came from describing the concentration-effect relationship based on pharmacolog-

ical considerations, an Emax model has also been found to be very useful in

describing dose-response relationships.

The Emax model relates E(Yi) to di in (6.1). In (6.1), E0 represents the mean

response of the placebo group and Emax the maximum mean increase in the

experimental group over the placebo group. ED50 represents the dose that gives a

mean response of Emax/2 over the placebo. The parameter λ (>0) determines the

shape of the curve and is often called the “Hill” parameter. For the same E0 and

Emax, the larger λ is away from 1, the more sharply and quickly the dose-response

curve of E(Yi) versus di rises to its maximum of E0 + Emax. On the other hand, the

smaller λ is away from 1, the slower the dose-response curve rises to its maximum.

This relationship is shown in Fig. 6.1 for select λ values. The model in (6.1) is called

a 4-parameter Emax model because it contains four unknown parameters:

E Yijdið Þ ¼ E0 þ Emax � d λ
i

ED λ
50 þ d λ

i

� � ð6:1Þ

The model reduces to a 3-parameter Emax model if λ is equal to 1. When λ ¼ 1,

ED90 (the dose that produces 90% of the Emax response over the placebo) is nine

times the ED50. By comparison, when λ ¼ 2, ED90 is only three times the ED50.

When λ ¼ 0.5, ED90 is 81 times the ED50. These results reflect a faster or a slower

rise of the dose-response curve when λ ¼ 2 or 0.5, compared to when λ ¼ 1.

The 4-parameter Emax model in (6.1) is sometimes written as in (6.2) for ease of

computation. In (6.2), b ¼ �Emax, a ¼ E0 � b, c ¼ 1
ED50

:
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E Yijdið Þ ¼ aþ b

1þ c� dið Þλ ð6:2Þ

The sigmoid Emax model can approximate most common monotone dose-

response curves (Thomas 2006). The Maximum Likelihood method can be used

to estimate the parameters in (6.1) when the endpoint follows a Normal distribution.

When the endpoint is binary, an Emax model can still be used, but constraints need

to be placed on the parameters to limit the probabilities between 0 and 1 (see Sect.

8.2). The optimization can be carried out using the Gauss-Newton or the partial

linear (Seber and Wild 2003) optimization algorithms. One can use the historical

control effect, the largest imaginable treatment effect relative to the control, the

middle of the dose range, and 1.91/log10(dose range) as initial values for E0, Emax,

ED50, and λ, respectively (MacDougall 2006). Unfortunately, convergence is not

guaranteed. This can happen when data do not contain sufficient information to

allow unique estimation of the parameters. An example is when the maximum

possible response is not well defined by the available data.

When convergence fails under a 4-parameter Emax model, one could try a

simpler model such as the 3-parameter Emax model, a linear log-dose, or linear

model (see Sect. 6.3.1.2). Another option is to apply a Bayesian approach. Under

the Bayesian approach, priors are assigned to the four parameters and posterior

probabilities are computed. For convenience, this approach typically assumes

independence among the four priors. Thomas (2006) found that even relatively

diffuse priors could improve Maximum Likelihood estimation in situations when

the design provides little information about some parameters in the model. Exam-

ples include when all doses are on the plateau of the dose-response curve or when

the signal-to-noise ratio is low. In these situations, Maximum Likelihood estimation

Fig. 6.1 Dose-response curves under a 4-parameter Emax model for different choices of the Hill

parameter λ
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tends to be unstable, and Bayesian estimation could be useful for dose selection

instead.

In many cases, historical information is available to allow the construction of a

reasonable prior for E0. Otherwise, a diffuse prior could be used for E0. When

information from a POC study and data on other drugs in the same class is available,

one can use such information to build a prior for Emax, although the POC study may

not be able to go up toward Emax. When the dose-ranging study is the first study to

collect efficacy information about a new drug (i.e., POC trial was not conducted), it

will be better to use a conservative prior that has a high probability of suggesting no

drug effect for Emax.

Thomas et al. (2014b) found that among the set of small molecules they

examined, the Hill parameter λ was concentrated near 1.0, and it was uncommon

for λ to be greater than 1.5. They also found that the ratio of ED50 to the projected

ED50 based on pharmacometric projection fell within the (1/10, 10) range more than

90% of the cases with the highest concentration between (0.5, 4). These findings

could be used to form prior distributions for λ and ED50. Examples of Bayesian

Emax dose-response modeling can be found in Jones et al. (2011), Tan et al. (2011),

and Banerjee and Christensen (2015). We will return to this subject in more detail in

Chap. 8, including the selection of priors for the parameters in a 4-parameter Emax

model (Sect. 8.6.1).

Another approach to get around the convergence problem is to place a “box”

around allowed parameter estimates and use profile likelihood to make inferences

about parameters of interest (Brain et al. 2014). This can be done because although

the estimates for the parameters in the usual parameterization given by (6.1) may

not converge despite it being the true model, estimates for mean responses at the

doses included or estimates for the doses required to produce given possible effects

will usually converge when (6.1) is the correct model. To obtain an estimate for a

mean responses or the dose required to give an effect of interest and corresponding

confidence intervals, model (6.1) is reparameterized as

E Yijdið Þ ¼ E0 þ Δ� d λ
i

ED λ
Δ þ d λ

i � ED λ
Δ

� �
exp αð Þ

1þexp αð Þ
� � ð6:3Þ

where Δ is the expected difference from placebo at a given dose EDΔ and
Δ

Emax
¼ exp αð Þ

1þexp αð Þ.
The profile likelihood for Δ can be obtained by taking in turn each of a

discretized range of possible values for Δ for a given EDΔ and maximizing the

likelihood for the remaining parameters. This gives the so-called profile likelihood

for Δ. The profile likelihood for EDΔ for a given Δmay be obtained in a similar way.

The profile likelihood can then be used to obtain an approximate 95% confidence

interval by finding values for the parameter of interest where the F test for the ratio

of the residual sum of squares to the minimum residual sum of squares is not

significant at the 5% level. The limits for each parameter should be set large enough
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so that the likelihood surface outside of the limits is approximately flat as the

parameter goes beyond the limits.

6.3.1.2 Other Dose-Response Models

Bretz et al. (2005) proposed a testing procedure that allowed multiple dose-

response curves to be included in a proposed multiple comparison procedure

involving dose-response models. In addition to the Emax model, they considered

the following dose-response models:

Linear log-dose E0 + θ� log (di + 1)
Linear E0 + δ� di
Scaled exponential E0 +E1� exp (di/δ)
Quadratic (umbrella) E0 þ β1 � di þ β2 � d2i
Logistic E0 +Emax/{1 + exp [(ED50� di)/δ]}

These are among the most commonly employed dose-response curves in ana-

lyzing dose-ranging studies or in conducting research on dose-ranging design

options (Bornkamp et al. 2007; Pinheiro et al. 2010; Patel et al. 2012). We show

them in Fig. 6.2 with the maximum effect fixed at 0.8 and the maximum dose scaled

to be 1 for all dose-response curves.

6.3.2 Testing for a Positive Dose-Response Relationship

Assuming a monotone increasing dose-response relationship with D different doses

{di, i¼ 1,. . .,D} and a placebo d0 ¼ 0, the simplest test for a positive dose-response

relationship is a trend test. Under a trend test, a linear contrast
PD

i¼0 ci � E Yið Þ ¼ 0

Fig. 6.2 Five commonly used dose-response curves besides Emax
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with
PD

i¼0 ci ¼ 0 is tested against
PD

i¼0 ci � E Yið Þ > 0: For example, if D ¼ 4, a

choice for {ci, i ¼ 0,. . .,4} could be {�2, �1, 0, 1, 2}. Alternatively, one can also

employ tests for H0: E(Y0)¼E(Y1)¼ . . . ¼E(YD) against a monotone alternative

HA: E(Y0)�E(Y1)� . . . �E(YD) with at least one of the inequalities being a strict

inequality (Robertson et al. 1988). Another frequently used strategy that takes

advantage of an assumed monotone dose-response relationship is a sequential test

starting with the highest dose.

Under the same monotonicity assumption, one could fit a linear log-dose or

linear dose-response model and test if θ (linear log-dose) or δ (linear) is positive

(see Sect. 6.3.1.2 for what θ and δ represent).
Other commonly used tests include Dunnett’s test comparing each dose against

the control (Dunnett 1955), pairwise comparisons, or a global test. When the dose-

response relationship is indeed monotone, these tests tend to have less power to

detect the positive dose-response relationship than those mentioned above because

they don’t take advantage of the monotonicity assumption.

Bretz et al. (2005) proposed a procedure (MCP-Mod) that applied the idea of a

multiple comparison procedure to dose-response models. The procedure, including

both testing and estimating a dose-response relationship, can be briefly described in

the following steps:

1. Specify a set of candidate models (e.g., Emax, linear log-dose, linear, quadratic,

exponential, and logistic).

2. Convert each model to a simple linear regression model in its parameters by

supplying guesses for the nonlinear parameters (e.g., supplying guesses for λ and
ED50 in an Emax model, supplying a guess for δ in a scaled exponential model).

3. Fit the linearized models obtained in Step 2 and compute the t-statistics for

testing the slope parameters. Obtain the maximum t-statistic (recall that we

assume higher values to be more desirable).

4. Use the multivariate t-distribution under the null hypothesis of no dose-response

relationship to find the critical value for the maximum t-statistic. If the maxi-

mum t-statistic is greater than the critical value, the null hypothesis of no dose-

response relationship is rejected. This multiple comparison procedure controls

the family-wide Type I error rate for the set of null hypotheses that the regression

coefficient for each of the identified set of candidate curves is zero.

5. Choose a linearized dose-response model (e.g., the one producing the maximum

t-statistic). Estimate the parameters in the model as they originally appear (i.e.,

no linearization).

6. Use the estimated model in Step 5 to estimate the response at each dose and the

dose that produces a prespecified value on effect.

A detailed description of the R package MCP-Mod for implementing the MCP-

Mod methodology can be found in Bornkamp et al. (2009).
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6.3.3 Calculating the Metrics

For a design and an analytical approach, the metric of correctly detecting a positive

dose-response relationship (Metric #1) under several likely dose-response models

can be regarded as the power to detect a positive dose-response relationship. The

power can be calculated using simulation. In the simulation, for each dose-response

model, we will first use the model to generate the dose-response data according to

the design specifications. The generated data will be analyzed by the chosen

analytical approach. This process will be repeated for, say, 10,000 times. The

proportion of times when the analytical approach concludes a positive dose-

response relationship will be used as an estimate for the power. The metric will

be calculated for each of the likely dose-response models and a flat dose-response

model. When the dose-response relationship is flat, the metric provides the Type I

error rate for erroneously concluding a positive dose-response relationship when it

does not exist.

As for the metric of correctly identifying a target dose (Metric #2), we can

evaluate the dose selection accuracy by counting the percentage of times that a

selected dose falls within a target dose interval among the simulation runs that

result in an identification of a positive dose-response relationship. In other words,

Metric #2 is conditional on the identification of a positive dose-response relation-

ship first. This concept was used in Bornkamp et al. (2007) and Pinheiro et al.

(2010). A target dose interval can be defined as an interval of doses that have an

effect within a certain neighborhood of a prespecified target effect. An example of

this neighborhood could be �10% of the target effect.

For a true dose-response model, one could identify the target dose interval by

using the target effect and the rule about neighborhood. If the maximum effect

under the dose-response model is very low, a target dose interval may not exist. In

the simulation, one can use the simulated data to identify the lowest dose that is

predicted to have the target effect. The identification could be done through a fitted

dose-response curve or a prespecified testing procedure. The choice of the lowest

dose reflects the general preference for using the lowest dose among all doses with

the desired effect in order to minimize adverse drug reactions. If the identified dose

falls within the target dose interval, this counts toward the number of times when a

target dose is correctly identified.

Instead of calculating Metric #1 and Metric #2 separately, one can calculate a

combined metric for the probability of declaring a positive dose-response relation-

ship and correctly identifying a target dose. Alternatively, one could simply exam-

ine the probability of correctly identifying a target dose if the sample size is too low

to allow a reasonable power to detect a positive dose-response relationship. Under

these two choices, the probability of correctly identifying a target dose is no longer

a conditional probability, conditioning on declaring a positive dose-response rela-

tionship first.

Metric #3 measures the goodness of fit of the dose-response model. This metric

requires the fitting of a dose-response model. The fitted model is compared to the

6.3 Metrics for Dose-Ranging Studies 77



true dose-response model in each simulation run to get an estimate for the predic-

tion error. The average of the estimates over repeated runs and divided by the target

effect will yield a value for Metric #3 for the particular combination of dose-

response model, study design, and the analytical approach.

6.4 Metrics for Confirmatory Studies

In Chap. 5, we discussed various strategies to incorporate prior information into

decision-making. By the time a drug development moves into the confirmatory

stage, there is usually a fair amount of information about the drug. Such informa-

tion, together with relevant information from other drugs from the same class or

perhaps even drugs for the same indication, could be used to help a developer make

internal decisions at this stage.

Since a primary objective of a confirmatory trial is to confirm the efficacy of a

new drug through hypothesis tests, a developer needs to think beyond statistical

power. As we discussed before, power is a conditional probability of getting a

successful outcome, conditioning on the drug having a certain clinical effect. In

addition to this conditional probability, a developer should also ask questions about

the unconditional probability of a successful outcome. A successful outcome in this

context could mean a significant P-value on the primary efficacy endpoint in the

primary analysis population or a significant P-value with an added requirement that

the estimated treatment effect be at least of a certain magnitude.

In addition to asking about the probability of study success (POSS), it is

important to estimate the positive and negative predictive value of the new study.

Furthermore, we need to know the probability of making correct decisions at this

stage. Consequently, we recommend the following metrics in addition to the

traditional power consideration for confirmatory studies:

Metric #1 Probability of study success (POSS)

Metric #2 Positive and negative predictive value of the study

Metric #3 Probability of making a correct decision

Let us return to the example of chronic pain in Chap. 5. Suppose that the prior

data on the effect of a new pain drug over a marketed product ibuprofen, measured

by the total pain relief over 6 h (TOTPAR6) on the visual analogue scale and

denoted by Δ, suggest that the effect of the new drug over ibuprofen could be

described by a Normal distribution N(3.27;(0.6)2). Considering the number of pain

medicines available on the market and the safety profile of drugs in the same class,

the developer is interested in developing the new drug only if the true effect of the

drug relative to ibuprofen is at least 3 units. But of course, the developer does not

know the true effect of the drug.

Using N(3.27;(0.6)2) for Δ, the probability that Δ� 3, i.e., Pr(Δ� 3.0|prior data),

is 67% as shown in Table 5.2.
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Based on past experience, the standard deviation of TOTPAR6 is 7 units.

Suppose that the sponsor is considering a study that will randomize patients to

the new drug or ibuprofen in equal proportions so that each group will have

225 patients. Furthermore, suppose the developer will accept the hypothesis that

the drug has the desired effect (Δ � 3) if the comparison between the two groups

yields a one-sided P-value significant at the 2.5% level and the observed mean

responses between the two groups differ by at least 3 units. If one of these two

criteria is not met, the developer will not proceed with the development.

Using simulation with 10,000 repetitions, we obtained the results in Table 6.3.

Table 6.3 suggests that the probability of a successful study (i.e., accepting

Δ � 3, Metric #1) is 62%. This figure includes a 10% chance of accepting Δ � 3

when Δ < 3, an erroneous decision. The positive predictive value of the study

together with the associated decision rule is 84% (¼0.52/0.62, Metric #2). The

negative predictive value is 61% (¼0.23/0.38, Metric #2). The probability of

making a correct decision is 75% (¼0.23 + 0.52, Metric #3).

6.5 Other Types of Success Probabilities

In Sect. 6.4, we focused on the probability of a successful trial. The discussion

pertains to a single trial. In this section, we describe two additional success metrics.

6.5.1 Probability of Program Success (POPS)

When the development of a drug moves into the confirmatory stage, a developer

may also want to examine the probability that the confirmatory program will be

successful. A successful confirmatory program typically requires two successful

trials (out of the two trials conducted). For disorders where a successful outcome is

not guaranteed even with approved products (such as antidepressants), a sponsor

may need to conduct three or four Phase 3 trials with success defined by having at

least two positive trials among those conducted.

For convenience, we will denote the program-level success probability by POPS

(probability of program success). This terminology was used in Wang et al. (2015)

who considered POPS for clinical programs with multiple trials and binary out-

comes. Wang et al. calculated POPS by incorporating prior and interim data from

Table 6.3 Joint probabilities

of truth and action under an

assumed prior for the truth,

based on 10,000 repetitions in

simulation

Decision

Truth Total

Δ < 3 Δ � 3

Accept Δ < 3 0.23 0.15 0.38

Accept Δ � 3 0.10 0.52 0.62

Total 0.33 0.67 1.00
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all ongoing Phase 3 trials that would be used collectively to decide whether a

clinical program would be successful. They suggested that a sponsor might want to

consider abandoning a program early if the estimated POPS is very low.

Assume that a confirmatory program includes two Phase 3 trials and both trials

need to be successful for the confirmatory program to be successful. Furthermore,

assume that the parameter of interest is denoted by θ and the available information

about θ can be described by the distribution p(θ). Then POPS can be estimated by

Z
Prob Both trials are successfulð jθ�p θð Þdθ

¼
Z

Prob Trial 1 is successfuljθð ÞProb Trial 2 is successfuljθð Þ p θð Þd θð Þ ð6:4Þ

To calculate POPS through simulation, one can take the follow steps:

1. Sample θ from p(θ).
2. Conditioning on θ, calculate the probabilities that the first and the second trial

will be successful individually.

3. Multiply the two successful probabilities together.

4. Repeat the above process, say, 10,000 times and add the product of the two

success probabilities from each simulation run together.

5. Divide the sum in Step 4 by 10,000 to obtain an approximation to POPS.

In the pain medicine example, suppose the developer plans to run two trials of

the same design (same protocol with 225 patients per group) and the definition of a

successful trial is the same as before (significant P-value and an observed treatment

effect of 3 units or above). Using N(3.27;(0.6)2) as a distribution for the treatment

effect, we obtained an estimate for the POPS of 45% based on 10,000 simulation

runs. This is lower than the POSS of an individual trial (i.e., 62%), but is higher than

multiplying 0.62 by 0.62.

When a successful program is defined by having at least two positive trials out of

three trials, the calculation can proceed similarly. In this case, the simulation steps

can be described as follows:

1. Sample θ from p(θ).
2. Conditioning on θ, calculate the success probability of each trial.

3. Use the probabilities obtained in Step 2 to calculate the probability that all trials

are unsuccessful and the probability that exactly one trial is unsuccessful.

Subtract the sum of these two probabilities from 1 to obtain the probability

that at least two trials are successful.

4. Repeat the above process, say, 10,000 times and add the probability of at least

two successful trials from each run together.

5. Divide the sum in Step 4 by 10,000 to obtain an approximation to POPS.

The fourth step above can be modified to handle other definitions of a successful

program.
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6.5.2 Probability of Compound Success (POCS)

At any time during the development of a drug, a developer could ask about the

likelihood that the new drug has the target commercial profile. While the estimated

likelihood could be highly unreliable at the beginning of the development due to the

paucity of drug-specific data, the estimate will get more realistic as data pertaining

to the drug begin to accumulate. In the example of the pain medicine, PK/PD

modeling together with available data suggests a distribution N(3.27;(0.6)2) for the
treatment effect at some point in the development process. If the target profile

mandates a treatment effect to be at least 3 units on TOTPAR6, then the probability

that the drug will meet this profile is 67%.

We will call the above probability the probability of compound success, or

POCS. This probability is continuously updated as more data become available.

A starting point for the POCS of a new drug could be the historical success rate.

Unlike POSS and POPS, POCS is completely derived from past data and does

not depend on any future study or program under planning. However, POCS is an

integral part of the POSS and POPS estimation since POCS typically appears as a

marginal probability as shown in Table 6.3.

When Bayesian analysis is used to fit an Emax model, the resulting posterior

distributions can be used to answer questions such as the probability that the new

drug will produce a target effect or the probability that a higher dose produces an

effect higher than a lower dose by a certain amount. In other words, the calculation

of POCS-like metrics is a part of the analysis itself, enabled by the Bayesian

framework.

6.6 Discussion

The metrics discussed in this chapter may depend on factors such as disease state,

gender, geographic region, and medical practice because the effect of the new drug

is a function of these factors. When this is the case, it is important to build these

covariates into the treatment effect model and incorporate them when calculating

the metrics. For example, if the effect of a new drug is suspected to be twice as large

in patients with a severe form of a disease than patients with a mild/moderate

manifestation, POSS will depend on the percentage of severe patients relative to

mild/moderate patients in the study. All things being equal, a study that enrolls a

higher percentage of severe patients will have a higher POSS than a study enrolling

a smaller percentage of severe patients. Because of this, a developer could enrich a

study by enrolling a higher percentage of severe patients than is usually represented

in the disease population. Similarly, the calculation of POCS should reflect the

success probability in the most likely target population. If one is not sure what the

ultimate indicated population will be, POCS could be calculated for a broad and for

an enriched population. Therefore, it is critical to always state clearly the distribu-

tions and the assumptions that go into the calculation of any metric.
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In some situations, different data sources and assumptions will result in different

distributions for a treatment effect. For example, when borrowing information from

other drugs to build a model relating a biomarker to a clinical endpoint, a developer

may include all drugs for the same indication or include only drugs with the same

mechanism. Rather than trying to integrate the data sources and reconcile the

assumptions in these situations, it may be better to calculate the metrics under

different distributions and obtain a range of values for the metric. One may

calculate the average or the median of these values. In general, we recommend

reporting the range to convey the degree of uncertainty about the metric.

For some disorders, Phase 3 trials may employ endpoints different from those in

Phase 2 trials. For example, a long-term Phase 3 trial investigating a lipid-reducing

regimen typically uses a major adverse cardiovascular event as the primary endpoint

when Phase 2 trials focus on the regimen’s effect on lipid reduction. In this case,

translating an observed efficacy on lipid to that on the clinical endpoint requires the

development of a model relating these two endpoints to each other. Fortunately, this

is possible (and has been done) in the case of lipid-reducing agents because there is a

rich literature on these agents. However, when the disease is rare such as the

Duchenne muscular dystrophy, relating a drug’s effect on levels of the protein

dystrophin to that on patient’s ability to perform basic tasks (e.g., rising from the

floor and walking for 6 min) is difficult when no drug has yet shown a robust effect

on dystrophin and basic motor functions at the present time (early 2017). In such a

case, a developer may want to assume different levels of relationship (low, medium,

and high) in translating an effect on a marker to that on the clinical endpoint.

One needs to be vigilant about the choice of data sources when developing the

distribution for the treatment effect. Take tarenflurbil as an example. Tarenflurbil

was investigated as a treatment for Alzheimer’s disease (AD). A Phase 2 trial was

conducted between November 3, 2003 and April 24, 2006 in Canada and the United

Kingdom. The study, including a 12-month double-blind treatment period and a

12-month extension, enrolled 210 patients (Wilcock et al. 2008). A Phase 3 study

began in February 2005 in the United States. The Phase 3 study initially enrolled

both mild and moderate AD patients. The enrollment was subsequently restricted to

only mild patients when results from the Phase 2 study showed that patients with

mild AD had a better response to tarenflurbil. The Phase 3 study enrolled 1684 mild

AD patients and showed no treatment benefit with tarenflurbil (Green et al. 2009).

Is the above a case of subgroup analysis gone wild? When evidence comes from

subgroup analyses, especially an unplanned one, one needs to be wary of the source

and cognizant of the impact of selection bias. We will return to the general topic of

selection bias in Chap. 12.

The peril of using potentially inappropriate distributions for the effect of a new

treatment is by no means limited to subgroups. Increasingly, developers are

conducting confirmatory trials in multiple geographic regions to enable simulta-

neous product registrations in multiple markets. Because of the diversity of patients

in Phase 3 trials, it is critical to know how translatable results from Phase 2 trials

with limited investigator sites to Phase 3 trials with sites all over the world.

Launching a confirmatory multiregional trial when there is little knowledge on

how patients in most regions are likely to respond is risky. There are examples of
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failed global confirmatory trials when the single Phase 2 trial was conducted in a

population unrepresentative of the general population planned for Phase 3 trials.

For example, the number one (out of the top 10) Phase 3 failure in 2010 compiled

by the Biotech Industry’s Daily Monitor FierceBiotech was Dimebon

(FierceBiotech Report 2010). Dimebon was a new drug intended to treat

Alzheimer’s disease. Dimebon’s global Phase 3 program was based on a single

positive Phase 2 trial conducted in Russia.

The examples above illustrate the need to understand the data source and how

results from the data source will be used. One measure that can help reduce the

influence of an overly optimistic data source is to replicate prior findings in a closely

related setting before launching a full-blown Phase 3 program. In the case of

tarenflurbil, this could mean to replicate the effect in mild AD patients first. In the

case of Dimebon, this could mean conducting a second Phase 2 study in Western

European countries and the United States.

All the metrics discussed in this chapter so far are based on scientific data even

though the decision on the target value may have been influenced by commercial

consideration. Nevertheless, the speed to market is always on the mind of a devel-

oper. This is because a longer remaining patent life at the point of product launch

typically means a higher net revenue for the developer. The need to take speed into

consideration has motivated some researchers to propose using the expected net

present value (NPV) as a metric in considering different strategies for a Phase 2

program (Patel et al. 2012) or in a decision-analytical approach (Burman et al. 2007).

We will discuss the calculation of the expected NPV in detail in Sect. 11.3. Despite

the published and ongoing work, our experience suggests that up until now NPV has

been used more in portfolio decision analysis than decisions pertaining to clinical

development strategies.

In Chaps. 7–10, we will discuss design options and how to use the metrics

discussed in this chapter to help compare and select designs for the various stages

of drug development.

Similarly to what we stated in Sect. 5.4, we use simulation to estimate the value of

a metric in this and subsequent chapters of this book. We adopt this approach for

consistency and ease of generalization because closed-form expressions for metrics

only exist for simple situations. Since the precision of simulation results can bemade

sufficiently high by employing a large number of simulation runs, using simulation

to estimate the value of a metric should not affect the quality of the estimation even

when a closed-form expression exists for the metric. In addition, describing the

simulation steps makes it easier to understand the definition of a metric and the

impact of the various components making up the metric.
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Chapter 7

Designing Proof-of-Concept Trials

with Desired Characteristics

Prove all things; hold fast that which is good.
King James Bible

7.1 Introduction

A proof-of-concept (POC) study is a key stage in drug development when the

developer finds out if a compound has any effect on the endpoint of interest and if so

if the size of the effect warrants investment in further development. A large

observed effect can lead to a greatly accelerated development program although,

as we have discussed in Chap. 3, there can be dangers in using an unreplicated result

to make a major acceleration decision.

Good decisions dictate that good compounds have a large probability of being

progressed and poor compounds have a large probability of being stopped.

When designing a trial, we need to consider how results from the trial will be

used to make decisions. If the information from the trial is inadequate, the decisions

will not enjoy the kind of quality we have come to expect of good decisions.

Therefore, the design together with the decision rule should dictate how many

subjects are needed for a particular design type. In this chapter, we will discuss how

this can be done for a parallel group design when the responses for an endpoint are

assumed to be Normally and independently distributed with a known constant

variance.

A number of approaches have been used for making a decision for a POC study.

In this chapter we review five of these approaches. The approaches are the tradi-

tional hypothesis-testing approach, the early signal of efficacy (ESoE) approach,

the approach implemented in the Learn Phase Decision Assessment Tool (LPDAT),

and two approaches that can be considered as special cases of the LPDAT one.

We then review the metrics that can be used to evaluate POC trial designs, as

briefly described in Sect. 6.2.

As described in Chap. 5, if a prior distribution for the treatment effect is to be

used to evaluate a trial design, a key consideration is how this prior distribution is

obtained. One possibility, which we will focus on, is to use a standard prior derived
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from relevant historical results. Such a prior could be the mixture of essentially a

probability of no effect and a distribution where there is some treatment effect. This

prior allows for the possibility that a compound has no effect. By comparison if

there is a high degree of confidence that a compound will have an effect, then a prior

which allows only nonzero treatment effects may be more appropriate. Another

possibility at this stage of development is to use a prior distribution which is elicited

from expert opinion (O’Hagan et al. 2006). We briefly consider using a prior

distribution elicited from expert opinion in Sect. 7.5.

For simplicity, we use the word “designs” to mean the designs and the compan-

ion decision rules. We consider a numerical example for trial designs derived from

the five approaches to show how the designs can be evaluated and compared.

7.2 Five Approaches to Decision-Making

In this chapter, we assume that large values on the endpoint are more desirable. We

measure the effect of a new drug by calculating the difference in the mean response

between the new drug and a comparator (i.e., new drug—comparator). A more

positive difference means a greater drug effect. We denote the true effect of the new

drug relative to the comparator by Δ.

7.2.1 The Traditional Hypothesis-Testing Approach

The traditional approach to decision-making for a POC trial follows the hypothesis-

testing framework set out in Chap. 2. The null hypothesis of no treatment effect

against a comparator

H0 : Δ � 0

is tested against the following alternative hypothesis of a positive treatment effect

HA : Δ > 0

If the null hypothesis is rejected using a one-sided test at a prespecified 100α%
significance level, then the trial result is considered positive and the decision is

made to continue with development. Otherwise development of the compound is

stopped.
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7.2.2 The ESoE Approach

The ESoE approach requires that two critical values C1 and C2 (C1 < C2) be

prespecified for a test statistic like that in (7.1). In (7.1), �X drug denotes the observed

mean response of patients receiving the new drug, �X control denotes the observed

mean response of patients in the control group, n denotes the number of patients in

each group, and σ is the common standard deviation for the endpoint. We assume

that σ is known:

Z ¼
�X drug � �X controlffiffiffiffiffi

2σ2
n

q ð7:1Þ

If the test statistic is less than C1, then a Kill decision is made. If the value of the

test statistic is above C2, then an Accelerate decision is made. Values between C1

and C2 lead to a Pause decision and staged development of a compound. The critical

values C1 and C2 are determined by the probabilities one is willing to accept for

accelerating an ineffective drug and an effective drug (or to kill an ineffective and

an effective drug). We will return to the subject of C1 and C2 in Sect. 7.3.2.

The ESoE approach strictly speaking does not lead to a POC study, but since one

of its outcomes may lead to POC being declared, we include it in the category of

POC study designs. The study leads to one of three possible decision outcomes.

They are Kill (or Stop), Pause, and Accelerate. Clinical trial designs with three

possible decision outcomes have also previously been considered by Hong and

Wang (2007), Shuster (2002), Sargent et al. (2001), Thall et al. (1995), Storer

(1992), Emerson and Tritchler (1987), and Fleming (1982). The idea of the ESoE

approach is to have a small screening design which quickly leads to a decision.

The rationale for the ESoE approach is actually a portfolio level one (Brown

et al. 2012). The portfolio rationale is to swiftly identify compounds with no effect

or likely to have the target treatment effect of interest and to separate these

compounds from compounds which require more staged investment to see if they

have the required target effect.

7.2.3 The LPDAT Approach

The LPDAT approach proceeds by the construction of two one-sided confidence

intervals for the treatment effect which are joined together and then used to make

Go/No-Go/Pause decisions according to where the constructed interval lies with

respect to two values, the minimum acceptable value (MAV) and a target value

(TV).

More specifically, under the LPDAT approach, a lower 100(1� α1)% confi-

dence interval Lα1 ;1ð Þ and an upper 100(1� α2)% confidence interval �1;Uα2ð Þ
are constructed for the true treatment effect. These two intervals are then combined
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into a two-sided confidence interval Lα1 ;Uα2ð Þ. The position of the constructed

interval relative to the MAV and TV results in six possible outcomes (from the

bottom to the top in Fig. 7.1):

(1) Both Lα1 and Uα2 are below MAV.

(2) Lα1 is below MAV, and Uα2 is between MAV and TV.

(3) Lα1 is below MAV andUα2 is above TV.

(4) Both Lα1 and Uα2 are between MAV and TV.

(5) Lα1 is between MAV and TV, and Uα2 is above TV.

(6) Both Lα1 and Uα2 are above TV.

Each of the six possible outcomes can be associated with a Go decision, a Stop

decision, or a decision to Pause. Usually outcomes (1) and (2) are associated with a

Stop decision because there is evidence against the treatment effect being as big as

the desired TV effect. Outcomes (5) and (6) are typically associated with Go

decisions because there is evidence that the treatment effect is greater than the

MAV and could be greater than TV. Outcomes (3) and (4) are in between and tend

to lead to No-Go or Pause decisions.

A slightly modified version of the LPDAT approach is to refer to a lower

reference value (LRV), instead of an MAV. The LRV can be 0, implying that any

advantage over a comparator is considered minimally acceptable.

The rationale for the LPDAT approach, as usually implemented, is that when

making a Go decision, we need to have some confidence that the true treatment

effect is greater than TV while at the same time being reassured that it is unlikely to

be less than the MAV.

If the decision rule stipulates Go for outcomes (5) and (6), Pause for outcomes

(3) and (4), and Stop for outcomes (1) and (2), then the probability of a Go decision

when Δ¼MAV is at most α1 and the probability of a Stop decision when Δ¼ TV is

equal to α2.

Fig. 7.1 Six possible configurations for LPDAT confidence interval relative to MAV and target

value
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We note that although LPDAT was derived using a Frequentist framework, it is

possible to consider a parallel Bayesian approach which is based on posterior

credible intervals. Such an approach could use vague or informative priors as

appropriate.

7.2.4 The TV Approach

An approach that has received some attention recently is to require that for a

positive result, the observed treatment effect bΔ exceeds some target value TV, i.e.,

bΔ > TV

and to also require that the null hypothesis of no difference from a comparator be

rejected using a one-sided test against the appropriate alternative at a prespecified

100α% significance level.

The rationale for a Go decision under this approach is to have at least 50%

confidence that the true treatment effect is greater than TV, while at the same time

an unbiased and symmetrically distributed estimator bΔ has sufficient precision for us

to be confident that the true treatment effect is greater than 0.

It should be noted that the TV approach can be regarded as a special case of the

LPDAT, one with α2 ¼ 0.50, α1 ¼ α, and LRV ¼ 0.

7.2.5 The TVMCID Approach

The TV approach described above can be modified to still require that the observed

effect bΔ be greater than TV, but also require that the null hypothesis H0: Δ�MCID

is rejected in favor of HA: Δ > MCID at a prespecified 100α% significance level

using a one-sided test. Here MCID represents a minimum clinically important

difference for the effect of a new drug relative to a comparator.

The rationale for a Go decision under this approach is to have at least 50%

confidence that the true treatment effect is greater than TV, while at the same time

an unbiased and symmetrically distributed estimator bΔ has sufficient precision for us

to be confident that the true treatment effect is greater than MCID.

The TVMCID approach can be regarded as a special case of the LPDAT approach

with α2 ¼ 0.50, α1 ¼ α, and MAV ¼ MCID.
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7.2.6 A Comparison of the Five Approaches

The differences between the five approaches mainly reflect their different objec-

tives. The traditional hypothesis-testing approach is concerned with detecting

compounds that achieve the MCID level of efficacy. By comparison the other

four approaches focus on a target level of efficacy which is greater than the

MCID. An ESoE design is a small screening design whose main purpose is to

clearly separate compounds worth accelerating or needing to be killed from the

remaining compounds. The LPDAT approach has the same facility as the ESoE for

a Pause decision but is concerned with achieving evidence of exceeding a minimum

acceptable value and a target value. Finally, TV and TVMCID are simplifications of

the LPDAT approach which require the observed effect to exceed the target value.

Given the different objectives of the five approaches, it is possible to describe

their strengths and weaknesses. For example, the traditional hypothesis-testing

approach will have a low probability of missing a compound with the MCID

level of efficacy but can also have high probabilities of continuing development

for effects smaller than the MCID. The ESoE design can pick out clear winners and

losers but may result in a Pause decision for a large percentage of compounds due to

its small size. The LPDAT design can give high confidence that a treatment effect is

greater than the MAV with some confidence of being greater than the target value,

but the sample size required may be large. Finally TV and TVMCID designs give

simple rules in terms of the observed effect required to be exceeded but may have

low precision and kill a bigger percentage of compounds with the target level of

efficacy than desired.

We describe an example scenario in Sect. 7.6 in which some of the comparison

points made above are illustrated.

7.3 Criteria for Determining Sample Size

In this section we consider how to determine the sample size for trials whose data

will be used to support decision-making under the five approaches described in

Sect. 7.2. We consider the two-group parallel design and the case when the

responses for the primary endpoint are Normally and independently distributed

with known constant variance. Extensions to other common settings are

straightforward.

In what follows we denote values for the primary efficacy endpoint by Xij for

i ¼ 1, 2 and j ¼ 1 to n where i ¼ 1 represents the treatment of interest (e.g., the new

drug), i ¼ 2 represents a comparator, and there are n subjects allocated to each

treatment. We assume that the Xij’s are Normally and independently distributed

with known common variance σ2 and mean μi.
We let �Xi denote the mean of Xij , j¼ 1 , . . . , n, Δ¼ μ1� μ2, and Zγ the upper

100γth percentile of the standard Normal distribution N(0;1). For simplicity, we
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assume that �X1 � �X2 is used as an estimator for Δ. Furthermore, we use Lγ to denote
the lower limit of a lower 100(1�γ)% confidence interval (Lγ,1) and Uγ to denote
the upper limit of an upper 100(1�γ)% confidence interval (�1, Uγ).

7.3.1 The Traditional Hypothesis-Testing Approach

To derive a sample size for the traditional hypothesis-testing approach, we need to

specify the significance level for the test and a power requirement, e.g., 100�
(1� β)%, when the true treatment effect is equal to the MCID. The required sample

size per group (n) can be found from the well-known formula (Matthews 2000)

provided in Chap. 2:

n ¼ Zα þ Zβ
� �2

2σ2

ΔMCIDð Þ2

where ΔMCID is the treatment effect equal to the MCID.

7.3.2 The ESoE Approach

To determine a sample size, we rely on the following Accelerate and Kill functions:

A tð Þ ¼ P Z > C2jδ ¼ tð Þ
K tð Þ ¼ P Z < C1jδ ¼ tð Þ

where Z is defined in (7.1). Under the assumptions of a Normal distribution and

known variance, Z has a standard Normal distribution.

A sample size can be determined by specifying A(0) and A(ΔESoE) or alterna-

tively by specifying K(0) and K(ΔESoE) where ΔESoE represents a target level of

efficacy needed to bring the new drug to a patient population. The corresponding

expressions for the sample size in each group are

nA ¼ 2σ2 ZA 0ð Þ þ Z1�A ΔESoEð Þ
� �2

ΔESoEð Þ2

and

nK ¼ 2σ2 ZK 0ð Þ þ Z1�K ΔESoEð Þ
� �2

ΔESoEð Þ2 :
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For a sample size determined by, for example, A(0) and A(ΔESoE), one can

determine K(ΔESoE) for a desirable level of K(0). The sample size that satisfies

both sets of requirements on A(t) and K(t) at t ¼ 0 and t¼ΔESoE can be determined

by max(nA, nK).

7.3.3 The LPDAT Approach

The required sample size for the LPDAT approach depends on the classification of

the six possible outcomes described in Sect. 7.2.3 as Stop, Pause, and Go and on the

desired operating characteristics. To enable a comparison with the other

approaches, we consider the following decisions: outcomes (1), (2), and (4) in

Fig. 7.1 lead to a Stop decision and outcomes (5) and (6) lead to a Go. A decision to

Pause is thus only made whenLα1 is belowMAV andUα2 is above TV [i.e., outcome

(3) in Sect. 7.2.3]. The rationale for a Pause decision in this case is the lack of

precision in the treatment effect estimate (as reflected by a wide confidence

interval) that suggests the need for additional information to make a Go or Stop

decision.

To calculate the sample size, we consider the desired probabilities of Stop and

Go decisions when Δ (the true difference in means) is equal to MAV or to the target

value TV. By construction the probability of stopping when Δ equals to TV is α2.
The probability of a Go when Δ equals to MAV is α1 provided that the requirement

of Lα1 > MAV dominates the requirement of Uα2 > TV when Δ ¼ MAV. This

leaves the probability of Go when Δ ¼ TV and the probability of Stop when

Δ ¼ MAV to be determined. In this chapter, we assume that the second of these

is set equal to 0.5 representing a level of efficacy for which the sponsor is indifferent

if the decision is to Stop or otherwise. The probability of a Go when Δ ¼ TV can

then be obtained by calculation for a given sample size.

In general, if we only specify α1 and α2, we can vary the sample size and find the

Stop probability at Δ¼MAV for a given sample size. The sample size that gives us

an acceptable level for this Stop probability can be selected as the sample size for

the study. The tool LPDAT was developed to enable this selection by computing the

Go/Stop/Pause probabilities for a set of sample sizes and rules specified by the

users.

7.3.4 The TV and TVMCID Approaches

The sample size for these two approaches can be obtained by the requirement on

precision. One way to implement this is to require that the value of the following

test statistic
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�X 1 � �X 2 � dffiffiffiffiffi
2σ2
n

q ð7:2Þ

be equal to the critical value Zα when �x 1 � �x 2 is equal to the target value. In (7.2),

d is zero for the TV approach and MCID for the TVMCID approach.

7.4 Metrics for a Proof-of-Concept Study

The metric of most interest at the POC stage is likely to be the probability of a

correct decision. A correct decision could be correctly distinguishing between no

effect and some effect or, more stringently, correctly distinguishing between an

effect less than the targeted effect and an effect at least equal to the target effect.

A correct decision is comprised of two components, a correct negative decision

and a correct positive decision. At the POC stage given the relative infrequency of

effective drugs, it is likely to be more important to have a high probability of a

correct negative decision than a correct positive decision. That being said, we want

to acknowledge situations when a serious unmet medical need may justify the

acceptance of a higher false-positive rate. In the following sections, we will see

for a given scenario, how the different trial designs trade off correct negative and

correct positive decisions.

As described in Sect. 6.2, the two types of error can be evaluated conditionally

on the truth or unconditionally if the probability of the truth can be reasonably

specified. For the former we can look at the Frequentist operating characteristics for

a particular trial design. For the latter we can make use of a prior distribution for the

treatment effect, as previously described. We discuss in the next section possible

ways of obtaining a prior distribution for the treatment effect at the POC study

stage.

7.5 Prior Distributions for the Treatment Effect

As described in Chap. 5, we can use a prior distribution for the treatment effect to

evaluate a design. At the POC study stage, it is unlikely that there will be much

previous information about the effect of the new drug for the relevant endpoint and

population of interest. Consequently, the main approaches to obtaining a prior are

likely to be the use of historical results for other similar compounds and elicitation

of expert opinion.

We described in Sect. 5.7 the use of a mixture distribution as a prior when a new

compound might not have any effect. Alternatively, if the compound is precedented
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or it is felt that the compound has a very convincing mode of mechanism, a prior

with a distribution of nonzero treatment effects may be used.

For situations where it is felt that there is no relevant prior information from

previous trials, it is possible to try to derive a prior from expert opinion as discussed

in Sect. 5.8 (Kinnersley and Day 2013; Walley et al. 2015).

Whether eliciting a prior distribution is likely to be useful depends strongly on

the experts having relevant information and if they do whether this information can

be appropriately summarized as a distribution for the treatment effect. We want to

caution against the tendency to be overly optimistic when conjecturing treatment

effect. There are many examples in drug development where expert opinion was

that a compound should work but trial results proved otherwise. Thus a good deal of

caution is needed if this approach is to be used. If it is established that the expert

opinion is really based on previous trial results, then these results might be more

directly used to obtain a prior distribution.

7.6 An Example of Evaluating POC Trial Designs

for Desired Characteristics

We consider a particular scenario to show how proof-of-concept trial designs can be

evaluated to see if they possess the desired characteristics.

Following the notation in Sect. 7.3, we assume that the MCID defined in the

traditional hypothesis-testing approach is equal to MAV in the LPDAT approach

and that the difference of interest, ΔESoE, for the ESoE approach is the same as the

target value in the LPDAT approach and the target values for the TV approaches.

With these assumptions, we refer just to MCID when meaning MCID or MAV and

just to TV when meaning the same target value for ESoE, LPDAT, and the two TV

approaches. We return to these assumptions later.

We use the idea of an effect size (Cohen 1988) defined as Δ/σ. We consider the

scenario where the MCID is an effect size of 0.3 and the target value is an effect size

of 0.5.

To sample size the trial using each of the five approaches, we make some

additional assumptions:

1. We assume a one-sided 2.5% significance test and a required power of 80% for

the traditional hypothesis-testing approach (Trad).

2. For ESoE we set K(TV)¼ 0.05 ,K(0)¼ 0.80 ,A(0)¼ 0.05, and A(TV)¼ 0.80.

The choice of A(TV) ¼ 0.80 can be viewed as analogous to the use of 80%

power in the traditional approach. For the scenario considered, the sample size

obtained for ESoE is less than half of that for the traditional approach. Recall

that the ESoE design aims for a significant saving compared with the traditional

approach by focusing on treatments with a substantial benefit. For situations

where the ESoE sample size is greater than half of that for the traditional

approach, we recommend that a sponsor considers capping the sample size at
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half that of the traditional approach. This may result in the possibility that the

trial is underpowered so this recommendation needs to be considered carefully to

see if it is suitable for a particular situation.

3. For LPDAT we use a lower one-sided 80% confidence interval (i.e., α1 ¼ 0.20)

and an upper one-sided 95% confidence interval (i.e., α2 ¼ 0.05). We set the

probability of Stop when Δ¼MAV at 0.5. These confidence levels are similar to

those that have been used by the originators of the LPDAT method in their

examples.

4. For the TV approaches (TV and TVMCID), we use a lower one-sided 95%

confidence interval to assess the requirement on precision (i.e., α1¼ 0.05).

Using the methods of sample sizing described in Sect. 7.3, we obtain the

following sample sizes per group for the studies to support the five

approaches (Table 7.1). The differences in the sample size reflect differences in

objectives and demands of the new treatment. As a result, the designs will have

different operating characteristics.

In what follows we refer to a Go decision as meaning Go or Accelerate and a

Stop decision as meaning Stop or Kill a compound. A Pause decision means that

further data are needed before a Go or Stop decision can be made.

7.6.1 Conditional Evaluation of the Trial Designs

To examine the conditional properties of each trial design, we look at its operating

characteristics. We do this by graphing the probability of Stop and Go and, where

relevant, the probability of a Pause decision for a range of the true treatment effect

of interest.

In evaluating these graphs, we assume that a correct positive decision can only

occur when the true treatment effect is greater than or equal to the MCID (or the

target value). Correspondingly, a correct negative decision can only occur when the

true treatment effect is less than the MCID (or the target value).

The graphs for Go, Stop, and Pause probabilities we obtained for the five designs

are shown in order in Figs. 7.2, 7.3, and 7.4. All probabilities are calculated exactly

using Normal distributions with σ assumed known and equal to 1. The use of t-
distributions would lead to very similar probabilities. The biggest differences would

Table 7.1 Sample sizes per

group for five different

approaches

Approach Sample size

Trad n ¼ 175

ESoE n ¼ 50

LPDAT (MAV ¼ MCID) n ¼ 135

TV n ¼ 22

TVMCID n ¼ 136
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be for the TV approach because of its smaller sample size, but even for this

approach, the differences would be small and the qualitative conclusions the same.

First we consider the case when a correct Go decision can only occur when the

true treatment effect size is greater than the MCID of 0.3. From Fig. 7.2, one can see

that the probability of a correct Go decision is highest initially for effect sizes just

greater than 0.3 for the traditional and ESoE designs. As the effect size becomes

larger, the probability for the ESoE and LPDAT designs become close but are

above the probabilities for the TV and TVMCID designs. For bigger effect sizes (e.g.,

�0.8), the probability for traditional, ESoE, LPDAT, and TVMCID designs con-

verges above that for the TV design before the probability for the TV design catches

up for extremely large effect sizes.

In the above situations, the probability of a correct Stop shown in Fig. 7.3 is

generally the greatest for the TV and TVMCID designs. The ordering of the proba-

bilities, from highest to lowest, for the other three designs is LPDAT, then tradi-

tional, and then ESoE until Δ is greater than 0.25 when the ordering of the

probabilities for the traditional and ESoE designs swaps over.

If a correct positive decision can occur only when the true treatment effect is at

least 0.5, then the probability of a correct positive decision is virtually 1.0 under the

traditional approach. The next biggest probabilities of a correct positive decision

when the treatment effect size is 0.5 or above are for the LPDAT and ESoE designs.

The two designs continue to generate the next biggest probabilities of a correct

positive decision until the treatment effect size reaches around 0.8 when the

TVMCID design has a similar probability. Even at an effect size of 1.0, historically

a very large effect size, the probability of a correct positive decision for the TV

design is less than that for the other four designs.

The probability of a correct negative decision when the treatment effect size is

less than 0.5 is very high for the TV and TVMCID designs. The ordering of the

probabilities for the remaining designs from biggest to smallest is, as above,

Fig. 7.2 Probability of a Go decision for five different approaches
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LPDAT, then traditional, and then ESoE until Δ is greater than 0.25 when the

ordering of the probabilities for the traditional and ESoE designs swaps over.

We also note that the probability of a Pause decision for the ESoE design is

generally greater than that for the LPDAT design and that the highest pause

probability under these two designs is around 0.3. A developer needs to decide if

this level of a Pause probability is acceptable.

The choice of design will depend on the desirability of the different operating

characteristics, the definition of correct positive and correct negative decisions, and

the resources to be used for a particular design. If a correct positive decision is

regarded as a positive decision when the treatment effect size is greater than or

equal to the MCID, then it seems likely that the traditional or ESoE designs might

be preferred. If a correct positive decision is regarded, however, as a positive

decision when the treatment effect is greater than or equal to the target effect,

then one of the designs other than the traditional design may be preferred.

Fig. 7.3 Probability of a Stop decision for five different approaches

Fig. 7.4 Probability of a Pause decision for two different approaches
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We want to remind our readers that the above comparisons are for the purpose of

illustration only. Differences in sample sizes and the rationales behind the designs

will result in different operating characteristics. In practice, if we want a new

treatment to have an (true) effect size greater than 0.5 to consider the new treatment

worthy of development, it will not be appropriate to size the study to detect an effect

size of 0.3 as in the traditional approach. Sizing a study this way will not only

require more resources than necessary but will also incur a high probability of an

incorrect Go decision.

7.6.2 Unconditional Evaluation of the Trial Designs

In this section, we illustrate how one may evaluate the trial designs unconditionally

using a prior that reflects the sort of effect size seen for all compounds in the

pharmaceutical industry in the recent past. One way to represent the collective

experience on the effect size is a mixture prior with 80% of the mixture having a

point mass at zero and the remaining 20% having a Normal distribution centered at

0.5 with standard deviation of 0.17. One could also consider a more pessimistic

prior that is a 90%–10% mixture distribution. Under the first distribution, 10% of

compounds have an effect size greater than or equal to 0.5. This 10% success rate

agrees approximately with that which can be derived from the data in Hay et al.

(2014) for all indications—see Fig. 1 in this publication.

We assume first that our criterion for a correct Go decision requires that the true

treatment effect is equal to or greater than the MCID (defined to be an effect size of

0.3 in this chapter).

With these assumptions we include in Tables 7.2, 7.3, 7.4, 7.5, and 7.6 the

estimated probabilities for correct and incorrect decisions. The estimated probabil-

ities are obtained using simulation with the same 10,000 samples for the treatment

effect for each approach but different independent samples generated as the data for

each design given the simulated treatment effect. Given a simulated value for the

treatment effect from the prior distribution, as in Sect. 7.6.1, Normal distributions

with σ set equal to 1 are used to calculate probabilities. The use of t-distributions
would give very similar final estimated probabilities to those obtained below.

From the above tables, we can draw up Table 7.7 of PPV and NPV values,

defined as Pr(Δ � MCID|Go decision) and Pr(Δ < MCID|Stop decision).

A simple comparison of PPV and NPV values shows that based on the PPV and

NPV, the LPDAT design is likely to be regarded as the best among the five designs

because it has the highest value for the average of PPV and NPV without either

value being much inferior to the best achieved by the other designs. Such a

comparison does not, however, take into account the different sample sizes and

thus the resources spent. The LPDAT design has a smaller sample size than the

traditional design and virtually the same sample size as the TVMCID design. So

given its performance, LPDAT would likely be preferred to either design. The

ESoE design has a much smaller sample size and a good NPV value so might be
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Table 7.2 Estimated

unconditional probabilities

for traditional trial design

from 10,000 simulated trials

Truth

Δ<MCID Δ�MCID

Decision Stop 0.79 0.00 0.79

Go 0.03 0.18 0.21

0.82 0.18

Table 7.3 Estimated

unconditional probabilities

for ESoE trial design from

10,000 simulated trials

Truth

Δ<MCID Δ�MCID

Decision Stop 0.65 0.01 0.66

Pause 0.12 0.02 0.14

Go 0.05 0.14 0.19

0.82 0.17

*Probabilities do not sum to 1.00 due to rounding

Table 7.4 Estimated

unconditional probabilities

for LPDAT trial design from

10,000 simulated trials

Truth

Δ<MCID Δ�MCID

Decision Stop 0.81 0.02 0.83

Pause 0.01 0.03 0.04

Go 0.00 0.14 0.14

0.82 0.19

*Probabilities do not sum to 1.00 due to rounding

Table 7.5 Estimated

unconditional probabilities

for TV trial design from

10,000 simulated trials

Truth

Δ<MCID Δ�MCID

Decision Stop 0.78 0.08 0.86

Go 0.05 0.10 0.15

0.83 0.18

*Probabilities do not sum to 1.00 due to rounding

Table 7.6 Estimated

unconditional probabilities

for TVMCID trial design from

10,000 simulated trials

Truth

Δ<MCID Δ�MCID

Decision Stop 0.82 0.08 0.90

Go 0.00 0.10 0.10

0.82 0.18

Table 7.7 Estimated PPV

and NPV values for five

designs

PPV NPV

Traditional 0.84 1.00

ESoE 0.74 0.98

LPDAT 0.98 0.98

TV 0.68 0.90

TVMCID 1.00 0.91
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preferred especially if considered as a screening design, and the PPV and Pause

probabilities are acceptable. The TV design has a very small sample size (22 per

group). Considering its comparatively low PPV and NPV, it may be worthwhile to

invest more resources when an effect size like MCID is enough to move the new

drug forward.

We will next discuss the situation when the true treatment effect needs to be at

least equal to or greater than the target value for a correct Go decision. The target

value is set to be an effect size of 0.5. Tables 7.8, 7.9, 7.10, 7.11, 7.12, and 7.13

repeat the computations in Tables 7.2, 7.3, 7.4, 7.5, 7.6, and 7.7 except that now the

true treatment value needs to be equal to or greater than the target value for a correct

Go decision.

As before, a simple comparison of PPV and NPV values suggests that of these

options, the TVMCID design is likely to be a strong design candidate if the choice is

based on PPV and NPV alone. The traditional and LPDAT designs have notably

inferior PPV values compared to the TVMCID design. So given their similar or

bigger sample size, they are unlikely to be preferred to the TVMCID design. The TV

and ESoE designs have similar PPV and NPV values, so between these two designs,

the TV design would probably be preferred given its smaller sample size.

Again, it is important to keep in mind the assumptions behind the comparisons.

In this case, the requirement on the treatment effect is quite strong (effect size has to

be equal to or greater than 0.5). As a result, an approach that has a more stringent

Go criterion will likely fare better in the comparisons.

It is also important to look at the row marginals in Tables 7.2, 7.3, 7.4, 7.5, and

7.6 (and Tables 7.8, 7.9, 7.10, 7.11, and 7.12). The probability of a Go decision is

the highest for the traditional design and the lowest under the TVMCID design. The

decreasing Go probabilities from the traditional and ESoE to the TV and TVMCID

designs reflect the more stringent criteria placed on the Go decision for the latter.

The analyses above can be repeated with changed decision criteria and, if

desired, a changed sample size. For example, a developer may wonder if a better

trade-off between PPV and NPV values could be achieved for the ESoE design with

the same sample size, but a modified criterion. Suppose, the developer considers

accelerating development when the test statistic is significant at the one-sided 0.001

level instead of at the one-sided 0.05 level while leaving the decision of when to kill

a compound the same as in the original design. Using the amended decision

criterion, one can obtain the results in Table 7.14. The PPV of the amended rule

is 0.78 and the NPV is still 1.00 (with rounding error). But the Go probability has

now decreased to 6.5%!

Table 7.8 Estimated

unconditional probabilities

for traditional trial design

from 10,000 simulated trials

Truth

Δ<TV Δ�TV

Decision Stop 0.79 0.00 0.79

Go 0.11 0.10 0.21

0.90 0.10
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It can be seen that the PPV value is now close to that for the TVMCID design and

the NPV has remained at 1.00 to two decimal places. Given that the sample size for

the amended ESoE design (50 per group) is less than half that for the TVMCID

design (136 per group), it seems that this amended design could be a viable

alternative to the TVMCID design if the probability of a Pause decision (about

28%) is acceptable. By allowing a Pause decision that has an acceptable probability

in this case, one is able to improve the PPV and keep the NPV basically intact.

Table 7.9 Estimated

unconditional probabilities

for ESoE trial design from

10,000 simulated trials

Truth

Δ<TV Δ�TV

Decision Stop 0.66 0.00 0.66

Pause 0.14 0.01 0.15

Go 0.10 0.09 0.19

0.90 0.10

Table 7.10 Estimated

unconditional probabilities

for LPDAT trial design from

10,000 simulated trials

Truth

Δ<TV Δ�TV

Decision Stop 0.83 0.00 0.83

Pause 0.03 0.01 0.04

Go 0.04 0.09 0.13

0.90 0.10

Table 7.11 Estimated

unconditional probabilities

for TV trial design from

10,000 simulated trials

Truth

Δ<TV Δ�TV

Decision Stop 0.83 0.03 0.86

Go 0.07 0.07 0.14

0.90 0.10

Table 7.12 Estimated

unconditional probabilities

for TVMCID trial design from

10,000 simulated trials

Truth

Δ<TV Δ�TV

Decision Stop 0.88 0.02 0.90

Go 0.02 0.08 0.10

0.90 0.10

Table 7.13 Estimated PPV

values and NPV values for

required truth of Δ�TV

PPV NPV

Traditional 0.48 1.00

ESoE 0.49 1.00

LPDAT 0.68 1.00

TV 0.47 0.96

TVMCID 0.80 0.98
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7.7 Sensitivity Analyses for the Choice of Prior

Distribution

The choice of prior distribution for the unconditional evaluation of trial designs

may not be clear-cut. For a subjective prior, different experts may have different

opinions, which may lead to different prior distributions. Similarly, there may be

disagreement about which standard distribution to use. In these cases it seems

reasonable to evaluate designs with respect to each of the possible prior distribu-

tions and seek designs that perform reasonably well for all of the possible priors.

7.8 Discussion

In this chapter, we described a number of Frequentist approaches to decision-

making for POC studies. Together with choice of a type of experimental design

(e.g., parallel or crossover) and desired values for the metrics at the POC stage, we

can determine the needed sample size. We considered the case of a two-group

parallel group study when the responses are Normally and independently distrib-

uted with possibly different means for the two groups and known constant variance.

Results for other experimental designs and other endpoints can be derived using

similar principles.

We looked at a specific scenario and showed how trial designs for the five

approaches to decision-making could be evaluated conditionally on the true treat-

ment effect using operating characteristics and unconditionally given a prior dis-

tribution for the treatment effect in terms of their PPV and NPV. These metrics are

likely to be important at this stage of drug development. Further details of the

approaches used in this chapter and conditional evaluation of designs for another

scenario can be found in Kirby and Chuang-Stein (2016).

We did not specifically discuss Bayesian decision rules, but these could be

constructed through the introduction of a prior for the treatment effect. For exam-

ple, one can set up a decision rule that calls for a Go decision if the posterior

probability of the treatment effect Δ being equal to or greater than MCID (or TV) is

at least γ. One can examine the Frequentist operating characteristics of this rule by

assuming that the true treatment effect in the trial is a fixed value as the case in

Figs. 7.2, 7.3, and 7.4. One can also examine the unconditional operating

Table 7.14 Estimated

probabilities for ESoE trial

design with amended decision

criteria from 10,000

simulated trials

Truth

Δ<TV Δ�TV

Decision Stop 0.654 0.003 0.657

Pause 0.232 0.046 0.278

Go 0.014 0.051 0.065

0.900 0.100
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characteristics of the rule by assuming that the true treatment effect in the trial has a

distribution and simulate trial data accordingly.

A natural question in evaluating the unconditional operating characteristics of

the Bayesian rule described above is whether the distribution assumed for the

treatment effect in simulating the trial data should be the same as the prior used

in calculating the posterior distribution. While using the same prior will produce the

best operating characteristics for the Bayesian rule, in the case of a new drug for a

medical condition with no treatment options, the prior may come completely from

expert opinions or from a general reference distribution. In these cases, we recom-

mend, as described in Sect. 7.7, to also use other prior distributions to generate the

trial data and examine the impact of different data-generation priors. One can then

choose a sample size that provides good coverage for a range of plausible data-

generating priors for the treatment effect in the trial.

Another Bayesian approach that has received increasing attention is to use

historical data to form a prior for the control group in the trial. This strategy of

borrowing from historical data has the potential to save on the sample size required

in the study compared with the same decision rule without a prior for the compar-

ator. Viele et al. (2014) reviewed several methods for historical borrowing and

provided a comparison of these methods. They also discussed a list of key issues

involved in historical borrowing. A critical assumption for this strategy is the

assumption that the prior is compatible with the control data that will be produced

in the trial under planning.

For comparison purpose, we assumed the same target value for the ESoE,

LPDAT, TV, and TVMCID approaches. This assumption could be relaxed. However,

a common definition of a correct decision would be needed if we want to compare

various trial designs using the concept of a target value.
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Chapter 8

Designing Dose-Response Studies

with Desired Characteristics

The dose makes the poison.
Paracelsus

8.1 Introduction

As described in Chap. 6, “elucidation of the dose–response function” is regarded as

a key requirement in drug development (ICH-E4 1994). Consequently, designing a

dose–response study with the desired characteristics is an important activity in drug

development. Sacks et al. (2014) found in a review of reasons for delay and denial

of FDA approval of initial applications for new drugs from 2000 to 2012 that 16%

of unsuccessful first-time applications included uncertainties related to dose selec-

tion. Further back in time for the period 1980–1999, Cross et al. (2002) found that

dosage changes in indicated populations occurred in 21% of new molecular entities

considered to be evaluable in their assessment.

In this chapter, we focus on examples using the Emax model, but application to

other dose–response models or in the case of MCP-Mod (Bretz et al. 2005;

Bornkamp et al. 2009) to a collection of models could be extended easily. We

start by briefly reviewing the Emax model as background. We then consider the

design of a dose–response study covering both practical constraints and suggested

optimal designs.

Three metrics for assessing a dose–response design were introduced in Sect. 6.3.

We recap these metrics before discussing examples in which they are calculated.

Similarly to a POC design, it may be the case that only a conditional assessment

of the metrics (conditional on fixed values for the parameters in a dose–response

model) is thought to be appropriate for a particular dose–response design. We

consider a common way that such a conditional approach can be carried out by

specifying a number of interpretable scenarios. We apply this approach using

Maximum Likelihood fits of the three-parameter Emax model and a test for trend.

To assess a dose–response design unconditionally, a prior distribution is needed

for the unknown model parameters. We describe how such a prior distribution can

be derived given POC study results and PK-PD modeling which gives a projection
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of compound potency. We again apply the approach using the Maximum Likeli-

hood analysis method and a test for trend. We also use a Bayesian method of

analysis with the same prior as used for the evaluation of the design and a Bayesian

assessment of the significance of the Emax model fit.

We conclude with a general discussion of designing dose–response studies and

related issues.

8.2 The Emax Model

The four-parameter Emax model was introduced in Chap. 6 and is reproduced

below.

E Yijdið Þ ¼ E0 þ Emax � d λ
i

ED λ
50 þ d λ

i

� � ð8:1Þ

We focus on the Emax model because Thomas et al. (2014) found that for the

small molecule compounds with continuous endpoints they studied, assuming the

errors for the Emax model to be Normally and independently distributed with

constant variance, “compound-specific estimates and Bayesian hierarchical model-

ling showed that dose–response curves for most compounds can be approximated

by Emax models with ‘Hill’ parameters close to 1.0.” Here the Hill parameter is

another name for the λ parameter in model Eq. (8.1). Setting λ equal to 1 gives a

rectangular hyperbola shape for the dose–response curve as shown in Fig. 8.1. The

resulting model is the three-parameter Emax model.

Model Eq. (8.1) is usually used with continuous dose–response data. Binary data

can be modeled using the same model with a binomial distribution for the response

at each dose and constraints on the parameters to ensure that the modeled response

is in the range 0–1. An alternative is to fit the model

E Yjdið Þ ¼ F E0 þ Emax � d λ
i

ED λ
50 þ d λ

i

 !
ð8:2Þ

with a binomial distribution for each dose and F being the cumulative Normal or

cumulative logistic distribution. The latter model is a member of the class of

generalized nonlinear models (Turner and Firth 2015).
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8.3 Design of a Dose–Response Study

When designing a dose–response study, there are a number of practical constraints

that need to be considered. Perhaps primary among these is the existence of an

upper limit for the dose that can be given. This is likely to have been established in a

preceding multiple-ascending-dose study. The upper limit for dose is the highest

dose that is regarded as safe and can be tolerated by subjects. It is conventionally

referred to as the maximum tolerated dose (MTD).

Another key practical consideration for solid dosage forms is that usually only

certain doses are manufactured and therefore available. This comes about because

of constraints on the number and particular doses that pharmaceutical sciences can

provide.

Given the above constraints, it is unlikely that we will routinely implement the

optimal unconstrained design according to some optimality criterion. Various

optimality criteria have been suggested for designing a study (Atkinson et al.

2007; Fedorov and Leonov 2013). Some commonly used ones are:

1. D-optimality: minimizing the determinant of the variance-covariance matrix for

the parameter estimates for a model

2. A-optimality: minimizing the average of the variances of the parameter

estimates

3. E-optimality: minimizing the variance of the least well-estimated linear combi-

nation of parameters

Of the above optimality criteria, D-optimality tends to be the most frequently

used because it is interpretable as minimizing the generalized variance of the

estimated parameters in a model and because D-optimal designs often perform

well according to other optimality criteria (Atkinson and Donev 1992).

As an example, for the three-parameter Emax model, assuming independent and

identically distributed observations with constant variance, the D-optimal

unconstrained design would put one third of the subjects on each of the following

Fig. 8.1 An example of a model (8.1) with λ ¼ 1
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doses: 0, the ED50, and the (theoretical) dose required to achieve the maximum

response (Dette et al. 2010). The constraint of a maximum dose can be easily

incorporated into the minimization problem, and this leads to another dose (instead

of the ED50) between 0 and the ED50 being allocated one third of the subjects. The

resulting design may not be used for a number of reasons, however, including:

(a) The ED50 dose or other identified “middle” dose not being available

(b) A desire to have more doses in case the three-parameter Emax model is not

appropriate

(c) A desire to have more doses to collect safety data

An optimal design can be used, though, to measure the relative efficiency of

other designs to see how far they depart from the optimum.

It should be noted that the above criteria lead to locally optimal designs, i.e.,

designs that are optimal when the true values for the unknown parameters are close

to those used to derive the design. This is because the information matrix used in the

above optimality criteria depends on knowing the values of the parameters. It

should also be noted that the optimality criteria above are not directly related to

the metrics for dose–response designs described in Chap. 6 and recapped below.

However, we expect a D-optimal design that minimizes the generalized variance of

the estimated parameters in a model to have good properties with respect to

minimizing the average prediction error.

Bayesian optimal designs can be derived by integrating an optimality criterion

over a prior distribution and selecting the design that has the lowest/highest value

for a criterion that is to be minimized/maximized. This approach thus takes into

account the uncertainty in the parameter values.

8.4 Metrics for Dose–Ranging Studies

Three metrics were introduced in Chap. 6 and are reproduced here for convenience.

The metrics are:

Metric #1 Probability to correctly detect a positive dose–response relationship.

Metric #2 Probability to correctly identify a target dose, given that a positive

dose–response relationship has been concluded. A target dose could be

a dose with a minimum treatment effect or a dose that has a desired

effect from the commercial perspective.

Metric #3 Relative average prediction error obtained by averaging the absolute

differences between the estimated and the true dose–response values at

each of the doses included in the study and dividing the average by the

absolute value of a prespecified target effect.

It was also noted in Sect. 6.3 that Metrics #1 and #2 above could be combined to

create a joint metric requiring detection of a dose–response relationship and correct

identification of a target dose. A further metric that has been proposed is the
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probability of detecting any dose with at least the minimum treatment effect

(Bornkamp et al. 2007). We do not advocate this metric because we think that

Metric #2 or the combination of Metrics #1 and #2 is more likely to give better

assessments of a dose–response design. This is because the ultimate goal of a

Phase 2 dose-ranging design is to select a target dose or doses for confirmatory

testing in Phase 3.

8.5 Conditional Evaluation of a Dose–Response Design

As described in the Introduction, unconditional evaluation of a dose–response

design may not be appropriate when there is not sufficient information to form a

prior distribution for the parameters in an Emax model. This could come about, for

example, if no POC study has been performed.

One way to conduct a conditional evaluation of a dose–response design is to

consider a number of plausible scenarios for which we hope to have a design that

has good characteristics. For example, we can consider Base, Pessimistic, and

Optimistic scenarios as frequently hypothesized by pharmaceutical companies.

Such scenarios usually consider more than just efficacy. We will only focus on

differences in efficacy between the scenarios in this chapter. The Base case is taken

to be the dose response if the compound performs as expected. The Pessimistic case

is when the compound does not perform as well as expected but would still make

the compound minimally interesting. Finally, the Optimistic case corresponds to a

situation when the dose response is better than expected and probably represents as

good a dose response as one could hope for. To check the false-positive error rate

for detecting a positive dose response, the null scenario of no dose response can also

be included.

To illustrate this approach, we adapt the example scenario used by Bornkamp

et al. (2007). The example is a 6-week dose-ranging study for neuropathic pain in

which the primary endpoint is the change from baseline at 6 weeks on a visual

analogue scale (VAS) of pain. The VAS takes values between 0 (no pain) and

10 (highest pain) on a continuous scale and is assumed to be Normally distributed.

Weekly VAS measurements are collected in each patient. The between-patient

standard deviation is set to 2.5 units and the within-patient standard deviation at

1.5 units.

Let VASk denote the VAS measurement at the kth week, k¼ 1 , . . . , 6, and with

k ¼ 0 representing baseline. The primary endpoint is defined as Y¼VAS6�VAS0.

From the assumptions above, Y is Normally distributed with variance σ2¼ (2)(1.52)¼
4.5. Negative values of Y give indication of efficacy in reducing the neuropathic pain. It
is assumed that the available doses are 0, 1, 2, 3, 4, 5, 6, 7, and 8 units.
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We consider three possible dose–response curves corresponding to the Base,

Pessimistic, and Optimistic scenarios. For the Base case, we consider that the true

dose–response curve is

E Yjdið Þ ¼ �1:5� di
0:79þ dið Þ ð8:3Þ

while for the Pessimistic case, we have

E Yjdið Þ ¼ �1:2� di
0:79þ dið Þ ð8:4Þ

and for the Optimistic case, we have

E Yjdið Þ ¼ �1:8� di
0:79þ dið Þ ð8:5Þ

We follow the assumption adopted by Bornkamp et al. that the placebo response

is zero (i.e., the expected mean change from baseline at week 6 for the placebo

group is 0). We also assume that the ED50 is 0.79 in each case. The three assumed

dose–response curves are displayed in Fig. 8.2 for a dose range from 0 to 10 units.

We suppose that the design we wish to evaluate is one with five equally spaced

doses of 0, 2, 4, 6, and 8 units where a dose of 8 units is the MTD. We choose five

doses because they are generally sufficient to allow the fit and assessment of a four-

parameter Emax model if required while not being so many as to be considered

impractical. From our experience, a design with equally spaced doses or log doses

is among the most commonly used design. We assume that 30 subjects are ran-

domized to each dose. The use of 30 subjects per dose reflects another common

approach of having an equal number of subjects given each dose, while the total of

150 subjects reflects a plausible constraint on the number of subjects for the

Fig. 8.2 Scenarios for conditional evaluation of designs for a three-parameter Emax model
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neuropathic pain indication. We assume that the target minimum treatment effect is

a reduction of at least 1 point compared to placebo.

Using the “LDOD” package in the R software (R Core Team 2014; Masoudi

et al. 2013), we found the relative efficiency of the above design to the D-optimal

design with a maximum dose of 8 units to be 61% for all three possible values for

Emax in Eqs. (8.3)–(8.5).

The metrics described in Sect. 8.4 are implemented as follows. The detection of

a positive dose response is assessed using a trend test defined as the t-test for a
negative slope when a linear regression model with dose as the explanatory variable

is fitted. The test is conducted using a one-sided 5% significance level. To assess

whether a target dose is correctly identified, we define a target dose interval as all

doses which give an effect within 10% of the target effect of a 1 point reduction in

VAS score using the true dose–response model. For a given target effect, the target

dose for a four-parameter Emax model is given by

target dose ¼ ED50

Emax

target
� 1

� �1=λ ð8:6Þ

provided that Emax

target
> 1.

For the three scenarios, the target dose intervals are given in Table 8.1.

Correctly identifying the target dose is defined as identifying a dose that is within

the target dose interval. For simplicity, the estimated dose is allowed to be contin-

uous and to lie outside the range of the doses used. The framework of evaluation is

equally applicable when additional conditions are imposed on the estimated target

dose. Finally the relative average prediction error is defined using the five doses

included in the study.

To evaluate the design, we use a Maximum Likelihood fit of a three-parameter

Emax model with parameter values bounded to avoid numerical overflow (Brain

et al. 2014). The parameter bounds we use are �1,000,000 to 1,000,000 for the

parameter E0, �10 to 10 for log(ED50), and �1,000,000 to 1,000,000 for Emax.

Simulating 10,000 data sets for each scenario and measuring Metrics #1 to #3 gave

the results shown in Table 8.2.

It can be seen immediately from Table 8.2 that correctly identifying a target dose

given evidence of a positive dose–response can be a difficult problem. The prob-

abilities for correctly detecting a dose response for all of the scenarios might be

viewed as reasonable, bearing in mind that the Pessimistic scenario is of minimal

Table 8.1 Target dose intervals for three scenarios (target defined as 1-point reduction in pain

score from baseline compared with placebo)

Scenario Target dose interval

Pessimistic (2.37, 8.69)

Base (1.19, 2.17)

Optimistic (0.79, 1.24)
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interest. The relative average prediction error is estimated to be just over 20% for all

three scenarios.

To see if the probability of correctly identifying a target dose can be improved,

we consider the effect of doubling the sample size per dose or widening the interval

allowed around the target effect for a correct decision on the target dose.

Doubling the number of subjects per dose, we obtained the results in Table 8.3.

From Table 8.3, it can be seen that doubling the number of subjects per dose has

some impact on the probability of correctly identifying a target dose given that a

positive dose–response relationship has been declared for the Optimistic and Base

scenarios, but actually lessens the corresponding probability for the Pessimistic

scenario. By comparison, the probability of correctly detecting a positive dose–

response relationship is now virtually 100% for the Base and Optimistic scenarios.

We next examine the effect of varying the allowed interval around the target

effect for the original design. We display the results for allowing the interval around

the target effect to be �15%, �20%, �25%, and �30% in Table 8.4.

We can see from Table 8.4 that widening the allowed interval around the target

effect generally increases the probability of correctly identifying a target dose. The

probabilities are biggest for the Pessimistic scenario because the dose response is

flattest for this scenario, and a larger interval around the target effect translates to a

large target dose interval. Correspondingly, the dose response is steepest for the

Optimistic scenario, and the larger target effect interval does not translate into a

similarly larger target dose interval for this scenario.

It is of interest to compare the first dose–response design (i.e., 30 subjects on

each of five equally spaced doses of 0, 2, 4, 6, and 8 units) with one that is closer to

Table 8.2 Results for 10,000 simulated trials for Maximum Likelihood fit of a three-parameter

Emax model with 30 subjects per dose for doses 0, 2, 4, 6, and 8 units

Metric

Scenario

Pessimistic Base Optimistic

#1 probability to correctly detect a positive dose–response

relationship

0.61 0.77 0.89

#2 probability to correctly identify a target dose given that a

positive dose response has been declared

0.44 0.18 0.13

#3 relative (to target effect) average prediction error 0.21 0.21 0.22

Table 8.3 Results for 10,000 simulated trials for Maximum Likelihood fit of a three-parameter

Emax model with 60 subjects per dose for doses 0, 2, 4, 6, and 8 units

Metric

Scenario

Pessimistic Base Optimistic

#1 probability to correctly detect a positive dose–response

relationship

0.94 0.99 1.00

#2 probability to correctly identify a target dose given that a

positive dose response has been declared

0.33 0.23 0.21

#3 relative (to target effect) average prediction error 0.16 0.16 0.17
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the local D-optimal design when the Base case scenario is considered true. We thus

consider a design with still a total of 150 subjects and five doses but with the

following allocation to doses: 40 subjects to placebo, 40 subjects to a dose of 1, 15

subjects to a dose of 2, 15 subjects to a dose of 5, and 40 subjects to a dose of 8. This

design places more subjects at the two ends of the dose range. It also uses different

doses (doses 0, 1, 2, 5, and 8) compared to the first design.

The efficiency of this design relative to the local D-optimal design, as given by

the “LDOD” package in R, is 89% for all three assumed values for Emax.

The estimated metrics obtained for 10,000 simulations for the new design are

shown in Table 8.5. Even though the new design was conceived under the Base case

assumption, we evaluated its performance under the Pessimistic and Optimistic

scenarios also.

From Table 8.5, it can be seen that the estimated metric for detecting a positive

dose response is improved somewhat, but the probability of correctly identifying a

target dose given a positive dose response has been declared is estimated to be

lower for the Pessimistic scenario. The relative prediction error is similar. A

disadvantage of this design is the reduction in the amount of safety data for the

two middle doses.

Table 8.4 Probability of correctly identifying a target dose given a positive dose response has

been declared for results from 10,000 simulated trials for the Maximum Likelihood fit of a three-

parameter Emax model with 30 subjects per dose for doses 0, 2, 4, 6, and 8 units

Allowed interval around target effect for a correct decision

Scenario

Pessimistic Base Optimistic

�15% 0.54 0.27 0.20

�20% 0.61 0.35 0.26

�25% 0.65 0.45 0.32

�30% 0.67 0.54 0.39

Table 8.5 Results for 10,000 simulated trials for Maximum Likelihood fit of a three-parameter

model with 40 subjects per dose for doses 0, 1, and 8 units and 15 subjects per dose for doses 2 and

5 units

Metric

Scenario

Pessimistic Base Optimistic

#1 probability to correctly detect a positive dose–response

relationship

0.65 0.81 0.92

#2 probability to correctly identify a target dose given that a

positive dose response has been declared

0.39 0.20 0.17

#3 relative (to target effect) average prediction error 0.21 0.22 0.22
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8.6 Unconditional Evaluation of a Dose–Response Design

We proceed to consider unconditional evaluation of a dose–response design using a

design prior distribution. We will first describe one way to obtain such a distribu-

tion, given the results of a POC study and the projected potency of a compound in

the next section.

8.6.1 Obtaining a Prior from POC Study Results
and a Projection of Compound Potency

For an Emax model, a prior is needed for the model parameters. We consider the fit

of the four-parameter Emax model so we require a prior for the parameters E0, Emax,

ED50, and λ. One approach is to combine independent prior distributions for each of

these parameters to obtain a joint distribution.

For E0 there is often some information about the placebo response in the POC

study. There may also be other studies in the literature that can be used to help

derive a prior distribution for E0. A prior distribution for the ED50 can be obtained

by using a PK/PD prediction of potency and placing a distribution around it. In

practice, Normal distributions are frequently assumed for E0 and the response for a

particular dose.

As for a prior for the Emax parameter, we can first define a prior for the response

to a particular dose used in a POC study. This prior together with prior distributions

for E0, ED50, and λ defines a prior distribution for the Emax parameter. Under this

approach, the prior distribution for the Emax parameter is derived indirectly.

For the λ parameter, in the absence of other information, Thomas et al. (2014)

suggested using a beta distribution scaled to (0,6) with parameters 3.03 and 18.15 as

a prior. Thomas et al. derived this distribution and a t3 distribution with mean 0.79

and scale parameter 0.6 for log(ED50/P50), where P50 is a preliminary prediction of

the ED50, by fitting a Bayesian hierarchical model to the mean response E(Yjk|D) at
dose D based on data from studies of 27 small molecule compound-indication

combinations.

E YjkjD
� � ¼ E0jk þ EmaxjD

λj

ED
λj
50j þ Dλj

ð8:7Þ

In Eq. (8.7), j denotes the jth compound and k the kth study for compound j.
Residual errors were assumed Normally distributed with a constant variance for a

compound.

The t3 distribution with mean 0.79 and scale parameter 0.6 and the rescaled beta

distribution are approximate posterior predictive distributions for log(ED50/P50)

and λ, obtained from the fitted Bayesian hierarchical model using a more
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informative prior for the ED50 and a scaled beta prior for λ. The approximate scaled

beta distribution was the most diffuse of the predictive distributions obtained for λ
considered by Thomas et al., and the t3 distribution with mean 0.79 and scale

parameter 0.6 was the corresponding approximate predictive distribution obtained

for log(ED50/P50).

For a more detailed discussion on the derivation and use of the rescaled beta and

the t3 distributions, see Thomas et al. (2014).

8.6.2 An Example

We consider the same example as introduced in Sect. 8.5, but instead of assuming

particular sets of values for the parameters in a three-parameter Emax model, we

now assume that we have a four-parameter Emax model with a design prior

distribution for the four parameters.

The design prior distribution we shall use is the product of four independent

prior distributions for the parameters as follows:

1. For E0 we assume a N(0; 0.12) distribution.
2. For Emax we assume a N(1.5; 0.22) distribution.
3. For ED50 we assume a t3 distribution with mean 0.79 and scale parameter 0.6 for

log ED50=P50ð Þ as described in Sect. 8.6.1. We use the value 0.79 for P50.

4. For λ we assume a beta distribution with parameters 3.03 and 18.15 scaled to

(0,6) as described in Sect. 8.6.1.

The assumed prior distribution for each parameter is shown in Fig. 8.3.

To give an idea of the corresponding joint prior obtained by combining the

independent priors for each parameter in terms of the dose–response curves, we

generate 50 Emax curves by taking random samples from the prior distributions for

E0, Emax, ED50, and λ. The curves are shown in Fig. 8.4.

We also give in Table 8.6 six-point summaries for the prior distribution for dose

effects relative to placebo from 10,000 random samples.

To illustrate the evaluation of designs using the above design prior, we use the

two designs discussed in Sect. 8.5 and summarized in Table 8.7.

Using each of the designs and taking 10,000 samples from the design prior

distribution, we can, as before, examine the estimated metrics for the design from a

Maximum Likelihood fit and the use of the test for trend. We want to make it clear

that we use the design prior distribution to generate data but use Maximum

Likelihood to fit the Emax model to the resulting data. In other words, we are not

conducting any Bayesian analysis of the simulated data.

Given the use of the design prior distribution, we can further split the metrics

obtained by whether or not the truth of a 1-point difference from placebo is satisfied

at the highest dose. Doing this, we obtain the results in Tables 8.8 and 8.9 for the

first and second designs, respectively.

The probability of detecting a dose response is only moderate for both designs

although higher for Design 2. Again we can see that the probability of correctly
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Fig. 8.3 Prior distributions for the four parameters for unconditional evaluation of designs for a

four-parameter Emax model

Fig. 8.4 Fifty simulated four-parameter Emax model dose–response curves using priors for

parameters displayed in Fig. 8.3

Table 8.6 Summary statistics for dose effects for 10,000 simulated dose–response curves using

prior distributions displayed in Fig. 8.3

Dose Min Q1 Median Mean Q3 Max

1 �1.83 �0.75 �0.60 �0.60 �0.44 0.00

2 �1.98 �0.94 �0.78 �0.79 �0.64 0.00

3 �2.01 �1.06 �0.89 �0.90 �0.74 0.00

4 �2.02 �1.14 �0.96 �0.98 �0.80 0.00

5 �2.03 �1.20 �1.02 �1.03 �0.85 0.00

6 �2.04 �1.25 �1.06 �1.07 �0.89 0.00

7 �2.06 �1.28 �1.09 �1.10 �0.92 0.00

8 �2.07 �1.31 �1.12 �1.12 �0.94 0.00
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identifying a target dose given that a positive dose response has been declared is

quite low.

The use of a design prior distribution allows us to estimate the probability that

the top dose has an effect of at least 1 point if a positive dose response is declared.

Here this is equal to

0:49

0:63
¼ 0:78

Table 8.7 Designs to be evaluated using prior distributions displayed in Fig. 8.3

Design 1 Design 2

Dose Number of subjects Dose Number of subjects

0 30 0 40

2 30 1 40

4 30 2 15

6 30 5 15

8 30 8 40

Table 8.8 Results for 10,000 simulated trials from Maximum Likelihood fit of a four-parameter

model under Design 1 in Table 8.7

Metric

True effect for

highest dose

Overall<1.0 �1.0

#1 probability to correctly detect a positive dose–response

relationship

0.14 0.49 0.63

#2 probability to correctly identify a target dose given that a positive

dose response has been declared

0.03 0.21 0.24

#3 relative (to target effect) average prediction error 0.22 0.23 0.23

Table 8.9 Results for 10,000 simulated trials from Maximum Likelihood fit of a four-parameter

Emax model under Design 2 in Table 8.7

Metric

True effect for

highest dose

Overall<1.0 �1.0

#1 probability to correctly detect a positive dose–response

relationship

0.16 0.52 0.68

#2 probability to correctly identify a target dose given that a positive

dose response has been declared

0.03 0.17 0.20

#3 relative (to target effect) average prediction error 0.22 0.23 0.23
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for Design 1 and 0.76 for Design 2. Thus the detection of a dose response using

either design would give a reasonably high probability that the true treatment effect

at the highest dose is greater than or equal to 1 point.

We can also assess the metrics for a Bayesian fit of the Emax model that uses the

same analysis prior distribution as the design prior distribution. The posterior

probability distribution for the Emax parameter is now used to test if there is a

positive dose–response relationship. For example, if the posterior probability that

the Emax parameter is <0 is greater than 0.95, we consider that there is sufficient

evidence of a positive dose–response relationship. We use the posterior means for

each dose to assess the probability of correctly identifying a target dose and to

calculate the relative average prediction error.

To fit the Bayesian model using WinBUGS, 50,000 samples were used as the

burn-in before a further 50,000 samples were obtained from the assumed converged

posterior distribution. A gamma prior distribution was used for the inverse of the

residual variance with shape and size parameters both equal to 0.001.

The estimated results for the two designs obtained for 1000 simulations are

shown in Tables 8.10 and 8.11.

The Bayesian analysis yields an estimated probability of 1 of detecting a

positive dose response. This means that the probability that the top dose has an

effect of at least 1 point if a positive dose response is declared is simply the

probability that the true treatment effect at the highest dose is at least 1 point. This

probability is estimated to be 0.69 for Design 1 and 0.67 for Design 2. These are

less than their counterparts for the use of the Maximum Likelihood fit of the four-

parameter Emax model. We note that the conditional probability of correctly

identifying a target dose is, however, estimated to be far bigger than that for the

Maximum Likelihood analysis, and the relative average prediction error is also

noticeably improved.

It is important to note that the use of the same prior in the analysis and in

generating the data contributes to a better result on the conditional probability

(Metric #2) of correctly identifying a target dose. We expect this probability to

decrease if the data behave quite differently from the prior distributions assumed for

analysis.

Table 8.10 Results for 1000 simulated trials for Bayesian fit of a four-parameter Emax model

under Design 1 in Table 8.7

Metric

True effect for

highest dose

Total<1.0 �1.0

#1 probability to correctly detect a positive dose–response relationship 0.31 0.69 1.00

#2 probability to correctly identify a target dose given that a positive

dose response has been declared

0.11 0.30 0.41

#3 relative (to target effect) average prediction error 0.13 0.13 0.13
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8.7 Discussion

In this chapter, we focus on the design and analysis of a dose–response study using

an Emax model because of the findings of Thomas et al. (2014). We also note that at

the time this book was being prepared, a similar finding of the Emax model usually

being reasonable for dose–response modeling for biologics has been obtained from

evaluation of historical data from a large portfolio of biologics. The approaches to

evaluating designs based on other dose–response models or collections of dose–

response models could proceed similarly.

In this chapter, we looked at using D-optimal designs as well as pragmatic

designs often used in practice. While use of a D-optimal design may not be

practical, comparison of other designs against a D-optimal design gives a yardstick

to assess their efficiency. An optimality criterion other than D-optimality could

alternatively be chosen as a reference.

In practice, there are likely to be a number of key constraints in the design of a

dose–response study. We have considered constraints given by a maximum possi-

ble dose, the doses available, and the desire to have a minimum number of subjects

for a minimum number of doses. It is possible that there are other additional

constraints that need to be taken into account as well.

The Emax model assumes a monotone dose–response relationship. Some may be

concerned that a true dose–response relationship may not be monotonic in some

situations. The evidence, however, suggests that this is not a common occurrence.

For example, Thomas et al. (2014) found just one compound-indication combina-

tion out of a portfolio of 33 compound-indication combinations with evidence of a

nonmonotone dose response. If there is a good rationale for a nonmonotone

response, then flexible models that do not assume monotonicity should be used to

model the dose–response relationship. Two possible models are the Normal

dynamic linear model (Smith et al. 2006) and smoothing splines (Kirby et al.

2009). One caution here is that a true monotonic dose response may produce

observed mean responses that are not monotonic. For the Base case scenario for

the first example in Sect. 8.5, the probability of getting any nonmonotonic config-

uration of sample means is estimated to be 0.92 from simulating 10,000 trials. The

probability of getting a configuration where the top dose shows a smaller reduction

Table 8.11 Results for 1000 simulated trials for Bayesian fit of a four-parameter model under

Design 2 in Table 8.7

Metric

True effect for

highest dose

Total<1.0 �1.0

#1 probability to correctly detect a positive dose–response relationship 0.33 0.67 1.00

#2 probability to correctly identify a target dose given a positive dose

response has been declared

0.12 0.29 0.41

#3 relative (to target effect) average prediction error 0.13 0.13 0.13
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from baseline than the next highest dose is estimated to be 0.47 from the same

simulations. In other words, approximately half of the time, we would expect the

observed effect for the highest dose to be less than that for the next highest dose.

In addition to sampling variability, a higher dropout rate at the highest dose

together with the analytical method chosen to handle missing data (e.g., baseline

observation carried forward) could lead to the appearance of a nonmonotone dose–

response relationship in the observed mean response. Therefore unless there are

biologic rationales or repeat precedents about a class of drugs, we recommend using

the Emax model as the starting point to design and analyze a dose–response study.

In Sect. 8.5, we illustrated the conditional evaluation of a dose–response design

using three scenarios under a three-parameter Emax model. If it is suspected that

the dose–response curve takes a different shape from the hyperbola shown in

Fig. 8.1, an Emax model with λ 6¼ 1 can be used. What we illustrated in Sect. 8.5

is a framework for conducting the evaluation.

In this chapter, we considered a dose range where the highest dose was eightfold

of the lowest dose. We adopted this choice because it was used in Bornkamp et al.

(2007) and Pinheiro et al. (2010). Thomas et al. (2014) suggested from their

investigation that a dose range less than 20-fold was dubious in its ability to well

characterize a dose–response relationship given the uncertainty in the ED50 at the

initiation of dose-finding studies and the nearly 100-fold range in doses between

minimal and maximal response predicted by the hyperbolic Emax model. We

recommend readers to consider a wider dose range than the one used in this chapter

chosen primarily for illustrative purposes.

We have not considered modeling exposure response in this chapter. Modeling

exposure response can have advantages in certain situations compared with model-

ing dose response, as described by Pinheiro et al. (2010). Pinheiro et al. concluded

that modeling exposure response could provide more accurate target dose selection

and characterization of the response profile when the pharmacokinetic variability

was high (e.g., individual clearances for the scenarios they considered), when the

gradient of the underlying response profile was large within the region of greatest

interest, and when the exposure assessment error variability (e.g., error in the

assessment of the clearances for their scenarios) was relatively low. Pinheiro

et al. noted that for any real drug development program, the value of exposure

response versus dose response should be assessed via simulations that consider the

available knowledge about the compound and disease state.

We have not considered cost or economic considerations in this chapter either.

These and the possible use of adaptive designs will be briefly covered in Chaps. 11

and 13. We note here that the use of an adaptive design may offer the possibility of

better performance for detecting a target dose. For example, Pinheiro et al. (2010)

described the DcoD method in which D-optimality was applied for a design for a

four-parameter Emax model in a first stage of a trial, and then C-optimality, the

minimization of the variance of a linear combination of parameters, was used to

maximize the precision of estimation of the minimum effective dose under the

assumed sigmoid Emax model in a second stage.

Finally, we will discuss joint modeling of efficacy and safety in Sect. 13.2.
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Chapter 9

Designing Confirmatory Trials with Desired

Characteristics

Chance favors the prepared mind.
—Louis Pasteur

9.1 Introduction

By the time a new drug moves into the confirmatory stage, its developer should in

theory have a reasonable amount of information on the effect of the drug on several

efficacy endpoints. After all, a primary objective of a confirmatory trial is to

confirm a treatment effect with the use of tightly controlled and rigorously

prespecified hypothesis tests.

Ideally, one of the above efficacy endpoints is the endpoint needed for regulatory

approval, and information on the treatment effect is available at the time point

required by the regulatory agencies. Unfortunately, this is not always the case. For

example, tumor response is often the primary endpoint for Phase 2 cancer studies of

solid tumors, while progression-free survival or overall survival is typically the

primary endpoint in Phase 3 studies.

There are also situations that while the endpoint is the same, the available

information on treatment effect is at an earlier time point. For example, a developer

of a new drug for chronic obstructive pulmonary disease may have information

pertaining to the drug effect on FEV1 (forced expiratory volume in the first second

after taking a deep breath) at the end of a 2-week treatment period instead of

26 weeks. Similarly, the developer of a drug to treat the primary infection of the

human immunodeficiency virus may have viral suppression data at the end of a

16-week treatment period instead of 48 weeks from its Phase 2 trials.

In both cases, the developer needs to translate the available information to an

estimate of the drug effect on the endpoint at the time point of interest. This may

require building a model to predict the drug effect on one endpoint from another

(e.g., a marker). It may also require building a longitudinal model that predicts a

patient’s response at a later time point from their earlier ones. We mentioned how

some of this could be done in Sect. 5.9. As we emphasized in Sect. 5.9, building
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these models requires close collaboration among scientists from multiple disci-

plines such as statistics, pharmacometrics, clinical pharmacology, and medicine.

In this chapter, we assume that some treatment effect information on the primary

endpoint and for the appropriate patient population is available for planning a Phase

3 trial. We will review how this information can be used to assess the probability of

success of the study (POSS) and discuss how POSS can in turn help a sponsor assess

the effectiveness of the sample size calculated from the hypothesis testing perspec-

tive. In addition, we will discuss factors that could affect POSS and how these

factors should be incorporated into the planning of the confirmatory program. We

hope the discussion will help explain why a robust investment in Phase 2 trials is

important for a desirable level of POSS at the Phase 3 stage.

9.2 Useful Metrics at the Confirmatory Stage

In this section, we use the axitinib example in Chuang-Stein et al. (2011) to

illustrate useful metrics at the confirmatory stage. These metrics are discussed in

detail in Sect. 6.4.

Axitinib is an oral, potent, and selective tyrosine kinase inhibitor of vascular

endothelial growth factor receptor 1, 2, and 3. Based on signs of clinical activity

observed in single-agent Phase 2 studies in renal cell carcinoma, non-small-cell

lung carcinoma, and thyroid cancer, a randomized, open-label Phase 2 study in

patients with locally advanced or metastatic pancreatic cancer (NCT00219557) was

initiated in July 2005. Locally advanced or metastatic pancreatic cancer is one of

the deadliest forms of cancer with limited treatment options to improve survival.

The Phase 2 study had overall survival as its primary endpoint. The study

planned to enroll 102 patients and follow them for at least 1 year from randomiza-

tion or until death. The number of deaths was planned to be 68. The study

randomized patients in a 2:1 ratio to axitinib combined with gemcitabine or to

gemcitabine alone. The study, with the planned number of events, would have 80%

power to detect a hazard ratio (combination versus gemcitabine alone) of 0.6 or less

based on a log-rank test and a one-sided 10% significance level (Spano et al. 2008).

The Phase 2 study randomized 103 patients, 69 to the combination treatment and

34 to gemcitabine alone. The Cox proportional hazards model analysis yielded an

estimated hazard ratio (HR) for death of 0.71 with a 95% confidence interval of

(0.44, 1.13) (Spano et al. 2008). Since the analysis of HR is typically done on the

natural logarithmic scale and then converted back to the HR scale for reporting

purpose, one can calculate the standard error of the ln(HR) estimate from the

reported confidence interval. The latter is found to be 0.24. Thus, the ln

(HR) estimate has approximately a Normal distribution N(ln(0.71);0.242).
Based on the Phase 2 results, the developer planned a double-blind Phase 3 study

to compare the same combination of axitinib plus gemcitabine against gemcitabine

plus placebo in the same patient population. The primary endpoint is again the

overall survival. One proposal under consideration was to enroll approximately
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600 patients. Under the assumption of an accrual period of 14 months, a nonuniform

accrual of roughly 40% of patients by 7 months, a minimum 9 months follow-up on

all subjects (or until death), and an assumed 36.7% improvement in median overall

survival from 6 months to 8.2 months in patients receiving axitinib plus

gemcitabine, this would give rise to approximately 460 events (deaths).

Assuming an exponential distribution for time to death, the above design would

have approximately 90% power to detect a hazard ratio of 0.73. Denoting HR by λ
and defining the trial success as rejecting the null hypothesis of H0: λ� 1 versus the

alternative hypothesis of HA: λ < 1 at the one-sided 2.5% significance level, the

developer would like to know the probability that the trial would be successful, or

the POSS.

Using the sampling distribution for the HR estimate to reflect our uncertainty

about the true λ, we can estimate the POSS using the expression in (9.1). The same

expression was first discussed in Eq. (5.2).

POSS ¼
Z

Pr Significant Resultð jλ� p λð Þdλ ð9:1Þ

In (9.1), p(λ) represents the density function of the sampling distribution of lnbλ� �
obtained from the Phase 2 data, i.e., the density function of the Normal

distribution N(�0.34;0.242).

One way to explain the calculation in (9.1) to nonstatisticians is to use Table 9.1.

In Table 9.1, the range for λ is first divided into intervals of width 0.1 except for the
two end intervals (column 1). Statistical power is then calculated at the midpoint of

each interval for λ except for the two end intervals where statistical power is

calculated at 0.35 for λ < 0.4 and at 1.05 for λ > 1.0 (column 2). The probability

that λ is within an interval (c1, c2) is given by the area under the Normal density

curve N(�0.34;0.242) between ln(c1) and ln(c2) (column 3). Multiplying numbers

in the second column by the corresponding numbers in the third column gives the

entries in the fourth column. Finally, adding the products together yields an

approximation to the POSS in (9.1). In this example, the sum is 0.73. This number

is an approximation to the POSS and is substantially lower than the 90% statistical

power planned for the study.

Breaking down the calculation in Table 9.1 sheds some interesting insight on

what makes up the POSS. First, the distribution for ln(λ) suggests that there is an

almost 50% chance that the true λ is �0.7and these low λ values contribute to

approximately 64% (¼0.47/0.73) of the overall POSS.

Considering that the sampling distribution is based on a small number of deaths

and therefore has a high dispersion parameter, the low λ values could well be due to
the high dispersion and represent an overestimation of the truth. Low λ values are
suspicious considering that locally advanced or metastatic pancreatic cancer is an

extremely hard to treat disease. This is further supported by a review conducted by

Zhang (2013) over a broad range of cancer treatments. Zhang obtained an empirical

prior for the HR for progression-free survival. He estimated that overall, only about
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16% of cancer drugs had an HR for progression-free survival �0.7. We will return

to this topic in Chap. 12. These observations should caution us to view the POSS

reported in Table 9.1 with care.

For the time being, we will assume a Normal prior N(�0.34;0.242) for ln(λ).
Suppose that the treatment is only of interest if the true HR λ is�0.75. A decision to

continue or to stop, based on whether the Phase 3 study yields a statistically

significant result at the one-sided 2.5% level, will lead to the estimated probabilities

in Table 9.2. The results in Table 9.2 are based on 10,000 random samples from the

prior distribution.

From Table 9.2, we see that the probability of making a correct decision is 0.84

(¼ 0.26 + 0.58). The PPV is 0.79 (¼ 0.58/0.73) and the NPV is 0.96 (¼ 0.26/0.27).

The probability of continuing (0.73) includes 0.15 which is the probability of

continuing and λ > 0.75 (an incorrect decision to continue). The near perfect

NPV gives strong assurance that should the study fail to reject the null hypothesis

of λ � 1 at the one-sided 2.5% level, we can be quite confident that the true hazard

ratio is greater than 0.75.

We note that although the derivation of the POSS in Table 9.1 used the midpoint

of each interval to calculate the statistical power as an approximation to the

numerical integration required in (9.1) for this example, the probability of continu-

ing in Table 9.2 is the same as that obtained in Table 9.1.

Table 9.1 Approximation to POSS of a design with 460 planned events when ln(λ) is assumed to

follow a Normal distribution N(�0.34;0.242)

True λ
Statistical power at the

midpoint of the λ-intervala
Probability that λ is in the

interval in the first column

Product of column

2 and column 3

<0.4 1.00 0.01 0.01

0.4–0.5 1.00 0.06 0.06

0.5–0.6 1.00 0.17 0.17

0.6–0.7 1.00 0.23 0.23

0.7–0.8 0.87 0.21 0.19

0.8–0.9 0.41 0.15 0.06

0.9–1.0 0.08 0.09 0.01

>1.0 0.01 0.08 <0.001

0.73b

aPower is calculated at λ ¼ 0.35 for the first interval (λ < 0.4) and at λ ¼ 1.05 for the last interval

(>1.0). The calculation applies Normal approximation of N(ln(λ);4/460) to the distribution of the

estimate lnðλ̂ Þ from the Phase 2 trial
bObtained by adding the entries in column 4 before rounding
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9.3 Relationship Between Sample Size and Metrics

In this section, we will use two examples to illustrate how sample size, or sample

size together with a set of rules, affects the metrics at the confirmatory stage.

Example 1

Under the Frequentist hypothesis testing approach, a developer can increase the

power of a test by increasing the sample size. This property has led to examples

where a treatment effect, while statistically significant at a prespecified level, is not

clinically meaningful. A question is whether a substantial increase in sample size

could lead to a sizeable increase in the POSS.

Consider the axitinib example with twice the number of events planned, i.e.,

920 events instead of 460. One can construct a table like Table 9.1 with the second

column replaced by the corresponding statistical power with 920 events. The results

are shown in Table 9.3.

With 920 events, statistical power to detect an HR of 0.73 is 99.8%. The study

has a good power (e.g., 80%) to detect an HR as high as 0.83. By comparison, the

increase in POSS, from 73% to 80%, is only modest. A developer needs to decide if

this increase in POSS is worthy of doubling the number of events, especially after

taking into consideration the rarity of λ � 0.7 as discussed in Sect. 9.2.

It is worthwhile to point out that because the prior distribution places 8% weight

on λ being greater than 1, the POSS for the planned trial can never achieve 100%

under either choice of the number of events to observe.

Example 2

We return to the example about SC-75416 discussed in Sect. 5.5. For illustration

purposes, we assume that we are planning a confirmatory trial (instead of a POC

trial) and a prior exists for the difference in mean responses in TOTPAR6

between SC-75416 and ibuprofen. The prior has a Normal distribution N(3.27;
(0.6)2). The standard deviation of the endpoint TOTPAR6 is assumed known and

equals to seven units. This assumption is used in all calculations.

Suppose that SC-75416 is of interest only if its true mean benefit over ibuprofen

measured by TOTPAR6 (and denoted by Δ) is at least three units. Because of this
condition, a team is considering two designs and associated decision rules for a

parallel-group study of SC-75416 against ibuprofen.

Table 9.2 Estimated probabilities of various decisions assuming a design of 460 deaths, a prior

distribution N(�0.34;0.242) for ln(λ), and a decision to continue if the result is significant at the

one-sided 2.5% level

Truth

Totalλ > 0.75 λ � 0.75

Decision Discontinue 0.26 0.01 0.27

Continue 0.15 0.58 0.73

Total 0.41 0.59
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Design A Randomize 225 patients to each treatment group. Continue the

development if the null hypothesis of no benefit of SC-75416 over

ibuprofen is rejected at the one-sided 2.5% level and the observed

mean benefit of SC-75416 over ibuprofen is at least three units.

Otherwise, discontinue the development.

Design B Randomize 150 patients to each treatment group. Continue the

development if the null hypothesis of no benefit of SC-75416 over

ibuprofen is rejected at the one-sided 2.5% level and the observed

mean benefit of SC-75416 over ibuprofen is at least 2.5 units.

Otherwise, discontinue the development.

The operating characteristics of these two designs obtained by 10,000 simula-

tions are given in Tables 9.4 and 9.5, respectively. For both designs, the require-

ment on the observed mean benefit dominates that on rejecting the null hypothesis

of no benefit under the assumption of a known variance.

The PPV for Design A and Design B is 84% and 76%, respectively. The

corresponding NPV is 61% and 67%. Since the requirement on the observed

mean benefit dominates that on rejecting the null hypothesis (again, assuming a

known variance), it is understandable that Design A has a higher PPV because it has

a more stringent criterion to continue. So, when Design A leads to a Continue

decision, it is more likely that the true benefit Δ is indeed �3 than when Design B

leads to a Continue decision. On the other hand, since it is harder to discontinue

under Design B (21% compared with 38% for Design A), it is more likely that Δ is

<3 when a Discontinue decision is made under this design.

One way to contrast between the two designs is to construct Table 9.6 that

displays clearly how the two designs differ with respect to the metrics.

Table 9.3 Approximation to POSS of a design with 920 planned events when ln(λ) is assumed to

follow a Normal distribution N(�0.34;0.242)

True λ
Statistical power at the

midpoint of the λ-intervala
Probability that λ is in the

interval in the first column

Product of column

2 and column 3

<0.4 1.00 0.01 0.01

0.4–0.5 1.00 0.06 0.06

0.5–0.6 1.00 0.17 0.17

0.6–0.7 1.00 0.23 0.23

0.7–0.8 0.99 0.21 0.21

0.8–0.9 0.69 0.15 0.10

0.9–1.0 0.12 0.09 0.01

>1.0 <0.01 0.08 <0.001

0.80b

aPower is calculated at λ ¼ 0.35 for the first interval and at λ ¼ 1.05 for the last interval. The

calculation applied Normal approximation of N(ln(λ);4/920) to the distribution of the estimate

ln bλ� �
bObtained by adding the entries in column 4 before rounding
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Table 9.6 shows that the estimated probability for making a correct decision is

very similar under the two designs. The difference is how the probability is broken

down into those for correct Continue and correct Discontinue decisions. Which

design to choose depends on the impact of incorrect Continue and incorrect Discon-

tinue in a particular application. Other factors to consider in selecting a design include

budget and the need for more safety data at this stage of development.

9.4 The Impact of Prior Data on POSS

In the first example in Sect. 9.3, the estimated HR is based on a small number of

events. Suppose the HR estimate is based on twice the number of events and the

point estimate for ln(λ) remains the same. The standard error of the estimate ln bλ� �
will be roughly 0.24/ √ 2, or 0.17. Using N(�0.34;(0.17)2) as the prior, we can

reconstruct Table 9.1 and obtain the POSS for a design with 460 planned events.

The POSS is now around 79% (Table 9.7).

The 79% POSS is very close to the 80% figure shown in Table 9.3 under a design

with 920 planned events. This means that for the same point estimate for λ,
obtaining twice as many events as observed in the Phase 2 trial has approximately

the same effect on the POSS for the Phase 3 trial as additional 460 events in the

Table 9.4 Operating

characteristics of Design A

under the assumption that Δ
has a prior distribution N
(3.27;(0.6)2)

Truth

TotalΔ < 3 Δ � 3

Decision Discontinue 0.23 0.15 0.38

Continue 0.10 0.52 0.62

Total 0.33 0.67

Table 9.5 Operating

characteristics of Design B

under the assumption that Δ
has a prior distribution N
(3.27;(0.6)2)

Truth

TotalΔ < 3 Δ � 3

Decision Discontinue 0.14 0.07 0.21

Continue 0.19 0.60 0.79

Total 0.33 0.67

Table 9.6 Comparisons

between Design A and

Design B

Design A Design B

Pr(correct Continue decision)

Pr(correct Discontinue decision)

Pr(correct decisions)

0.52

0.23

0.75

0.60

0.14

0.74

Pr(incorrect Continue decision)

Pr(incorrect Discontinue decision)

Pr(incorrect decisions)

0.10

0.15

0.25

0.19

0.07

0.26

Pr(Continue) 0.62 0.79
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Phase 3 trial. This example illustrates that obtaining a more reliable estimate can be

a more cost-effective way to ensure future trial success. This concept is not new, but

having a way to quantify the differential benefit of additional data in Phase 2 versus

Phase 3 trials is a useful communication tool.

9.5 Sample Size Consideration Based on POSS

So far, we have focused on prior information about the parameter that summarizes

the differential mean response to two treatments while assuming that the standard

deviation associated with the response is known. Chuang-Stein and Yang (2010)

proposed to take into account the uncertainty around the standard deviation of the

endpoint as well as that around the comparative mean response.

Assume that the endpoint follows a Normal distribution with a standard devia-

tion of σ. Let Δ denote the difference in the mean response between the new drug

and a control. Chuang-Stein and Yang (2010) began with a noninformative prior p
(Δ, σ)/ 1/σ which was proposed by Jeffrey (1961) and advocated by other

researchers (e.g., Berger and Bernardo 1992; Yang 1995).

Suppose that a Phase 2 study produced sample mean responses �Xdrug and �Xcontrol

based on m patients in each group. The observed differenceD ¼ �Xdrug � �Xcontrol has

a Normal distribution N(Δ;2σ2/m). The pooled sum of squares (SS) has a distribu-

tion σ2χ22m�2 where χ22m�2 is a chi-square distribution with (2m � 2) degrees of

freedom. The posterior distribution p(Δ, σ| Phase 2 data) has a density function

proportional to

Table 9.7 Approximation to POSS of a design with 460 planned events when ln(λ) is assumed to

follow a Normal distribution N(�0.34;0.172)

True λ
Statistical power at the

midpoint of the λ-intervala
Probability that λ is in the

interval in the first column

Product of column

2 and column 3

<0.4 1.00 <0.001 <0.001

0.4–0.5 1.00 0.02 0.02

0.5–0.6 1.00 0.14 0.14

0.6–0.7 1.00 0.30 0.30

0.7–0.8 0.87 0.29 0.25

0.8–0.9 0.41 0.16 0.07

0.9–1.0 0.08 0.06 0.01

>1.0 0.01 0.03

0.79b

aPower is calculated at λ ¼ 0.35 for the first interval and at λ ¼ 1.05 for the last interval
bObtained by adding the entries in column 4 before rounding
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1

σ2m
� exp � d � Δð Þ2

4σ2=m

( )
� exp � SS

2σ2

� �
ð9:2Þ

Chuang-Stein and Yang (2010) used the distribution in (9.2) as the prior to

calculate the POSS for a Phase 3 trial. They found that the loss in POSS by

incorporating the uncertainty in σ was very minor (<1% on the POSS scale)

compared to the loss due to the uncertainty in Δ.
Chuang-Stein and Yang (2010) discussed planning sample size to reach a

desirable level for the POSS using the distribution in (9.2) as the prior. The sample

size required per group in the Phase 3 study to obtain 80% or 90% POSS varies

substantially as a function of the sample size m and the observed treatment effect

d in the Phase 2 trial. Table 9.8 contains select results from Table 1 in Chuang-Stein

and Yang (2010). In some instances, the POSS cannot reach the 90% level no

matter how large the sample size is (e.g., the first row in Table 9.8). In other

instances, the sample size is clearly too large to be practical. As a comparison,

Table 9.8 also includes the sample size needed to detect an effect size equal to the

observed effect size d using the traditional sample size formula (e.g., see Eq. (2.4)).

Because the traditional method does not take into consideration the sample size of

the source data, it produces the same sample size for the new study whether the

sample size (per group) in the Phase 2 study is 25, 50, or 75.

Table 9.8 is not the only instance when no sample size, no matter how large it is,

could yield a 90% POSS. This can occur when the prior evidence is weak or is based

on very limited data to allow reasonable precision for the estimate of the treatment

Table 9.8 Sample size per group calculated from the traditional sample size method and from the

need to have 80% or 90% POSS

Phase

2 sample size

per group

Observed

effect size in

Phase 2

80% power based

on traditional

method

80%

POSS

90% power based

on traditional

method

90%

POSS

25 0.30 174 2262 233 –

0.40 98 343 131 8384

0.50 63 139 84 525

0.60 44 76 58 188

0.70 32 48 43 98

50 0.30 174 511 233 4660

0.40 98 180 131 474

0.50 63 93 84 183

0.60 44 57 58 99

0.70 32 39 43 63

100 0.30 174 295 233 699

0.40 98 132 131 233

0.50 63 76 84 120

0.60 44 50 58 75

0.70 32 35 43 51
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effect. This finding could help a sponsor judge whether there is adequate informa-

tion on the treatment effect prior to the initiation of a confirmatory trial. For

example, if the sample size needed to have a reasonable POSS (e.g., 80%) is

impractically large, this would signal the lack of precision of the prior evidence

or a poor treatment effect if precision is adequate.

Table 9.8 shows that the sample size based on the POSS consideration is

uniformly higher than that based on the traditional method. The difference is the

most pronounced when the source data come from smaller studies with a small

observed treatment effect.

9.6 Other Applications of the Concept of POSS at

the Confirmatory Stage

The idea of POSS has other applications beyond sample size planning at the

confirmatory stage. Chuang-Stein and Yang (2010) discussed two such applications

in helping make interim decisions about a confirmatory trial. One relates to futility

stopping and the other relates to sample size reestimation.

9.6.1 Conditional POSS

Spiegelhalter et al. (1986) raised the question of whether to use conditional or

predictive power to monitor clinical trials. Given interim data, conditional power is

calculated by assuming that the future data follow a certain distribution with

specific values for the parameters of interest. Spiegelhalter et al. (1986) defined

predictive power as the quantity obtained by averaging the conditional power with

respect to the current belief about the population parameters of interest.

At present, conditional power is often used to make futility decisions following

an interim analysis (Dmitrienko et al. 2005). Instead of fixing the parameters of

interest at specific values, a developer can use the interim data to update the prior

distribution about the parameters and use the posterior distribution to calculate the

probability of obtaining a positive outcome. This idea is the same as the predictive

power.

To be specific, let Zm represent the test statistic at an interim analysis based on m

patients per group and ZN the final test statistic based on N subject per group. Let

(Δ, σ) denote the treatment effect and standard deviation applicable to future

patients after the interim analysis. Let Pm(Δ, σ) denote the probability of obtaining

a positive final outcome at the one-sided 100� α% level, conditioning on Zm.When

σ is assumed known, Pm(Δ, σ) has the closed-form expression in (9.3) (Dmitrienko

et al. 2005):

132 9 Designing Confirmatory Trials with Desired Characteristics



Pm Δ; σð Þ ¼ Pr ZN > ZαjZm ¼ zm and the treatment effect in future data is Δð Þ

¼ Φ
σ

ffiffiffiffi
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In (9.3), Zα is the upper 100� αth percentile of the standard Normal distribution.

For a confirmatory trial, α is typically set at 2.5%.

Instead of calculating the conditional power Pm(Δ, σ), one can average Pm(Δ, σ)
with respect to the density function p(Δ, σ | all available data) of the posterior

distribution of Δ and σ obtained by adding the interim data to the prior distribution

of Δ and σ before the trial began. The average takes the form in (9.4). For

consistency with our terminology, we will call the average in (9.4) the conditional

POSS. The idea behind the conditional POSS is the same as that behind the

predictive power. Z
Pm Δ; σð Þ p Δ; σð j all prior data� dΔ dσ ð9:4Þ

One can use the conditional POSS to make a futility decision. If the conditional

POSS is substantially lower than the POSS calculated at the beginning of the trial, it

may be worthwhile to consider terminating the trial for futility. A major advantage

of the conditional POSS over Pm(Δ, σ) is that we do not need to rely on a fixed Δ
(and σ) to make the futility decision.

9.6.2 Sample Size Reestimation

When there is much uncertainty about the population parameters at the design

stage, a common approach is to include a preplanned sample size reestimation

(SSR) at an appropriate interim time while the trial is ongoing.

SSR methods have been developed since the 1990s. They fall into two main

categories, depending on whether treatment information is used (unblinded SSR) or

not (blinded SSR) (Chuang-Stein et al. 2006). A blinded SSR is typically used to

assess the accuracy of our assumptions about the key nuisance parameters such as

the standard deviation of the endpoint or the accrual rate of a time-to-event

endpoint. Unblinded SSR, on the other hand, typically uses a revised estimate of

the treatment effect to reestimate the sample size. Since the Type I error (false-

positive) rate is often affected when using unblinded interim data to effectuate trial

adaptations, adjustment is necessary for the final analysis on such occasions.

A common approach to control the Type I error rate adopts the combination test

principle that combines stage-wise P-values using a prespecified combination

function (Bauer and K€ohne 1994). The key idea is to calculate separate test
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statistics for different stages of the trial (e.g., before and after an interim analysis if

there is only one interim analysis) and combine them in a prespecified manner for

the final decision. Examples of P-value combination functions include Fisher’s
product test and the inverse Normal method (Cui et al. 1999; Fisher 1998;

Lehmacher and Wassmer 1999). Another unblinded SSR method that has received

increasing attention in recent years is the promising zone design advocated by

Mehta and Pocock (2011). While some researchers have criticized the promising

zone design as not being the most efficient (Jennison and Turnbull 2015), the design

has some nice features as described in Mehta and Pocock (2011).

Suppose we have decided to conduct an unblinded SSR when 50% of the

planned information becomes available and use a combination test for the final

analysis. We decide that the final statistic ZF will be a weighted average of the test

statistics before and after the interim analysis with equal weights. One option to

determine the number of additional patients per group is to have enough patients so

that the conditional power Pr(ZF> Zα/2 | Zm) at the observed treatment effect is at an

acceptable level (Fisher 1998). Cui et al. (1999) recalculated the sample size by

using the treatment effect and the standard deviation observed at the interim in the

traditional sample size formula.

Instead of using the conditional power, Chuang-Stein and Yang (2010) proposed

to reestimate the sample size so that the conditional POSS in (9.5) was at an

acceptable level.Z
Pr ZF > Zα j zm;Δ; σð Þ p Δ; σð j all prior data� dΔ dσ ð9:5Þ

Let α ¼ 0.025, the one-sided significance level for testing the hypothesis in the

trial. Assuming a noninformative prior p(Δ, σ)/ 1/σ and using the interim data to

formulate a posterior distribution p(Δ, σ| prior data) similar to that in (9.2), Chuang-

Stein and Yang calculated the sample size needed per group after the interim

analysis so that the conditional POSS in (9.5) was 80% for various treatment effects

observed at the interim. We include in Table 9.9 results pertaining to the situation

when 100 patients per group were originally planned for the study and an SSR is

planned when 50 patients per group (50%) have reached the time point of interest.

With 100 patients per group, the trial as originally planned has 80% power to detect

an effect size of 0.40.

Table 9.9 also includes the number of additional patients needed by the methods

of Fisher and Cui et al. For completeness, we include in Table 9.9 the conditional

POSS under the sample size determined by these two other methods. Results in

Table 9.9 are sourced from Table 2 in Chuang-Stein and Yang (2010). In general,

the conditional POSS approach leads to the largest sample size postinterim analysis,

except for when the observed interim effect size is large.

Chuang-Stein and Yang (2010) allowed the sample size to decrease in their

example. When the observed interim treatment effect is favorable, all three methods

lead to a smaller sample size. The decrease can be substantial in some cases, e.g.,

when the observed interim effect size is at least 0.45.
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One can structure the sample size reestimation in such a way that the sample size

stays the same or meets a certain minimum requirement in the case of a favorable

interim result. The latter can provide additional assurance that the favorable

efficacy results observed during the earlier part of the trial remain strong in the

remainder of the trial.

9.7 Summary

In the case of axitinib, the developer initiated a Phase 3 study designed to detect a

reduction in the hazard rate for mortality that is of the magnitude observed in the

Phase 2 study. The planned number of deaths was 460. Based on a 1:1 randomiza-

tion, a planned accrual period of 14 months, and a follow-up of approximately

9 months, it was estimated that 596 patients would be needed to provide 460 events.

Interim analyses for futility and efficacy were planned as described in Kindler

et al. (2011).

Between July 27, 2007, and October 31, 2008, 632 patients were randomized

with 316 patients assigned to each treatment group. Three hundred and five (305)

patients in the gemcitabine plus axitinib group and 308 in the gemcitabine plus

placebo group received study medications. At a planned interim analysis in January

2009, the independent Data Monitoring Committee (DMC) concluded that the

futility boundary had been crossed. The DMC recommended terminating the

study. The developer accepted the recommendation and stopped the trial in the

same month. The developer ended its development program of axitinib in pancre-

atic cancer altogether. The development was continued for other types of cancer.

Axitinib was approved in January 2012 for the treatment of advanced renal cell

carcinoma in patients after failure of one prior systemic therapy.

The idea of using a predictive approach to size a study is not new. For example,

Spiegelhalter and Freedman (1986) advocated using a predictive approach and

Table 9.9 Additional sample size (per group) after an interim SSR conducted when 50%

information is available in a study planned with 100 patients per group initially

Interim observed

effect size

Fisher’s methoda Cui et al.’s methodb

Conditional

POSS approachc
Number

per group

Conditional

POSS

Number

per group

Conditional

POSS

0.25 179 0.65 201 0.67 825

0.30 99 0.68 124 0.72 250

0.35 57 0.72 78 0.76 103

0.40 33 0.74 48 0.80 48

0.45 18 0.76 28 0.82 23

0.50 10 0.78 13 0.81 11
aTargeting 80% conditional power
bSetting power to 80% in the traditional sample size calculation
cRequiring the conditional POSS to be 80%
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clinical input to plan the sample size. In this chapter, we apply basically the same

idea for a confirmatory trial, using data available before a study or in the case of a

preplanned SSR, using interim results plus prior information.

The work by Chuang-Stein and Yang (2010) suggests that incorporating uncer-

tainty surrounding the variability parameter in the calculation of POSS has minimal

effect on POSS in the case of Normal distributions. Consequently, for the ease of

calculation, we suggest calculating POSS including only uncertainty about the

estimated treatment effect. This simplification leads to a closed-form expression

for the POSS when a Normal prior is used for a Normally distributed endpoint.

When using a prior for the treatment effect to calculate the POSS of a new study,

it is important that the population that gives rise to the prior is similar to the

population intended in the new study. It is not unusual for the effect of a treatment

to be a function of certain pretreatment covariates such as disease state or a patient’s
gender. If the new study is enriched to have a higher representation of certain

subgroups of the patient population, then the prior needs to be adjusted to describe

likely treatment effect in the enriched population. One way to approach this is to

consider the prior as a mixture of distributions that reflect treatment effects in

various subgroups. The mixture proportions are determined by the percentages of

patient subgroups targeted in the new study.

So, even if the Phase 2 population is not the same as the Phase 3 population, but

as long as major subgroups intended for Phase 3 were reasonably represented in

Phase 2, we can still obtain treatment effect estimates in these subgroups and

standardize the overall effect relative to the target population planned for Phase

3. However, if these major subgroups were not included in Phase 2 trials, we will

have difficulty in developing a prior for the likely treatment effect in Phase 3 trials.

In addition to patient populations, how data were analyzed in the past trials will

also impact treatment effect estimate. For example, many trials completed before

the end of the first decade in the twenty-first century used the last-observation-

carried-forward method to handle missing data (National Research Council 2010).

Since then, many new trials have been analyzed with mixed models for repeated

measurements that assume missing data to be missing at random. If a sponsor has

access to individual patient data from past trials that give rise to the prior, it will be

beneficial for the sponsor to reanalyze the data using the same analytical methods

planned for the new trial. If accessing individual patient data is not possible, a

sponsor should consider using slightly different prior distributions in a sensitivity

analysis to assess the operating characteristics of the new design.

Pinheiro et al. (2010) cautioned the risk of accelerating market entry of a product

candidate by reducing the time and investment dedicated to dose finding. We have

illustrated in this chapter, through POSS, how critically important the precision in

the treatment effect estimate could be to the estimated success probability of a

Phase 3 study.

We echo a recommendation by Pinheiro et al. that a developer should strive for a

suitable balance in resource allocation between the dose-response and the confir-

matory phases in order to optimize the overall likelihood of success of a develop-

ment program.
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Chapter 10

Designing Phase 4 Trials

Generalization is the essence of knowledge.
Swami Vivekananda

10.1 Introduction

As described in Chap. 1, Phase 4 trials can be of a number of different types. These

trials are conducted to (1) further investigate the drug in the indicated population(s) or

in pediatric patients with the indicated disorder(s), (2) compare the drug head-to-head

with an approved drug for the same disorder(s), (3) investigate the effect of the drug

at a lower/higher dose or with different administration schedules (e.g., once a day

instead of twice a day), (4) study the drug in combination with other drugs, or (5) test

the drug for other indications.

In this chapter, we cover the design of Phase 4 trials from the point of view of

obtaining a prior distribution for the treatment effect from past trials but focus

primarily on assessing the design of a trial for comparative effectiveness. By

comparative effectiveness, we mean the comparison of different treatments for a

condition to determine which work best in patients. We adopt this focus because

trials for comparative effectiveness are of increasing importance given the increas-

ing competitiveness in the market place and the need for reimbursement

justification.

We start with an outline of network meta-analysis using a proposed model and

proceed to consider the design of a trial against a comparator using the information

obtained from a network meta-analysis. Network meta-analysis gives a potential

way to assess prospective trial designs without requiring much or any data on direct

comparisons. As previously, we consider which metrics are likely to be important in

assessing a trial design.

We then review how prior distributions for treatment effects might be obtained

by other means such as PK/PD modeling.
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10.2 Network Meta-Analysis

Network meta-analysis combines different sources of pairwise comparisons across

trials. It combines direct comparisons from trials that test both treatments of interest

with indirect comparisons from trials that test only one of the two treatments but are

connected through other treatments in other trials (Lumley 2002). An artificial

example network is displayed in Fig. 10.1.

In Fig. 10.1, letters represent treatments, and the studies that compared pairs of

treatments are written alongside the treatments. In the network in Fig. 10.1, trials

have been conducted to compare treatment A with treatments C and D and to

compare treatment B with treatments C and D. The lines connect treatments

compared in the same trial. From this network, it can be seen that treatments A

and B are not compared directly but can be compared indirectly. The indirect

comparison can be calculated via two routes through the network. One route is to

subtract the difference of B minus C from the difference A minus C. The other route

is to subtract the difference of B minus D from the difference A minus D. These two

routes through the network give two estimates of the A minus B difference. These

two estimates can be combined, provided that it is reasonable to do so as discussed

below, to give a single estimate of the A minus B difference.

The above network is relatively simple. Networks depicting treatment compar-

isons for a set of treatments can be much more complex. To analyze a network, we

consider a model that has been proposed for network meta-analysis by Piepho

(2014). This model is structured in terms of treatment means rather than contrasts

with a reference or baseline treatment as used by some authors (Higgins et al. 2012;

Lu and Ades 2004; White et al. 2012). Piepho et al. (2012) showed that analyses

using a mean model can produce identical or essentially the same results as a model

that uses baseline/reference contrasts.

A

C

Study AC Study AD

Study BC Study BD

  D

Fig. 10.1 An example of

an artificial treatment

network
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The model for the mean response written in terms of a linear predictor is

ηhij ¼ αh þ βhi þ γj þ vhj þ uhij ð10:1Þ

where αh is a main effect for the hth design, βhi is an effect for the ith trial nested

within the hth design, γj is the main effect of the jth treatment, vhj is an interaction

effect for the hth design and the jth treatment, and uhij is an interaction effect for the
ith trial and jth treatment nested within the hth design. In the above formulation,

“design”means the classification of groups of trials according to the treatments used.

For example, possible designs for trials comparing pairs of treatments among A,

B, C, and D are shown in Table 10.1.

The interaction effect vhj represents inconsistency in the treatment mean for the

jth treatment and hth design. The term uhij represents heterogeneity within the hth
design.

The above model can be used with individual patient data or with treatment

summaries from the trials. When summary measures are analyzed, it is usual to use

a linear model or linear mixed model with the assumption of normality and deal

with any difference in precision by weighting. We consider the analysis of sum-

mary measures below.

The model may be fitted using Maximum Likelihood or Restricted Maximum

Likelihood (REML) or in the Bayesian framework with software such as

WinBUGS (WinBUGS). If the Bayesian approach is used, then a separate distri-

bution and vague prior is needed for each trial if the principle of concurrent control

is to be respected. This corresponds to the estimation of a separate fixed effect for

each trial using Maximum Likelihood or REML.

For model (10.1), one can consider all of the terms as fixed effects for a fixed

effects model or treat the interaction effect uhij representing heterogeneity as

random with the remaining terms as fixed effects for a mixed effects model. If

the mixed effects model is fitted using REML, one can test for heterogeneity by

comparing the variance for uhij with the residual variance using an F test. If

heterogeneity is detected, one can use the effect for heterogeneity to test for

inconsistency represented by vhj with an F test using the Kenward-Roger adjust-

ment (Kenward and Roger 2009) for the denominator degrees of freedom.

If the fixed effects model is fitted using Maximum Likelihood, one can test for

heterogeneity by using a Wald-type chi-squared statistic for the term uhij. If

heterogeneity is detected, however, there is no basis for testing for inconsistency

Table 10.1 Treatment

designs as used in model

(10.1) for four treatments

when every pair of treatments

is compared in a trial

Design Treatments compared in trial

1 A and B

2 A and C

3 A and D

4 B and C

5 B and D

6 C and D
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because of the nesting of heterogeneity effects in relation to inconsistency. If this

were the case, one could look for subsets of trials that do not display heterogeneity.

Both Piepho (2014) and Senn et al. (2013) prefer treating uhij as random whenever

appropriate to treating the term as fixed.

If heterogeneity is detected using either a mixed effects model or a fixed effects

model, it is important in practice to consider possible explanations for

heterogeneity. If inconsistency is detected in a network meta-analysis, this should

also be investigated. Bafeta et al. (2014) recommended that estimates from direct

comparisons, indirect comparisons, and mixed comparisons be reported for review

in all cases.

To illustrate the use of network meta-analysis, we look at the diabetes example

published by Senn et al. (2013) and reanalyzed by Piepho (2014). The network is

displayed in Fig. 10.2.

Twenty-six studies were selected after a systematic literature search for the

additional effect of oral glucose-lowering treatments added to a baseline sulfonyl-

urea therapy on HbA1c change in patients with type II diabetes. One study had three

treatment arms, and the remaining studies compared two treatments (Fig. 10.2). The

treatments identified were acarbose, benfluorex, metformin, miglitol, pioglitazone,

placebo, rosiglitazone, sitagliptin, sulfonylurea alone, and vildagliptin. The study

with three treatment arms compared the treatments acarbose, metformin, and

placebo.

For each study and treatment arm, mean change from baseline or mean outcome

was used in the analysis. Up to three estimates of the standard deviation were

available, so if more than one was recorded, the median value was used after

Fig. 10.2 Network for a network meta-analysis of the effect of oral glucose-lowering treatments

added to a baseline sulfonylurea therapy on HbA1c change
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checking for consistency. Assuming homoscedasticity within trials, overall vari-

ances were calculated by weighting variances by their degrees of freedom. Finally

the variance of the mean for each arm was obtained by dividing the pooled estimate

of variance by the number of patients per arm.

The treatments are abbreviated as shown in Table 10.2 when referenced in the

designs required by model (10.1).

The designs for use in model (10.1) were as shown in Table 10.3.

Piepho (2014) fitted model (10.1) using PROC MIXED within SAS (SAS

Institute) with all effects fixed and found the chi-squared test for heterogeneity

corresponding to the uhij parameters to be significant ( p < 0.0001). When he

included the interaction effect for heterogeneity as random, however, there was

no evidence of inconsistency represented by the vhj parameters ( p ¼ 0.9268). Senn

et al. (2013) explored the nature of the heterogeneity further, but for our purposes,

we take the mixed effects model as adequate for estimating the treatment effects.

Table 10.2 Treatment

abbreviations for the diabetes

network meta-analysis

example

Four-letter abbreviation of treatment Treatment

Acar Acarbose

Benf Benfluorex

Metf Metformin

Migl Miglitol

Piog Pioglitazone

Plac Placebo

Rosi Rosiglitazone

Sita Sitagliptin

SUal Sulfonylurea alone

Vild Vildagliptin

Table 10.3 Designs for the

diabetes network meta-

analysis example

Design Design number

Acar:plac 1

Acar:SUal 2

Benf:plac 3

Metf:plac 4

Metf:acar:plac 5

Metf:sUal 6

Migl:plac 7

Piog:plac 8

Piog:metf 9

Piog:rosi 10

Rosi:plac 11

Rosi:metf 12

Rosi:sUal 13

Sita:plac 14

Vild:plac 15

10.2 Network Meta-Analysis 143



Welton et al. (2015) discussed the modeling of heterogeneity in relative treatment

effects.

10.3 Example Evaluation of a Design Using the Results of a

Network Meta-Analysis

To illustrate how results from such a network meta-analysis may be used to help

design a new study, we suppose that there is interest in conducting a superiority

study of metformin versus acarbose. Before designing the study, we briefly consider

the metrics likely to be of interest in the evaluation of a Phase 4 design for

comparative effectiveness.

The metrics identified of interest for confirmatory trials in Chap. 6 are likely to

also be the primary ones of interest for Phase 4 trials that assess comparative

effectiveness, i.e., the metrics: (1) the probability of study success (POSS), (2) the

PPV and NPV, and (3) the probability of a correct decision.

Piepho (2014) obtained a difference in mean reduction of HbA1c for metformin

versus acarbose of 0.287 (with standard error equal to 0.250) in favor of metformin

by using model (10.1) with the term vhj omitted and modeling heterogeneity as

random. We suppose that a parallel-group study is sized using this difference with

an assumed known standard deviation of 1.0. Using the expression for sample size

per group (n) given by

n ¼ 2σ2 Zα þ Zβ
� �2
Δ2

with α ¼ 0.025, β¼ 0.20, σ¼ 1, and Δ ¼ 0.287 gives n ¼ 191 when rounded up to

the nearest integer.

We take as our prior a Normal distribution with mean equal to the estimated

difference between metformin and acarbose and standard deviation equal to the

associated standard error. A positive result is taken to be significance at a one-sided

2.5% significance level. We obtained the results shown in Table 10.4 by simulating

10,000 trials.

We see immediately from the results that although the probability of compound

success (POCS) is 0.87, the probability of study success (POSS) is just 0.62. This

suggests that we may be able to achieve a better trade-off between POSS and

sample size (and hence cost). We also note that a positive result has a PPV of 1.0,

i.e., we can essentially be sure that the real difference is in favor of metformin if we

obtain a positive result. We give below some possible trade-offs between POSS and

sample size per group together with PPV, estimated again in each case by simulat-

ing 10,000 trials (see Table 10.5).

We see that it is possible to increase the POSS to approximately 80%, the value

of the power used in the sample size calculation. However, this increase requires a
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sample size approximately five times that given by the traditional sample size

calculation. This requirement for a much greater sample size to achieve a POSS

equal to a planned power probability was also noted in Sect. 9.4 when a small

Phase 2 trial may cause the POSS for a Phase 3 trial to be small.

We can evaluate how much information the network meta-analysis result is

equivalent to by considering its worth in terms of an effective sample size for a

parallel-group trial. The standard error for the estimated treatment effect given

above is 0.250. Using the assumed standard deviation of one and the expression for

the standard error of a difference for a parallel-group trial given by

ffiffiffiffiffiffiffi
2σ2

m

r

we can equate 0.250 to this expression and solve for m to obtain an effective sample

size per group for a parallel-group trial. Doing this, we obtain 32 for m. Thus, the
precision of the network meta-analysis result corresponds to the result of a small

clinical trial with 32 subjects per group. This illustrates another caution about the

use of a network meta-analysis. Although a network may be of reasonable size, it is

possible that there is not much information about the comparison between two

particular treatments.

The acarbose versus metformin comparison used here as an example has been

studied more extensively recently by Gu et al. (2015). Gu et al. found no significant

difference based on direct comparisons with an estimated difference in favor of

metformin of 0.06 and a standard error of 0.13. For indirect comparisons through

Table 10.4 Results for 10,000 simulations of a Phase 4 parallel-group trial using a prior

distribution for the treatment effect obtained from a network meta-analysis

True difference in HbA1c reduction (metformin minus acarbose)

�0 >0

Negative result 0.13 0.25 0.38

Positive result 0.00 0.62 0.62

0.13 0.87

Table 10.5 POSS and PPV values obtained from 10,000 simulated Phase 4 parallel-group trials

using a prior distribution for the treatment effect obtained from a network meta-analysis

Sample size per group POSS PPV

191 0.62 1.00

250 0.67 1.00

400 0.72 1.00

600 0.75 1.00

800 0.77 1.00

1000 0.79 1.00
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placebo and sulfonylurea, however, there were significant differences. The indirect

comparison of acarbose versus metformin through placebo yielded a mean differ-

ence of 0.38 in favor of metformin with a standard error of 0.18. The indirect

comparison of acarbose versus metformin through sulfonylurea gave a mean

difference of 0.34 in favor of metformin with a standard error of 0.16. Thus, Gu

et al. found a lack of consistency between direct and indirect comparisons of

acarbose and metformin which would suggest further exploration of the results to

understand the possible cause of the lack of consistency.

10.4 Pediatric Study Designs

The FDA draft guidance on General Clinical Pharmacology Considerations for

Pediatric Studies for Drugs and Biological Products (2014) identifies two main

approaches to providing substantial evidence to support the safe and effective use of

drugs in pediatric populations for the same indication as in adults. One approach

relies on evidence from adequate and well-controlled investigations in pediatric

populations. The second approach relies on evidence in adequate and well-

controlled investigations in adults together with additional information in the

specific pediatric population.

The first approach is easy to understand. For example, antidepressants were

typically studied in children and adolescents in controlled clinical trials before

approval for these populations. Designing a clinical trial in a pediatric population

generally involves the use of prior disease and exposure-response knowledge from

studies in adults and relevant pediatric information. If a PK/PD disease model can be

developed with appropriate inclusion of sources of variability, then this can be used

to simulate results for pediatric patients, which can in turn be used to simulate results

for the pediatric trial under planning. An example is given byMouksassi et al. (2009)

who looked at the application of teduglutide in neonates and infants with short-

bowel syndrome. They explored developing a dosing regimen with the goal of

obtaining an exposure greater than the target efficacy level in >90% of the popula-

tion while ensuring that the exposure in pediatric patients did not exceed the highest

level previously observed in adult patients. Mouksassi et al. simulated one thousand

clinical trials to estimate the percentage of patients within the target exposure range.

At the time of preparing for this book (early 2017), teduglutide was not approved for

the pediatric population. It was approved for adult patients in 2012.

For the second approach, it is possible that a PK study may be considered

sufficient additional information. To design such a study, a PK model specific to

the pediatric population can be developed and used to assess a study design. One of

the metrics for assessing such a study design is likely to be, as above, the probability

of a dose achieving the target exposure.
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10.5 Designs to Investigate the Effect of the Drug at

a Lower/Higher Dose or with Different

Administration Schedules

If the dose-response relationship has been well characterized as described in

Chaps. 6 and 8, then one can obtain a distribution for the treatment effect at a

new dose and use it as a prior distribution for a further study.

If a different administration schedule is to be studied, however, then a PK/PD

model relating the different exposure to the PD endpoint of interest needs to be

developed to obtain a prior distribution for the treatment effect in the evaluation of

study designs. For example, Katsube et al. (2008) proposed a PK/PD modeling

strategy to simulate in vivo bactericidal effects for three carbapenem antibiotics

that could be used for deciding an optimal dosing regimen.

10.6 Studies in New Populations

If the new population is a reasonably sized subpopulation of a more general

population already studied and there are sufficient data for the general population,

then it may be possible to analyze the subset of data corresponding to the new

population to derive a prior distribution for a treatment effect.

On the other hand, if a new population represents a mostly different population

from the patients already studied, it may still be possible to model the likely

treatment effect in the new population using a PK/PD model or a model-based

meta-analysis of the new drug and other drugs with a similar mode of mechanism

that have been studied both in the new population and the other populations.

An example of the use of a PK/PD model in new populations for the treatment of

venous thromboembolism (VTE) is given by Leil et al. (2014). Venous thrombo-

embolism is a serious and potentially fatal complication after total knee replacement

(TKR) or total hip replacement (THR) surgery. New oral anticoagulants such as

apixaban offer the possibility of improved efficacy, lower bleeding risk, and more

convenient formulations. Leil et al. used a model-based approach to integrate PK

and bleeding data from clinical trials of apixaban to predict bleeding risk in TKR and

THR patients and subpopulations of these populations. Clinical trial simulations

were used to predict the range of bleeding probabilities to be expected in various

TKR and THR populations for clinically relevant scenarios. Here, bleeding is

regarded as a safety endpoint, and the level of exposure is assumed to give the

required level of efficacy in prevention of VTE. We will return to the consideration

of efficacy and safety endpoints jointly in Sect. 13.2.
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10.7 Studies to Test a Drug in Combination with Other

Drugs

The likely effect of a combination of two drugs can be modeled by adding the

effects of the individual drugs and including an interaction term to represent

synergism or antagonism. Information about the interaction term may be obtainable

from other similar drug combinations. If such information is not available, it may be

preferable to assess designs conditionally for different plausible interaction effects

instead of assuming a particular prior distribution for the interaction effect. An

example of the investigation of a drug combination is the COMPASS-1 study

(Gruenig et al. 2009). The study investigated the effects of the combination of

bosentan and sildenafil versus sildenafil alone on morbidity and mortality in

symptomatic patients with pulmonary arterial hypertension.

10.8 Studies for New Indications

As for new populations, it may be possible to bridge to the likely effect of a

treatment in a new indication by using a model-based meta-analysis of the treat-

ment of interest and other treatments considered to act similarly that have been

studied in the new indication and the existing indications.

10.9 Discussion

We have seen in this chapter that network meta-analysis presents a possible way

of making indirect comparisons with other drugs. This is important in the

consideration of whether to proceed with a study comparing a drug with a

competitor because of the risk of finding a drug to be inferior to a comparator

and the cost involved. Forming a prior distribution for a treatment effect from a

network meta-analysis allows a possible design to be assessed for its likely

outcome. Network meta-analysis is not necessarily straightforward, however,

and care needs to be taken in the modeling of heterogeneity and the assessment

of consistency of results. For example, Carroll and Hemmings (2016) made the

case for increased rigor and care in the conduct and interpretation of network

meta-analyses. They noted that a number of assumptions underpin network meta-

analysis. In particular and in common with standard meta-analysis is an

assumption of similarity of trials and also an assumption of consistency. They

recommended that the following be reported for the proper assessment of a

network meta-analysis: a full reference list of all trials involved, a list of the

characteristics of each trial, a separate presentation of direct and indirect esti-

mates for each comparison along with 95% confidence intervals or credible
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intervals, and the weights applied for combining direct and indirect estimates

along with the estimated correlation between the two.

The head-to-head comparisons in some of the Phase 4 studies could have great

impact on treatment policy recommendations. An example is the study PROVE-IT

that was conducted between November 2000 and December 2001 comparing 40 mg

of pravastatin daily with 80 mg of atorvastatin daily. Prior to the study, medical

understanding on the relationship between high cholesterol and increased risk for

cardiovascular events had led to treatment guidelines on reducing cholesterol

(NCEP 1994), especially the low-density lipoprotein cholesterol (LDL-C). At the

turn of the twenty-first century, the guidelines recommended a target LDL-C of less

than 100 mg per deciliter for patients with established coronary artery disease or

diabetes (NCEP 2001). Even so, questions remained on the optimal level of the

LDL-C and whether LDL-C should be aggressively managed in some patients

beyond the 100 mg per deciliter level.

In PROVE-IT, the pravastatin treatment represented a standard therapy in man-

aging LDL-C per the guidelines. Atorvastatin, at the highest dose approved (i.e.,

80 mg per day), represented an aggressive LDL-C-lowering therapy. PROVE-IT

was designed as a noninferiority trial where noninferiority would be declared if the

upper limit of a one-sided 95% confidence interval of the relative risk for a

prespecified composite cardiovascular endpoint at 2 years between pravastatin and

atorvastatin is less than 1.17.

In PROVE-IT, the median LDL-C achieved during treatment was 95 mg per

deciliter in the pravastatin group and 62 mg in the atorvastatin group. Kaplan-Meier

estimates of the rates of the prespecified composite cardiovascular endpoint at

2 years were 26.3% in the pravastatin group and 22.4% in the atorvastatin group

(Cannon et al. 2004), reflecting a 16% reduction in the hazard rate in favor of

atorvastatin. The noninferiority criterion was not met.

Results in PROVE-IT and other contemporary studies led to the revision of the

guidelines (Stone et al. 2014). The new guidelines state that for individuals that merit

guideline-recommended statin therapy, they should be treated with the maximum

appropriate intensity of a statin that does not cause unacceptable adverse effects.

PROVE-IT was a major undertaking. While it contributed greatly to the question

on the value of intensively managing LDL-C level in at-risk patients, the results

nevertheless were a surprise to the sponsor. It will be of interest to explore retrospec-

tively if an analysis including all statins and a model linking LDL-C level to the risk

for cardiovascular events could help the sponsor assess the probability of study

success at the design stage, when the idea of the trial was first conceived.

For a number of other types of Phase 4 trial considered in this chapter, modeling

based on available data of the drug or available data of other drugs with a similar

mode of mechanism offers an opportunity to obtain a distribution for a treatment

effect that may be used as a prior distribution to evaluate a design. We note that

such modeling is essentially an extrapolation from existing data. At the time this

book was being prepared, the EMA was seeking to develop a framework for

extrapolation approaches that would be considered scientifically valid and reliable

to support medicine authorization (2016).
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Gruenig, E., Michelakis, E., Vachiéry, J.-L., et al. (2009). Acute hemodynamic effects of single-

dose sildenafil when added to established bosentan therapy in patients with pulmonary arterial

hypertension: Results of the COMPASS-1 study. Journal of Clinical Pharmacology, 49(11),
1343–1352.

Gu, S., Shi, J., Tang, Z., et al. (2015). Comparison of glucose lowering effect of metformin and

acarbose in type 2 diabetes mellitus: A meta-analysis. PloS One, 10(5), e0126704. doi:10.1371/
journal.pone.0126704.

Higgins, J. P. T., Jackson, D., Barrett, J. K., et al. (2012). Consistency and inconsistency in

network meta-analysis: Concepts and models for multi-arm studies. Research Synthesis
Methods, 3(2), 98–110.

Katsube, T., Yamano, Y., & Yano, Y. (2008). Pharmacokinetic-Pharmacodynamic modelling and

simulation for in vivo bactericidal effect in murine infection model. Journal of Pharmaceutical
Sciences, 97(4), 1606–1614.

Kenward, M. G., & Roger, J. H. (2009). An improved approximation to the precision of fixed

effects from restricted maximum likelihood. Computational Statistics and Data Analysis, 53
(7), 2583–2595.

Leil, T. A., Frost, C., Wang, X., & LaGreta, F. (2014). Model-based exposure-response analysis of

apixaban to quantify bleeding risk in special populations of subjects undergoing orthopaedic

surgery. CPT: Pharmacometrics & Systems Pharmacology, 3, e136. doi:10.1038/psp.2014.34.
Lu, G., & Ades, A. E. (2004). Combination of direct and indirect evidence in mixed treatment

comparisons. Statistics in Medicine, 23(20), 3105–3124.
Lumley, T. (2002). Network meta-analysis for indirect treatment comparisons. Statistics in

Medicine, 21(16), 2313–2324.
Mouksassi, M. S., Marier, J. F., Cyran, J., & Vinks, A. A. (2009). Clinical trial simulations in

pediatric populations using realistic covariates: Application to teduglutide, a glucagon-like

peptide-2 analog in neonates and infants with short-bowel syndrome. Clinical Pharmacology
& Therapeutics, 86(6), 667–671.

National Cholesterol Education Program. (1994). Second report of the expert panel on detection,

evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel II).

Circulation, 89(3), 1333–1445.
National Cholesterol Education Program (NCEP). (2001). Executive summary of third report of

the expert panel on detection, evaluation, and treatment of high blood cholesterol in adults

(Adult Treatment Panel III). Journal of the American Medical Association, 285(19),
2486–2497.

Piepho, H. P. (2014). Network-meta analysis made easy: Detection of inconsistency using factorial

analysis-of-variance models. BMC Medical Research Methodology, 14, 61. Retrieved from

http://www.biomedcentral.com/1471-2288/14/61

Piepho, H. P., Williams, E. R., & Madden, L. V. (2012). The use of two-way mixed models in

multitreatment meta-analysis. Biometrics, 68(4), 1269–1277.
SAS/SAT® Software. Cary, NC: SAS Institute.

150 10 Designing Phase 4 Trials

http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2016/04/WC500204187.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2016/04/WC500204187.pdf
http://dx.doi.org/10.1371/journal.pone.0126704
http://dx.doi.org/10.1371/journal.pone.0126704
http://dx.doi.org/10.1038/psp.2014.34
http://www.biomedcentral.com/1471-2288/14/61


Senn, S., Gavini, F., Magrez, D., & Scheen, A. (2013). Issues in performing network meta-

analysis. Statistical Methods in Medical Research, 22(2), 169–189.
Stone, N. J., Robinson, J. G., Lichtenstein, A. H., et al. (2014). 2013 ACC/AHA guideline on the

treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: A report

of the American college of cardiology/American heart association task force on practice

guidelines. Journal of the American College of Cardiology, 63(25_PA), 2889–2934.
U.S. FDA Draft Guidance for Industry: General Clinical Pharmacology Considerations for

Pediatric Studies for Drugs and Biological Products. (2014). Retrieved June 22, 2016, from

http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/

ucm425885.pdf

Welton, N. J., Soares, M. O., Palmer, S., et al. (2015). Accounting for heterogeneity in relative

treatment effects for use in cost-effectiveness models and value-of-information analyses.

Medical Decision Making, 35(5), 608–621.
White, I. R., Barrett, J. K., Jackson, D., & Higgins, J. P. T. (2012). Consistency and inconsistency

in network meta-analysis: Model estimation using multivariate meta-regression. Research
Synthesis Methods, 3(2), 111–125.

WinBUGS. Retrieved from http://www.mrc-bsu.cam.ac.uk/software/bugs/

References 151

http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm425885.pdf
http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm425885.pdf
http://www.mrc-bsu.cam.ac.uk/software/bugs/


Chapter 11

Other Metrics that Have Been Proposed

to Optimize Drug Development Decisions

All men by nature desire to know.
Aristotle

11.1 Introduction

So far, we have focused on metrics that address specific goals of different stages of

drug development. While each stage is designed to enable quality decision-making

necessary at that stage, there is a common goal that underpins all stages of a drug

development program, and this common goal may sometimes be forgotten during

stage-specific optimizations. The common goal is to get a safe and effective drug to

the market place as soon as possible and doing this at the lowest cost plausible. The

emphasis on speed serves both the patients and the sponsor. A faster entry means

that patients in need will have access to the medicine sooner. For the sponsor, this

means a longer patent life remaining on the drug and an earlier start to recovering

the development costs. Keeping development costs low is easy to understand,

especially at a time when the average cost of developing a successful drug is

estimated to be around 2.56 billion USD in 2013 money (DiMasi et al. 2016; see

also Sect. 1.1).

The quest for speed and cost is often at odds with the desire for quality. For

example, we have learned from earlier chapters the need for replication before

moving into the confirmatory stage and the need for a heavier investment in dose-

ranging studies than the current practice. For Phase 3 studies, the metrics we have

discussed in Chap. 9 will typically go up in value with a larger sample size. But, a

heavier investment means higher costs and generally a longer development time-

line, which in turn means a delayed market entry and a shorter patent life remaining

at the product launch. In some cases, it makes a major difference commercially

whether a drug is the first or the third of its class to enter into the market place.

An important question is—how can we balance between quality, cost, and

speed? Are there reasonable ways to help us assess the combined effect of these

three factors and optimize over these three in a quantitative manner?
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In this chapter, we will discuss two approaches that incorporate costs in making

strategic development decisions. The first approach uses an efficiency score pro-

posed by Chen and Beckman (2009, 2014). Chen and Beckman argue that the

exploratory nature of a proof-of-concept (POC) study gives a sponsor the liberty to

choose the Type I error rate and statistical power for conducting a hypothesis test at

this stage. They propose to make this choice by optimizing a benefit-cost efficiency

score that measures the cost-effectiveness of the POC trial. The idea is to maximize

the return on socioeconomic investment in trials and yield the greatest knowledge

with the minimum patient exposure. They argue that the same concept can be

applied to program-level and franchise-level decisions.

The second approach combines costs and potential commercial return to assess

drug development strategies. Patel and Ankolekar (2007) propose to do this when

designing clinical trials and assessing portfolios of drugs. Burman et al. (2007) use a

decision-analytical approach to calculate sample size from the perspective of

maximizing company profit. Mehta and Patel (2006) consider net present value

(NPV) when considering sample size reestimation. More recently, net present value

together with the probability of success of the confirmatory program has been used

by Patel et al. (2012), Antonijevic et al. (2013), and Marchenko et al. (2013) to

optimize late-stage programs in three case studies involving neuropathic pain,

type 2 diabetes, and oncology. The three case studies are extensions of the work

published in Pinheiro et al. (2010) who also include net present value as an

optimization criterion in addition to probability of Phase 3 success.

We will discuss the above two approaches in Sects. 11.2 and 11.3, respectively.

We will briefly mention a couple of additional metrics in Sect. 11.4 and share our

thoughts on the use of metrics in general in Sect. 11.5.

11.2 Benefit–Cost Efficiency Score

In most oncology development programs, a positive POC study will move a drug

into the confirmatory stage. This is because the maximum tolerated dose estimated

in Phase 1 is traditionally the dose investigated in the POC and the confirmatory

trials. The POC to confirmatory pathway means that if a sponsor can be more

efficient with their POC strategies, more drugs could be studied at the POC stage

and consequently more in Phase 3 trials.

We discussed five POC designs in Chap. 7. One of them is the Early Signal of

Efficacy (ESoE) approach, aimed at using smaller studies to identify compounds

with great potential. The approach prespecifies acceptable risks in moving an

ineffective drug forward and stopping an effective drug from being progressed.

These risks can differ in value from the traditional choices of the Type I error and

Type II error rates. Once the risks are specified, the sample size can be determined

using the traditional sample size formula.

Chen and Beckman (2009, 2014) approached the POC strategy similarly, but

using a different metric. To describe their metric, we first return to Table 6.2 which
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displays the unconditional probabilities of various actions when testing a null

hypothesis H0 of no clinically meaningful treatment effect (e.g., effect < δ) against
the alternative hypothesis HA of a clinically meaningful effect (e.g., effect � δ).
Because the interest is in only one direction of the treatment effect Δ, we will work
with the one-sided Type I error rate (and significance level) as in other chapters of

this book and denote it by α.
Assuming that the probability that HA is true is p, Table 6.2 could be reexpressed

as in Table 11.1. In Table 11.1, β is the Type II error rate.

If rejecting H0 leads to a Go decision, then the probability of Go is p� (1� β)
+ (1� p)� α. Within this Go probability is the probability of a correct Go p�
(1� β), i.e., the probability of advancing an effective drug.

Denote the total sample size of the POC study by C2 and the total sample size for

the confirmatory trial following a positive POC by C3. The design of the confirma-

tory trial typically follows the standard practice with a one-sided 2.5% significance

level and 90% power. Occasionally, a sponsor may choose to use a lower power

such as 80%. On the other hand, the POC design can be more flexible because of the

exploratory nature of the study.

The expected sample size from the POC study and the confirmatory study

combined is

C ¼ C2 þ C3 � p� 1� βð Þ þ 1� pð Þ � α½ � ð11:1Þ

Chen and Beckman (2014) proposed to maximize the ratio of p� (1� β) to C.
They called the ratio the benefit-cost ratio (BCR) with benefit measured by the

probability of advancing a truly effective drug and cost measured by the total of the

POC sample size and the expected sample size of the confirmatory trial. The ratio

measures how much a patient contributes to the development of an active drug. The

higher the ratio is, the more efficient the POC design is.

For example, assume that the Phase 3 study is set to have a total of 600 patients.

If the POC study is designed to have 80% power to detect an effect size of 0.3 at the

one-sided 5% significance level, then the POC study needs 138 subjects per group

for a two-arm randomized study. Assume p ¼ 0.1; then the BCR for this POC

design is 2.3� 10�4 as shown in (11.2). If one designs the study to have 50% power

to detect the same effect size at a one-sided significance level of 3%, then one needs

79 subjects per group. The BCR for this new design is 2.4� 10�4, which is slightly

higher than 2.3� 10�4, the ratio for a more traditional POC design.

Table 11.1 Unconditional probabilities of various actions in testing H0 versus HA

H0 true H0 false Total

Accept H0 (1� p)� (1� α) p� β (1� p)� (1� α) + p� β

Reject H0 (1� p)� α p� (1� β) (1� p)� α+ p� (1� β)

Total 1 � p p 1
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0:1� 1� 0:2ð Þ
2� 138þ 600� 0:1� 1� 0:2ð Þ þ 1� 0:1ð Þ � 0:05½ � ¼ 0:00023 ð11:2Þ

For the same α, β, and sample size for the POC study, a higher p will lead to a

higher BCR. For example, for the study with α (one-sided) ¼ 0.03, β ¼ 0.50, and

79 subjects per group, p ¼ 0.5 will produce a BCR of 7.9� 10�4, higher than the

2.4� 10�4 figure associated with p ¼ 0.1. This is intuitive since the probability of

moving an effective treatment is higher when p ¼ 0.5 than when p ¼ 0.1.

The benefit–cost ratio can be reexpressed as

BCR ¼ 1

C3

p� 1� βð Þ
τ þ p� 1� βð Þ þ 1� pð Þ � α

�� � ð11:3Þ

In (11.3), τ¼C2/C3 is the ratio between the sample size of the POC trial and that

of the confirmatory trial.

Chen and Beckman proposed to find α and β (and therefore the sample size C2

for the POC study) that would maximize the BCR in (11.3). They considered such a

design the most cost-effective from the perspective of maximizing each patient’s
contribution to the probability of identifying an active drug. For a given C3 and p,
maximizing BCR is equivalent to maximizing the second term on the right-hand

side of (11.3). The optimization is not straightforward since τ is a function of α and

β also.

To see the above, assume that the Phase 3 trial is sized with a one-sided

significance level of 2.5% and power of 90%; Chen and Beckman express τ as

the product of two terms λ and (Zα + Zβ)
2/(Z0.025 + Z0.10)

2 as shown in (11.4).

τ¼ 2� ZαþZβ
� �2

=δ2POC
2� Z0:025þZ0:10ð Þ2=δ2REG

¼ ZαþZβ
� �2

Z0:025þZ0:10ð Þ2�
Z0:025þZ0:10ð Þ2=δ2POC
Z0:025þZ0:10ð Þ2=δ2REG

¼ ZαþZβ
� �2

Z0:025þZ0:10ð Þ2� λ

ð11:4Þ

In (11.4), δPOC and δREG are the effect sizes that the POC study and the

confirmatory trial are set to detect; λ is the ratio of the sample size of the POC

trial and the Phase 3 study when the POC trial is sized with a one-sided significance

level of 0.025 and power of 0.90. This ratio reflects the difference in the endpoint

(e.g., progression-free survival versus overall survival) and difference in the effect

size to be detected. The term (Zα + Zβ)
2/(Z0.025 + Z0.10)

2 corresponds to the ratio

between the POC sample size to have a (one-sided) Type I error of α and power of

1� β and the sample size when one employs a one-sided significance level of 0.025

and power of 0.90.
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Chen and Beckman (2014) approached this problem by varying λ and examining

how α and β change as a function of λ. They found that for λ between 10 and 30%

and p between 10 and 50%, the optimal α ranged from 2 to 8%. The power, on the

other side, ranges from 48 to 60%. There is a trend for the optimal error rates (both

α and β) to go up as p (between 0 and 50%) or λ increases.
Under the cost-effective optimal design, the Type I error rate does not differ very

much from that under a traditional POC design. The power to detect a clinically

meaningful effect, on the other hand, is substantially lower than that under a

traditional POC design. The lower power leads to a reduced sample size. An

immediate effect of this is that the treatment effect needs to be much higher for

the study to have the kind of power (e.g., 80%) used in a more traditional POC

design.

It is easy to see that if p is between 50% and 100%, the role of α and β reverses

somewhat in optimizing the BCR metric. Suppose the historical success rate p is

60% and we are looking at either setting α ¼ 0.06 and β ¼ 0.50 (Choice #1) or

α ¼ 0.50 and β ¼ 0.06 (Choice #2). Sample sizes under these two choices are the

same (i.e., 54 patients per group or a total of 108 patients for an effect size of 0.3),

but Choice #1 has a BCR of 9.9� 10�4, while Choice #2 has a BCR of 10.0� 10�4.

The two BCRs are almost the same, with the BCR of Choice #2 just a bit higher

than that of Choice #1. When p is over 50%, it becomes increasingly more

important to be able to identify a Go opportunity.

Chen and Beckman applied the BCR concept to assess the efficiency of

conducting multiple POC studies for different indications compared to one larger

POC study for only one indication. Assume that resources are available to enroll

160 patients for a two-arm study (so that each arm will have 80 patients). A positive

POC study (statistical significance at a prespecified significance level) will be

followed by a 600-patient Phase 3 study. Furthermore, assume that there are two

competing options. One option (Option #1) is to devote all resources to a traditional

POC study with α¼ 0.05 and β ¼ 0.2 for one indication. The second option (Option

#2) is to divide the resources and devote 80 patients to a POC study for each of two

indications. The false-positive rate under Option #2 is stipulated to be at most 0.05

for both POC studies.

The sample size for the POC study under Option #1 is twice that under Option

#2. This means that for the same effect size, the power of the POC study under

Option #2, denoted by 1 � β*, has to satisfy the relationship in (11.5).

Z0:05 þ Z0:20ð Þ2
Z0:05 þ Zβ∗
� �2 ¼ 2 ð11:5Þ

Solving for β* in (11.5) leads to β* ¼ 0.45.

We assume that the prior experience in developing products for the two indica-

tions suggests a historical success rate of 0.3 for both indications. The BCR under

Option #1 is
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0:3� 1� 0:2ð Þ
160þ 600� 0:3� 1� 0:2ð Þ þ 0:7� 0:05ð Þ ¼ 7:4� 10�4 ð11:6Þ

The BCR under Option #2 is

2� 0:3� 1� 0:45ð Þf g
2� 80þ 600� 0:3� 1� 0:45ð Þ þ 0:7� 0:05ð Þf g ¼ 8:3� 10�4 ð11:7Þ

The multiplier of 2 in (11.7) is due to the fact that there are two indications under

consideration. Option #2 has a higher BCR than Option #1. So, dividing the

resources available for POC investigation to explore two indications is more cost-

effective according to the BCR metric in this instance.

The concept could also be used to assess the efficiency of different strategies to

manage the portfolio. For the latter, a major advantage of the approach is that it is

easy to understand and communicate. A disadvantage is that it treats all subjects

across indications the same without addressing the potential return due to differ-

ences in the target patient populations associated with different indications.

11.3 Product Valuation

In economic terms, the net present value of an investment is the difference between

the present value of the expected future cash flows from the investment and the

amount of investment. Present value of the expected future cash flows is computed

by discounting the expected future cash flows by an annual discount rate.

Developing a drug is an investment, and a highly risky one. The expected future

cash flows from the investment come from the expected net revenue (gross revenue

minus operating expenses) of the drug. The expected gross revenue depends on

many factors such as the remaining patent life of the drug, the trajectory of the sale

before the patent expires, and the rate of sale decline following patent expiration.

Operating expenses include costs associated with raw materials, manufacturing,

promotion, detailing, pharmacovigilance activities, conducting additional trials

required by regulators, and liability lawsuits. Frequently, an estimate of the fifth-

year net revenue is used as an anchor in this calculation. For convenience, we will

denote the expected fifth-year net revenue by S5.

In this section, we will describe in some detail a case study for neuropathic pain

by Patel et al. (2012) who used net present value as a metric to evaluate different

program-level strategies when designing a Phase 2 dose–response study. We will

focus on those aspects of the case study that relate to the calculation of net present

value.
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11.3.1 Present Value of Net Revenue

Patel et al. (2012) considered a net revenue model that projected the net return to

increase linearly up to the fifth year, if more than 5 years remain on the patent life

for the drug. After the fifth year, the rate of increase changes until the patent life

runs out. From that point on, the expected revenue decreases following an expo-

nential decay curve. If there are fewer than 5 years remaining on the patent life at

the product launch, the net revenue will increase linearly toward the fifth-year net

revenue projection and decrease exponentially at the point of patent expiration.

Denote the net revenue in year t by R(t), the remaining patent life at the time of

product launch by TP, the rate of increase between the fifth year and TP in the case

of TP > 5 by b per year, and the rate of exponential decline in net revenue per year
after patent expiration by c. The above characterization of R(t) could be described

mathematically as follows:

If TP > 5 years,

R tð Þ ¼ S5� t=5 if t � 5 years

¼ S5� 1þ b t� 5ð Þ½ � if 5 < t � TP

¼ S5� 1þ b� TP� 5ð Þ � exp �c� t� TPð Þ½ �½ � if t > TP

If TP � 5 years,

R tð Þ ¼ S5� t=5 if 0 � t � TP

¼ S5� TP=5ð Þ � exp �c� t� TPð Þ½ � if t > TP

If the development of a drug is terminated prior to launch, then R(t)¼ 0 for all t.
We display, in Fig. 11.1, the net revenue R(t) profile defined above for TP ¼ 3,

7, 10, and 13 years, S5 ¼ 1B USD, b ¼ 0.1, and c ¼ 0.5.

Because a sponsor cannot expect revenue while a drug moves through Phase 2

and Phase 3 development, the net revenue occurs several years in the future and

needs to be adjusted to reflect its present value.

Let TP2 denote the anticipated duration of the Phase 2 dose–response study

being planned, T23 the anticipated period between the completion of the dose–

response study and the beginning of the Phase 3 program, TP3 the anticipated

duration of the Phase 3 program, and T3L the anticipated period between the

completion of Phase 3 program and product launch. All durations are measured

in years. Net revenue, if there is any, will not begin until after a period of

(TP2 + TP23 + TP3 + T3L) years.

Let ρ be the annual discount rate when converting future money to its present-

day value. Patel et al. used the expression in (11.8) to calculate the present value of

the future net revenue (PVRev).
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PVRev ¼ R1
0

R tð Þ � exp �ρ TP2þ TP23þ TP3þ T3Lþ tð Þf gdt
¼ exp �ρ TP2þ TP23þ TP3þ T3Lð Þf g R1

0
R tð Þ � exp �ρtf gdt

ð11:8Þ

11.3.2 Present Value of Development Cost

In Patel et al. (2012), the cost that has yet to be incurred includes the costs of the

Phase 2 dose–response trial (C2), the costs of Phase 3 trials if the development

moves into Phase 3 (C3), and startup costs of manufacturing and costs associated

with the initial launch (CML). Patel et al. assumed that two identical confirmatory

trials were to be conducted following a positive dose–response study. The frame-

work developed by Patel et al. could be easily extended to allow more complicated

scenarios. Patel et al. used the following notation in calculating C2, C3, and CML.

M2 Total number of sites in the Phase 2 trial

AR2 Patient accrual rate per year per site in the Phase 2 trial

M3 Total number of sites in each of the two Phase 3 trials

AR3 Patient accrual rate per year per site in each of the two Phase 3 trials

CS Upfront cost per site (assumed to be the same for Phase 2 and Phase 3 trials

for simplicity)
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Fig. 11.1 Net revenue R(t) profile (B USD) over years, assuming a remaining patent life of 3, 7,

10, and 13 years at the product launch. Other assumptions in producing the curves include

S5 ¼ 1B, b ¼ 0.1, and c ¼ 0.5
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CP Cost per patient (assumed to be the same for Phase 2 and Phase 3 trials for

simplicity)

The costs of the Phase 2 trial consist of the upfront cost of CS�M2 to initiate the

sites plus the ongoing costs of enrolling/treating patients. The second part of the

costs will be incurred on an ongoing basis in the future, so the associated cost needs

to be adjusted to reflect their present value. Using the same principle as in (11.8),

the present value of the Phase 2 costs (PVC2) can be estimated to be

PVC2 ¼ CS�M2þ
Z TP2

0

CP� AR2� exp �ρtf gdt ð11:9Þ

Similarly, the costs of Phase 3 and manufacturing/initial launch will all be

incurred at different times in the future if the development progresses to these

milestones. Using the notation defined earlier, Phase 3 trials will not begin for a

period of (TP2 + T23) years from now, while manufacturing/launch will not begin

for a period of (TP2 + T23 + TP3) years. Using the same principles behind (11.8)

and (11.9), we can obtain the present value of the Phase 3 costs (PVC3) if the

development moves to Phase 3 in (11.10) and the present value of the manufactur-

ing/launch costs (PVCML) if launch is to take place in (11.11). The multiplier of

2 in (11.10) is due to the fact that two identical Phase 3 studies will be conducted.

PVC3 ¼ 2� exp �ρ TP2þ T23ð Þf g CS�M3þ R TP3
0

CP� AR3� exp �ρtf gdt
� �

ð11:10Þ
PVCML ¼ CML� exp �ρ TP2þ T23þ TP3ð Þf g ð11:11Þ

11.3.3 Net Present Value

So, the expected net present value at the start of the Phase 2 dose–response study in

the case study considered by Patel et al. is

NPV ¼ PVRev� PVC2� PVC3� PVCML ð11:12Þ

11.3.4 Fifth-Year Net Revenue

It should be clear by now that many assumptions are needed in the calculation of the

NPV. Some of the assumptions such as the costs of initiating sites and treating

patients come from years of experience in running similar trials. So, these figures

are generally pretty close to the reality. Patel et al. use an annual discount rate of

10% for the parameter ρ.
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One factor that is critical to the calculations of the net revenue but subject to

great uncertainty is the estimated fifth-year net revenue. The net revenue is obtained

by subtracting the operating costs from drug sales. We discussed sources for

operating costs earlier. As for drug sales, they depend heavily on the benefit-risk

profile of the drug and the drug’s order of market entry among drugs in the same

class and drugs for the same indication. A sponsor often relies on market research to

help forecast drug sale. Despite the advancements in market research methodology,

we have seen substantially missed predictions on product sales in both directions.

The efficacy of a drug for treating neuropathic pain can be measured by the

reduction in pain intensity at the end of a treatment period (e.g., 12 weeks) from

baseline. Pain intensity is frequently measured on a numerical rating scale (NRS)

that ranges from 0 to 10. The minimum clinically important difference in the mean

reduction in pain intensity between an investigational product and placebo is

generally considered to be one unit on the NRS. Marketed products for neuropathic

pain can generally achieve this level of efficacy. Lower efficacy may be acceptable

to patients if the product has a better safety profile (i.e., more tolerable side effects)

when compared with marketed products.

Common side effects (e.g., weight gain and decrease in sexual function) asso-

ciated with neuropathic pain drugs are not serious but are generally considered to be

a nuisance. For these nuisance events, Patel et al. assumed a drug-related incidence

rate between 0.2 and 0.3 for marketed products. A rate greater than 0.3 is worse than

marketed products, while a rate less than 0.2 is considered better than marketed

products.

For the neuropathic pain case study, Patel et al. estimated fifth-year net revenue

as a function of the drug’s safety and efficacy profile. They sought input from

experts familiar with pain research and management in developing the estimates.

The estimates are given in Table 11.2.

11.3.5 Phase 2 Study Designs Considered

Patel et al. considered several design options. All the designs are fixed designs.

They considered including eight active doses (doses D1 through D8) or four active

doses (doses D2, D4, D6, and D8). For the eight active doses scenario, they

Table 11.2 Estimates of the fifth-year net revenue (in billions USD) for a new neuropathic pain

drug (at a fixed dose) for various efficacy and safety profiles

Pain reduction on the NRS (compared to a

placebo)

Rate of nuisance adverse events

<0.2 0.2 � . . . < 0.3 0.3 � . . . � 0.5 >0.5

<0.8 0.00 0.00 0.00 0.00

0.8 � . . . < 1.0 1.00 0.75 0.25 0.00

1.0 � . . . < 1.5 1.50 1.00 0.50 0.00

�1.5 2.00 1.50 1.00 0.25
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considered a base design of assigning 30 patients to each of the eight active doses

and a placebo. This base design has 270 (¼9� 30) patients. They also considered

15, 25, 45, 60, 75, and 90 patients per group, resulting in a total of 135, 225,

405, 540, 675, and 810 patients for the design including eight active doses.

For the four active doses scenario, the base design has 54 patients per group,

resulting in a total of 270 patients (¼5� 54). Other sample sizes explored for the

four active doses design by Patel et al. are 225 (45 per group), 405 (81 per group),

and 675 (135 per group).

11.3.6 Range of Efficacy and Tolerability Considered

Patel et al. considered a range of dose–response relationships for the beneficial

effect such as those described in Sect. 6.3. These include a nonmonotone dose–

response like the quadratic (umbrella) curve in Fig. 6.2. The maximum efficacy in

the base case is 1.1 on the NRS. A maximum efficacy of 0.55 and 1.65 was also

considered. The latter represent 50% below or above the base case for efficacy.

As for the rate of the nuisance adverse events, they considered three dose–

response relationships labeled as low, moderate, and high. The rates associated

with the eight active doses under these three scenarios are given in Table 11.3.

Patel et al. simulated efficacy and safety data under various efficacy and safety

profiles. For each simulated Phase 2 trial, they fitted a four-parameter logistic model

in (11.13) to the efficacy data and an isotonic regression model to the observed AE

rates. Fitting an isotonic regression model involves pooling observed rates of

adjacent doses that violate the monotonicity assumption for the AE rates (Robert-

son et al. 1988). Under the isotonic regression model, the fitted AE rates are

nondecreasing as doses increase.

In (11.13), the parameter D represents dose on the (natural) log scale. For

convenience, Patel et al. assumed that on the log scale, placebo was equivalent to

a dose equal to 2� ln (D1)� ln (D2). In other words, placebo is of the same

distance below D1 as D2 is above D1 on the (natural) log scale. The four-parameter

logistic model in log dose is equivalent to a four-parameter Emax model in the

original dose. In addition, the best four-parameter logistic model fit can approxi-

mate all the dose–response curves considered by Patel et al. to be within 0.1 on the

absolute scale. The response Y in (11.13) is assumed to have a normal distribution

Table 11.3 Three AE profiles considered by Patel et al. (2012)

Profile

Doses

Placebo D1 D2 D3 D4 D5 D6 D7 D8

Low 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.15 0.175

Moderate 0.1 0.1 0.1 0.1 0.15 0.2 0.25 0.3 0.35

High 0.1 0.15 0.15 0.15 0.225 0.3 0.375 0.45 0.525
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with variance σ2. If δ > 0, E(Y|D) is monotonically increasing in D with minimum

and maximum values of β and β + δ.

E YjDð Þ ¼ β þ δ

1þ exp θ�D
τ

� �
 !

, τ > 0 ð11:13Þ

Patel et al. took a Bayesian approach when fitting (11.13). They used nearly flat

priors to the four parameters in (11.13) and σ2. They assigned normal priors N(0;102)
and N(1.1;102) for β and δ, respectively. The priors for θ and τ are discrete and

uniform over a rectangular grid of 30 by 30 points. The prior for σ2 is inverse

gamma (0.001, 1000) with a density function proportional to (1/σ2)1.001exp (�1000/

σ2). Prior distributions are assumed to be independent of each other. Patel et al.

obtained the joint posterior distribution for (β , δ , θ , τ , σ2) from the dose–response

study and used the Gibbs sampling algorithm to sample from this distribution when

calculating the probability of success for Phase 3.

11.3.7 Selecting a Dose to Move to Phase 3

Patel et al. considered taking only one dose from the Phase 2 dose–response trial

into Phase 3. They considered two methods for dose selection. However, before

either method is applied, Patel et al. first conducted a linear trend test on the efficacy

endpoint. If the trend test is significant at the one-sided 5% level, then the work

proceeds to dose selection.

The first selection method chooses the dose estimated to provide efficacy over

the placebo that is the closest to and above the target efficacy of one unit on the

NRS. This method is called the target effect method. If no dose has an estimated

efficacy of one unit over the placebo, development will not proceed to Phase 3.

The second method chooses the dose that will yield the highest fifth-year net

return in Table 11.1 based on efficacy and AE rate estimated from the fitted efficacy

and AE models. For convenience, we will call this method the maximum utility

method. The word “utility” in this case refers to the net return at the fifth year. The

maximum utility method does not impose any threshold for progressing to Phase 3

except for the obvious requirement that the net return needs to be positive.

11.3.8 Metrics Used to Evaluate Design Options

Patel et al. considered two primary metrics. One is the probability of Phase 3

success defined as the probability that both Phase 3 trials produce a statistically

significant result. The second metric is the expected net present value of the drug at

the start of the Phase 2 development.
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As stated earlier, Patel et al. considered two identical Phase 3 studies. In theory,

the Phase 3 study could be designed to have an adequate power (e.g., 90%) to detect

a clinically meaningful treatment effect (e.g., one unit on the NRS) at the one-sided

2.5% significance level. Assuming a standard deviation of two units for the primary

endpoint, this means the study needs only 84 patients per group or 168 patients per

study. This suggests a pretty small Phase 3 program if a sponsor only needs to

demonstrate efficacy for the new drug. The sample size per group will increase to

190 per group in a study if the standard deviation is assumed to be three units.

In this case, the sample size decision will be dominated by the requirement on

the extent of premarketing exposure required by ICH E1 (1994). If neuropathic pain

is the only indication sought for the new drug at the initial regulatory submission

and the intent is to use the new drug for the condition chronically, then ICH E1

expects the total number of individuals treated with the drug at the dose intended for

clinical use to be about 1500. Furthermore, there should be between 300 and

600 patients with at least 6 months exposure and at least 100 patients with 1 year

of exposure, all at the dose intended for clinical use.

Because of the above requirement on exposure, the sample size for the Phase 3

trials needs to be higher than what would have been necessary to demonstrate

efficacy alone. For example, suppose 30 patients are randomized to each of eight

active dose groups in the Phase 2 study and 50% of the patients receiving the new

drug will be rolled over to an extension study at the dose level to be confirmed in

Phase 3. This means that the Phase 2 study will contribute a total of 120 patients

(¼50% � 30 � 8) toward the 1500-patient requirement. The remaining 1380

patients (¼1500–120) will have to come from the two identical Phase 3 studies if

there are no other relevant exposure sources. In this case, each Phase 3 study will

have 1380 patients, randomized in equal proportions to the new drug and a placebo.

The framework set up by Patel et al. could be extended to situations where

multiple indications are being sought simultaneously and exposure data will come

from multiple programs. In the latter case, the total number of exposed patients for

each indication could be substantially reduced.

11.3.9 High-Level Results

In the neuropathic pain case study, Patel et al. found that the maximum utility

selection method typically yielded higher expected NPVs than the target effect

method. This is not surprising considering that the maximum utility selection

method aims to maximize the fifth-year net return, which is a critical building

block for the expected NPV.

To see how Phase 2 sample size, efficacy, and safety profiles, as well as the

choice on the number of doses, affect the probability of Phase 3 success and the

expected NPV, we include in Tables 11.3 and 11.4 some select results from Patel

et al. Results in these tables were obtained by simulation using the following

assumptions. In general, Patel et al. carried out 500 simulations for each scenario.
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Patent life remaining at start of the dose–response study ¼ 15 years

M2 (total number of sites in the Phases 2 trial) ¼ 50

AR2 (patient accrual rate per year per site in the Phase 2 trial) ¼ 6

M3 (total number of sites in each Phase 3 trial) ¼ 80

AR3 (patient accrual rate per year per site in each of the two Phase 3 trials) ¼ 12

CS (upfront cost per site) ¼ 1500 USD

CP (cost per patient) ¼ 3500 USD

CML (startup cost of manufacturing and launch cost) ¼ 1 M USD

T23 (period between Phase 2 completion and the beginning of Phase 3)¼ 6 months

T3L (period between end of Phase 3 trials and product launch) ¼ 12 months

b (rate change in net revenue model in Sect. 11.3.1) ¼ 0.1

c (exponential decay function parameter in net revenue model in Sect. 11.3.1)¼ 0.5

ρ (annual discount rate used in NPV calculation) ¼ 10%

One could argue that a higher cost per patient should be used for the Phase 3

studies because of the longer treatment duration (e.g., 1 year versus 12 weeks for

the Phase 2 study). Patel et al. explored the impact of assuming a higher CP for

Phase 3 trials and concluded that comparative results remained the same

qualitatively.

For each (maximum efficacy, AE profile) combination and a dose–response

model for efficacy, one can find the Phase 2 sample size among those investigated

that yields the highest expected NPV. For example, under a four-parameter Emax

model, the optimal sample size for a maximum efficacy of 1.1 and a moderate AE

profile (the base case) is 270 in a study with eight active doses. These optimal

sample sizes are given in the first block in Table 11.4 under the column heading of

“Optimal Phase 2.” One can calculate the reduction in expected NPV from the

optimal value for other sample sizes. Two examples for this calculation are

included for sample sizes of 270 and 405 in Table 11.4. Entries in Table 11.4 are

extracted from Table 7 in Patel et al. (2012).

Table 11.4 Optimal Phase 2 sample size in the eight-dose design as a function of the maximum

efficacy and AE profile under the four-parameter Emax efficacy model

Max
efficacy

AE
profile

Optimal Phase 2 Phase 2 sample size ¼ 270 Phase 2 sample size ¼ 405

Sample
size

Expected
NPV (B)

Expected
NPV (B)

Reduction from
optimal (%)

Expected
NPV (B)

Reduction
from optimal
(%)

0.55 High 405 0.09 0.09 4 0.09 0

0.55 Moderate 540 0.27 0.25 5 0.26 5

0.55 Low 540 0.50 0.49 3 0.50 2

1.1 High 405 1.30 1.29 0 1.30 0

1.1 Moderate 270 2.32 2.32 0 2.23 4

1.1 Low 270 3.57 3.57 0 3.36 6

1.65 High 135 2.77 2.71 2 2.55 8

1.65 Moderate 135 4.13 3.98 4 3.69 11

1.65 Low 135 5.80 5.54 5 5.13 11
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The probability of Phase 3 success for all cases included in Table 11.4 is between

56 and 72% when the maximum efficacy is 0.55. It is greater than 98% when the

maximum efficacy is 1.1 or above. The relatively high probability of Phase 3

success when the maximum efficacy is only 0.55 is primarily due to the very

large sample size for the Phase 3 trials. The low expected NPVs for this scenario,

on the other hand, depict a less than desirable commercial picture for a drug with a

maximum treatment efficacy of only 0.55 on the NRS.

Table 11.4 shows that the expected NPV associated with the sample size of

270 is always within 5% of the maximum expected NPV for the nine (maximum

efficacy, AE profile) combinations. Nevertheless, the optimal Phase 2 sample size

does change as a function of the maximum efficacy and AE profile. If one thinks the

nine scenarios in Table 11.4 are equally likely, one can calculate the average

expected NPV under the nine scenarios and select the sample size that yields the

largest average expected NPV. Alternatively, one can apply the minimax principle

by selecting the sample size that minimizes the maximum reduction from the

optimal expected NPV under the nine scenarios.

One surprising finding in Patel et al. is that the four-dose design performs pretty

well when compared with the eight-dose design. For the four-parameter Emax

model, the optimal Phase 2 sample size for the four-dose and eight-dose designs

generally leads to a maximum or near-maximum utility at dose D6, making the

design that includes doses D2, D4, D6, and D8 quite attractive. Similarly, for other

dose–response curves, the optimal Phase 2 sample size often leads to the maximum

or near-maximum utility at or near a dose in the subset of doses D2, D4, D6, and D8.

We include in Table 11.5 select results from Patel et al. for the four-dose versus

eight-dose comparison under an exponential dose–response model for efficacy. We

compare the two under the optimal Phase 2 sample size under each design option. In

all cases, the expected NPV for the optimal sample size for the four-dose design is

higher than its counterpart for the eight-dose design. In addition, the probability of

Phase 3 success is also higher under the four-dose design. Patel et al. offered two

possible explanations for this observation. First, the smaller number of patients per

dose under the eight-dose design may make it harder to make a correct dose choice

under this design. Second, the AE dose–response curve is generally steeper between

D6 and D8 than the corresponding efficacy curve, contributing to the fact that dose

D7 contributes very little to the maximum utility selection method.

Once the framework is set up, one can assess the choice of doses and sample size

on the Phase 3 success probability and the expected NPV under different scenarios.

One can extend the idea of minimax or the average expected NPV to find a design

that is optimal over a plausible group of possible dose–response curves for efficacy.
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11.4 Other Metrics

The metric in (11.14) was once considered by a major pharmaceutical company as a

possible measure for the productivity of its clinical development endeavor. The

metric measures the average cost of a successful Phase 3 trial at the portfolio level.

The metric is easy to understand since the success of the clinical development

division in an innovative pharmaceutical company can be measured by the per-

centage of positive Phase 3 trials. The metric, however, is sensitive to many factors

including the makeup of the portfolio. Thus, it will be hard to compare the metric

over time when there has been a major shift in the composition of the portfolio.

Clinical grant $ in Phase 2 and 3 trials=number of successful Phase 3 trials ð11:14Þ

Recently, G€otte et al. (2015) presented an approach to plan sample size for a

Phase 2 trial in a time-to-event setting. Their approach selects a Go/No-Go decision

boundary in such a way that the Phase 2 sample size or the expected sample size for

the development program (one Phase 2 trial and one Phase 3 trial combined) is

minimal while satisfying criteria on the probabilities of correct Go/No-Go decisions

as well as the success probabilitity of the Phase 3 trial. Simulations by G€otte et al.
show that unconditional probabilities of Go/No-Go decisions as well as the uncon-

ditional success probability for the Phase 3 trial are influenced by the number of

events observed in the Phase 2 trial. G€otte et al. (2015) concluded that requiring

more than 150 events in the Phase 2 trial might not be necessary, as the additional

impact on the probabilities due to additional number of events in the Phase 2 trial

became quite small.

Table 11.5 Impact of maximum efficacy, AE profile, and the optimal Phase 2 sample size on the

probability of Phase 3 success, and expected NPV under an exponential dose–response model for

efficacy and two design options

Maximum

efficacy

AE

profile

Four doses Eight doses

Optimal Phase 2 sample size Optimal Phase 2 sample size

Sample

size

Prob of

Phase3

success

Expected

NPV

(B USD)

Sample

size

Prob of

Phase

3 success

Expected

NPV

(B USD)

0.55 High 675 0.66 0.07 675 0.58 0.06

0.55 Moderate 675 0.68 0.21 675 0.59 0.17

0.55 Low 675 0.72 0.49 675 0.62 0.42

1.1 High 405 0.97 0.68 405 0.91 0.59

1.1 Moderate 405 0.98 1.55 405 0.93 1.42

1.1 Low 405 0.98 3.28 405 0.94 3.03

1.65 High 225 0.99 1.95 270 0.99 1.80

1.65 Moderate 225 1.00 3.36 270 1.00 3.18

1.65 Low 225 1.00 5.49 270 1.00 5.30
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The relationship between the amount of information provided by the Phase 2

trial and the probabiity of a successful Phase 3 trial was also discussed in Sect. 9.4

of this book. Through examining the change in the probability of a successful Phase

3 trial, one can assess the value of including additional information in the seeding

Phase 2 trial.

11.5 Summary

Increasingly, researchers are looking for strategies that will optimize development

at the program level. In this chapter, we review the proposal by Chen and Beckman

(2009, 2014) to use a benefit-cost efficiency score to assess the efficiency of a proof-

of-concept study. For late-stage programs, literature has increasingly offered strat-

egies that focus on exploiting the relationship between the Phase 2 dose-finding trial

and the Phase 3 confirmatory trials.

Stallard et al. (2005) considered a situation common in oncology drug develop-

ment where Phase 2 consisted of a single trial comparing an experimental treatment

with a control. The Phase 2 trial, if successful, will be followed up by a single

Phase 3 trial (or multiple trials, if needed). Because the Phase 2 trial often measures

a short-term benefit (e.g., tumor response), a positive Phase 2 trial does not in itself

provide sufficient evidence for the treatment’s benefit on a longer-term clinical

endpoint (e.g., progression-free survival or overall survival) required of the Phase 3

study. The goal of the Phase 2 trial is to decide if investment in the Phase 3 trial is

worthwhile. Stallard et al. proposed to make this decision based on the posterior

predictive probability of a statistically significant Phase 3 outcome, at the interim

and final analyses of the Phase 2 trial. If the posterior predictive probability exceeds

a prespecified threshold at these decision points, the Phase 3 trial will be conducted.

The Phase 2 trial itself may be terminated early for futility. This is another example

where the Phase 2 trial is explicitly linked to the Phase 3 trial in making a program-

level decision.

In the neuropathic pain example, Patel et al. investigated two methods to select a

dose from the dose-finding study. There are other methods to select a dose or doses

to bring into the Phase 3 stage. For example, Antonijevic et al. (2013) investigated a

Phase 2b/Phase 3 drug development program for type II diabetes. The program

includes a single Phase 2b trial of five doses and a placebo. If the Phase 2b success

criteria are met, one dose will be selected from the Phase 2b study and further tested

in three pivotal Phase 3 trials. The three studies are to assess the new drug’s effect
as a monotherapy, an add-on to metformin, and an add-on to sulfonylurea.

The Phase 2b study considered by Antonijevic et al. (2013) employs a Bayesian

adaptive design allocation, which updates treatment allocation algorithms every

4 weeks to target doses with the maximum utility values. The utility value of a dose

is obtained by multiplying together two utility components corresponding to the

change in the primary efficacy endpoint of HbA1c and the incidence of hypogly-

cemia (a common safety concern for antidiabetic medications).

11.5 Summary 169

http://dx.doi.org/10.1007/978-3-319-46076-5_9


For the HbA1c component, the utility function of a dose takes its largest value of

three if the mean change in HbA1c from baseline compared to the placebo

is � �1.3%. The value of the utility function decreases linearly from three to one

if the mean change in HbA1c (relative to the placebo) moves from �1.3% to

�1.0%. It further decreases linearly from one to zero if the mean change (relative

to the placebo) moves from �1.0% to zero. If the placebo group experiences a

greater mean decrease in HbA1c than a dose, then the HbA1c utility value for the

dose is zero.

As for the hypoglycemic component, the utility function takes the largest value

of one when the hypoglycemic incidence of a dose is less than 4% higher than the

placebo. The utility function decreases linearly to zero when the incidence is greater

than the placebo but the excess amount is between 4% and 30%. If the excess

incidence is greater than 30%, the utility function takes the value zero.

By multiplying the two components together, a sponsor obtains a utility score for

each dose. Using the multiplicative metric, the sponsor signals that it would not be

interested at all in any dose that induces less mean change in the HbA1c than the

placebo or has a greater than 30% higher incidence of hypoglycemia than the

placebo. This utility value is a composite endpoint of efficacy and safety

(or benefit and risk). In the example considered by Antonijevic et al., a utility

score higher than 0.8 is considered to be clinically meaningful.

The idea of using a composite efficacy-safety endpoint to assess the desirability

of a dose is not new. Ouellet et al. (2009) used a clinical utility index (CUI) to

compare two calcium channel α2δ ligands in development for treating insomnia.

The CUI is made up of five measures of efficacy (wake after sleep onset, sleep

quality, sleep latency, and stage 1 and stage 3–4 in sleep architecture) and two

measures of residual sedation (adverse effects). Peak CUI values were observed at

doses that were not considered viable for both compounds, and the development of

both compounds were subsequently discontinued.

We anticipate an increasing trend in using composite efficacy-safety endpoints

to assess doses in dose–response studies. For one thing, composite endpoints

incorporate the trade-off between efficacy and safety into the decision-making

process. In addition, the increasing applications of the multicriteria decision

approach (Mussen et al. 2007a, b) have raised awareness to the quantitative

assessment of efficacy and safety jointly.

In our opinion, it makes sense to formally incorporate cost and speed into

internal development program planning. Pinheiro et al. (2010) recommended

balancing resource allocation between the learning and the confirmatory phases

to optimize the probability of Phase 3 success and the expected NPV of a develop-

ment program. We are in full agreement on the importance of examining these two

metrics together. We feel it may be prudent to require that the probability of Phase 3

success exceeds a certain threshold before progressing a drug candidate to the

confirmatory stage. Otherwise, a sponsor may be lured by a large NPV which is

solely due to an extremely large net revenue forecast and progress a development

program that has little chance to succeed.
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There are many different metrics that can be used to help us make study- or

program-level decisions. The choice should be guided by a sponsor’s development/

business objectives while taking into consideration regulatory requirements. It is

not unusual for dose selection criteria to be defined by personnel within the research

and development department, while the commercial team hopes to maximize the

expected net returns. We recommend close collaboration between clinical, regula-

tory, and commercial groups early in the development of a new pharmaceutical

product to jointly identify strategies that could serve the needs of multiple groups.

If you want to go fast, go alone

If you want to go far, go together

African proverb
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Chapter 12

Discounting Prior Results to Account

for Selection Bias

. . .it is the peculiar and perpetual error of the human
understanding to be more moved and excited by affirmatives
than by negatives . . .

Francis Bacon

12.1 Introduction

In Chap. 5, we described how information from completed trials could be incorpo-

rated in future trial planning. In that chapter, we ignored the possibility of any bias

in the way that the completed trials were selected for use. In this chapter, we

consider possible selection bias that can occur due to the fact that a Phase 2 trial

is usually selected for use in future planning only when it has produced a positive

response.

We first illustrate the phenomenon of selection bias and relate it to the general

concept of regression to the mean.

We then take the simplified situation of a single Phase 2 trial with comparison of

a single-dose arm versus control being used to plan a Phase 3 trial. We further

assume that there are no differences between the Phase 2 and Phase 3 trials in terms

of endpoint, population, or any other factor. For this simple scenario, we show by

using simulation results that we may need to discount the Phase 2 result for planned

power to match actual power or for estimated assurance to match the so-called

theoretical assurance.

In the succeeding section, we consider what happens to the amount of

discounting required to match planned and actual power or estimated and theoret-

ical assurance when the population and/or endpoint differ between Phase 2 and

Phase 3 but other factors are held constant.

To extend the set-ups outlined above, we introduce a dose-response study

between the Phase 2 POC study and the Phase 3 study. In doing this, we require

the POC study result to be positive and then the combined result from POC and

dose-response studies to be positive. We show that the incorporation of additional

Phase 2 information can lessen the amount of discounting required to be able to

match estimated and theoretical assurance.
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A different, empirical approach to examining the amount of discounting required

due to bias in the selection of Phase 2 studies is to compare the estimated treatment

effect for the Phase 2 trial data alone with the estimate obtained from a posterior

distribution when the Phase 2 data are combined with an appropriate prior

distribution.

We next consider the results of an empirical study of the amount of discounting

required. The study looked at Phase 2 and corresponding Phase 3 results in a major

pharmaceutical company’s portfolio over a number of years.

We conclude with a general discussion of selection bias in drug development.

12.2 Selection Bias

To illustrate selection bias, we take a simple example. We suppose that the true

treatment effect for a treatment versus a comparator is one unit for a certain measure-

ment. We further suppose that the variability between subjects in this measurement

can be characterized by a Normal distribution with a variance of 22 ¼ 4. We now

suppose that a parallel-group study is to be run with 100 subjects randomly assigned

with equal proportions to a new treatment or a placebo. The distribution for the

difference in sample means is N(1;2�22

50
). A result is to be declared positive if the

difference in sample means is greater than a target value of 1.2. It is immediately

obvious in this case that a result greater than 1.2 gives a biased estimate of the true

treatment effect. What may be less obvious is that if the target value were say 0.8, then

we would still get a biased estimate of the true treatment effect. We can see this by

looking at the estimated mean effect calculated only from samples where the

observed effect exceeds the target value of 0.8. For 10,000 random samples using a

particular seed, we obtain an estimated treatment effect of 1.20. The bias in the

estimation of the true treatment effect comes about because part of the sampling

distribution for the difference in means, that part below the target value of 0.8, is

ignored.

One way to display a similar result pictorially for a Phase 2 study with a

confirmatory Phase 3 follow-up study is shown in Fig. 12.1. We assume that a

Phase 2 study is run as described above and that a follow-on Phase 3 study with

400 subjects randomly allocated to the new treatment or a placebo may be run.

Figure 12.1 displays 50 random Phase 2 observed effects (differences in the sample

mean responses between the two groups) without any selection of results in the top

panel together with linked results for a Phase 3 follow-on trial which is assumed to

take place irrespective of the Phase 2 result. Even though a Phase 3 trial is linked to

a Phase 2 trial, it was generated independently of the Phase 2 trial. The bottom panel

displays results of Phase 2 trials that have an observed effect greater than 0.8 and

their linked Phase 3 trials among the same 50 simulated pairs of trials. We can see

that there is no particular tendency for the lines to go up or down in the top panel,

but in the bottom panel, there is a tendency for the lines to go down. The narrower
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range of values for Phase 3 trials is due to the larger sample size of these trials (i.e.,

400 versus 100).

The biased estimate of the treatment effect means that if we repeat the Phase 2

study and estimate the treatment effect without any requirement on the magnitude

of the effect, then we are most likely to obtain a treatment effect estimate that is less

than our initial estimate. We can study this further by examining the average of the

estimated Phase 2 treatment effect among trials (out of 10,000 randomly generated

trials) with an observed effect greater than a target value. The target value may be

the value needed to launch the subsequent Phase 3 trials. Figure 12.2 shows the

average described above plotted against the target value with the target value

ranging from zero to one. We can see that the average of the estimated treatment

effect among Phase 2 trials meeting the target value requirement increases sharply

as the target value increases. It should be noted that as the target value increases, the

Fig. 12.1 Illustration of the effect of selecting a Phase 2 study when the observed treatment effect

exceeds a target value of 0.8—the top panel shows simulated paired Phase 2 and 3 results without

selection, and the bottom panel shows simulated paired Phase 2 and 3 results when the observed

Phase 2 result needs to exceed 0.8 for the Phase 3 study to be launched

Fig. 12.2 Plot of the average of the estimated Phase 2 treatment effects among trials with an

observed treatment effect exceeding a target value versus the target value
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number of trials out of the 10,000 randomly generated trials meeting the target

value requirement decreases steadily.

The selection bias illustrated above is a particular instance of the general

situation that if a phenomenon is extreme on its first measurement, then it will

tend to be closer to the average on the second measurement. This phenomenon is

known as regression to the mean (Chuang-Stein and Kirby 2014).

12.3 Planning a Phase 3 Trial Using the Result of a Single

Phase 2 Study

12.3.1 No Difference Between Phase 2 and 3 Populations
and Endpoints or Any Other Factors

In this section, we consider the effect of using the result from a single Phase 2 study

to plan a Phase 3 trial. Importantly, we assume that the studies do not differ in terms

of population, endpoint, or any other factor.

We assume that the endpoint of interest has a Normal distribution with standard

deviation equal to 1 and that both Phase 2 and Phase 3 trials are parallel-group trials

comparing a new treatment versus a comparator. We consider scenarios used by

Wang et al. (2006) and also by Kirby et al. (2012). The first scenario is:

Scenario 1

Δ02 ¼ 0:3, Δ0 ¼ 0:3, m ¼ 50, 100, 200, Δ0L ¼ 0:2, 0:15, 0:1

In the above description, Δ02 represents the true Phase 2 treatment effect,

Δ0 represents the true Phase 3 treatment effect, m is the sample size per group in

the Phase 2 study, and Δ0L is the value that the estimated treatment effect in the

Phase 2 study needs to exceed for planning to continue with the design of a Phase 3

trial. We call Δ0L the launch threshold.

Wang et al. applied Δ0L to three statistics: the observed treatment effect, the

observed treatment effect minus one standard error, and the observed treatment

effect minus 1.96 standard errors. In other words, the Phase 3 study would be

launched if the observed treatment effect, the observed effect minus one standard

error, or observed effect minus 1.96 standard errors exceeded Δ0L. To decide how

much discounting of the observed Phase 2 effect was necessary, Wang et al. looked

at equating planned and actual power for the Phase 3 study. In each case, the

planned power for the Phase 3 trial was 80%, and a one-sided 2.5% critical value

was used in the sample size calculation given by

Z0:025 þ Z0:2ð Þ22eΔ2
ð12:1Þ
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where eΔ is the observed Phase 2 treatment effect, the observed Phase 2 treatment

effect minus one or 1.96 standard errors. The actual power was defined as the

probability of statistical significance in the Phase 3 trial that was launched. The

actual power was estimated by Wang et al. using simulation.

Wang et al. simulated 100,000 Phase 2 trials for each combination of sample size

and launch threshold. For each simulation, they first generated an estimated Phase 2

treatment effect and assessed whether a Phase 3 trial was to be launched for each of

the three statistics and a given launch threshold. If the Phase 3 trial were to be

launched for a statistic, then the sample size for the Phase 3 trial was determined

using (12.1) with a treatment effect given by the statistic. They then generated a test

statistic for the Phase 3 trial. If the test statistic was greater than the critical value,

then the Phase 3 trial was regarded as providing evidence of superiority to the

comparator.

Select results obtained by Wang et al. for the actual power are shown in

Table 12.1 where L1 ¼ bΔ � 1� s:e:, L2 ¼ bΔ � 1:96� s:e:, and s.e. represents the

standard error of bΔ. The columns with headings bΔ, L1 and L2 in Table 12.1 contain

the estimated actual powers when applying the launch threshold to these three

statistics. For convenience, we use “estimated powers” to mean “estimated actual

powers.”

It can be seen from the table that to require the planned and estimated power to

be approximately the same for all sample sizes and the launch thresholds included

in Table 12.1, we would need to use L2, i.e., requiring that L2 exceed a given launch
threshold. The difficulty with L2 is the low probability of initiating Phase 3 trials

associated with this choice. We include in Table 12.2 approximate proportions of

Phase 3 studies launched when bΔ, L1, and L2 are required to exceed a given launch
threshold. The proportions are approximate because they were obtained by visual

inspection of Fig. 1 in the paper of Wang et al.

It can be seen from Table 12.2 that the probability of launching Phase 3 trials

under the criterion that L2>Δ0L is low for all Phase 2 sample sizes. When the

Phase 2 sample size is 200 per group, use of just the observed treatment effect and a

launch threshold of 0.1 gives an estimated power of 0.77 (Table 12.1) while keeping

the proportion of trials not launched fairly low at about 0.1 (result not shown in

Table 12.2).

Kirby et al. (2012) studied the same scenario. Instead of seeking to equate

planned and actual power, they looked to equate the estimated assurance

Table 12.1 Estimated

powers for Phase 3 trials run

when a launch threshold is

exceeded by each of the three

statistics bΔ, L1, and L2
under Scenario 1

Δ0L m bΔ L1 L2

0.2 50 0.61 0.74 0.82

0.2 100 0.68 0.80 0.86

0.2 200 0.73 0.84 0.90

0.1 50 0.68 0.84 0.92

0.1 100 0.73 0.88 0.95

0.1 200 0.77 0.90 0.97
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probability for a statistically significant result in the Phase 3 trial with what they

termed theoretical assurance. They defined theoretical assurance as assurance

calculated using the true standard deviation and Phase 3 treatment effect. Estimated

and theoretical assurance were obtained using the following general expression

(O’Hagan et al. 2005):

1�Φ
1:96

ffiffiffi
τ

p � Δffiffiffiffiffiffiffiffiffiffiffi
τ þ υ

p
� �

which was also discussed in Eq. (5.3).

For estimated assurance, Δ was set equal to bΔ, L1, or L2, τ equal to 2bσ 2

n , and υ

equal to 2bσ 2

m where n is the sample size per group for the Phase 3 trial and bσ is

estimated from the Phase 2 data. For theoretical assurance, Δ was set equal to the

true Phase 3 effect, and σ was set equal to the true standard deviation of 1. It should

be noted that the estimation of σ differs from the setting of σ equal to a known value
in earlier chapters. It is expected, however, that there is little difference between

these two approaches for the sample sizes considered.

Kirby et al. also looked at three further possible launch criteria. These criteria

are:

1. Mf>Δ0L

2. L0.10>MAV and U0.25>TV

3. Lf , 0.10>MAV and Uf , 0.25>TV

In the first launch criterion above, Mf ¼ bΔ � f and f is the fraction of the

treatment effect to be retained and will be referred to as a retention factor. For

example, a value of 0.9 for f means retaining 90% of the initial estimate for the

treatment effect, or equivalently, discounting the initial estimate by 10%.

In the second launch criterion, L0.10 is the lower one-sided 90% confidence

interval limit for the treatment effect, and U0.25 is the upper one-sided 75%

confidence interval limit for the treatment effect. As introduced in Chap. 7, MAV

represents a minimum acceptable value for the treatment effect, and TV is a target

value for the treatment effect. The second launch criterion requires the lower

one-sided 90% confidence interval limit (L0.10) for the treatment effect to exceed

the MAV and the upper one-sided 75% confidence interval limit (U0.25) to exceed

TV. This criterion is similar to the LPDAT approach described in Chap. 7.

Table 12.2 Estimated proportion of Phase 3 trials launched when each of the three statistics bΔ,
L1 and L2 is required to exceed a launch threshold under Scenario 1

Δ0L m bΔ L1 L2

0.15 50 0.75 0.4 0.1

0.15 100 0.85 0.5 0.2

0.15 200 0.9 0.7 0.3
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In the third launch criterion, Lf , 0.10 and Uf , 0.25 represent the same one-sided

confidence interval limits but formed using Mf as the estimated treatment effect

rather than bΔ.
Kirby et al. calculated the required sample size for the Phase 3 study for the three

additional launch criteria by setting eΔ in (12.1) to different values as shown in

Table 12.3.

Kirby et al. simulated 100,000 Phase 2 trials for each combination of threshold

and Phase 2 sample size. Table 12.4 includes a selection of the results obtained by

Kirby et al. Only results for launch criterion (1) are shown because Kirby et al.

considered the other two launch criteria as not demonstrating much additional

value.

Table 12.4 shows results for a launch threshold of 0.1. It can be seen thatMf with

f ¼ 0.8, 0.9, or 1.0 causes estimated assurance to be closest to the corresponding

theoretical assurance when the Phase 2 sample size per arm is 50, 100, or 200. For

the larger Phase 2 sample sizes (100 or more patients per group), the probability of

launching a Phase 3 trial is estimated to be 0.89 or greater. Thus, for a launch

threshold of 0.1, there is no need to discount the Phase 2 treatment effect estimate

when the sample size is 200 or more per group or a small amount of discounting

(e.g., 10%) will approximately equate estimated and theoretical assurance without

greatly affecting the probability of launching a Phase 3 trial.

Although not reproduced here, a launch threshold of 0.15 also gives discounting

factors of 0.8, 0.9, and 1.0 as those approximately equating estimated and theoret-

ical assurance. For a launch threshold of 0.2, results in Kirby et al. show that the

discounting factors are 0.6, 0.8, and 0.9 for Phase 2 sample sizes of 50, 100, and

200 per arm. For both the 0.15 threshold and the 0.2 threshold, the probability of

launching a Phase 3 trial is reduced, but it is still greater than associated with

criteria using the L1 and L2 statistics.
The Phase 3 launch probability is higher under theMf launch criterion compared

with the criteria involving L1 and L2. This is also true under the null case when there
is no Phase 2 or Phase 3 treatment effect. Kirby et al. found that provided the

Phase 2 sample size was reasonable and a higher launch threshold was used, then

the probability of launching a Phase 3 trial in the null case was reasonably small.

For example, if the sample size per group in the Phase 2 study is 200 and the launch

threshold is 0.15, then the launch probability is estimated to be 0.047 for the

M0.90 criterion.

Table 12.3 Three additional launch criteria used by Kirby et al. and associated effects used to

calculate the Phase 3 sample size for Scenario 1

Launch criterion eΔ used in sample size calculation in (12.1)

Mf>Δ0L Mf

L0.10>MAV and U0.25>TV bΔ
Lf , 0.10>MAV and Uf , 0.25>TV Mf
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12.3.2 Different Phase 2 Endpoint and/or Population
Compared to Phase 3 (Other Factors Assumed
the Same)

To examine the effect of having a different endpoint and/or population in the

Phase 2 and 3 trials while other factors are held constant, we look at the three

other scenarios studied by Wang et al. and Kirby et al. These scenarios are:

Scenario 2

Δ02 ¼ 0:3, Δ0 ¼ 0:2, m ¼ 50, 100, 200, Δ0L ¼ 0:2

Scenario 3

Δ02 ¼ 0:3, Δ0 ¼ 0:2, m ¼ 50, 100, 200, Δ0L ¼ 0:1

Scenario 4

Δ02 ¼ 0:4, Δ0 ¼ 0:2, m ¼ 50, 100, 200, Δ0L ¼ 0:2, 0:15, 0:1

We present the results for Scenarios 2 and 3 that represent a less severe

diminution of the true treatment effect from Phase 2 to Phase 3. We first present

the results obtained by Wang et al. in Table 12.5.

We recall that the planned power was 80%. Table 12.5 suggests that only the L2
launch criterion ever gives an estimated power of 80% or more for any combination

of threshold and sample size. As can be expected, the estimated probability of

launching Phase 3 trials for the 0.2 threshold becomes even lower than that

observed for the 0.15 threshold shown in Table 12.2 (see also Fig. 2 in Wang et al.).

Table 12.4 Estimated assurance, theoretical assurance, and probability of launching a

Phase 3 trial for Scenario 1 (m denotes Phase 2 sample size per treatment arm)

Launch

criterion

m ¼ 50 m ¼ 100 m ¼ 200

Est.

ass.

Theo.

ass.

P

(launch)

Est.

ass.

Theo.

ass.

P

(launch)

Est.

ass.

Theo.

ass.

P

(launch)bΔ > 0:1 0.67 0.59 0.84 0.69 0.66 0.92 0.73 0.72 0.98

L1> 0.1 0.63 0.70 0.50 0.66 0.78 0.66 0.70 0.84 0.84

L2> 0.1 0.61 0.76 0.16 0.64 0.85 0.28 0.67 0.91 0.50

M0.9> 0.1 0.66 0.63 0.83 0.68 0.70 0.91 0.72 0.77 0.97

M0.8> 0.1 0.65 0.66 0.81 0.67 0.74 0.89 0.71 0.82 0.96
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We again present selected results from Kirby et al. for the same scenarios for the

approach of finding the amount of discounting of the observed Phase 2 treatment

effect required to equate estimated and theoretical assurance.

Table 12.6 suggests that there is rather little chance of launching a Phase 3 trial

for values of f that approximately equate estimated and theoretical assurance when

a launch threshold of 0.2 is used. By comparison, there is a far greater chance of

launching a Phase 3 trial if the threshold is set at 0.1. The retention factors that give

approximate equality of estimated and theoretical assurance when the launch

threshold is set at 0.1 are 0.5, 0.6, and 0.6 for the Phase 2 sample sizes of

50, 100, and 200 per arm. It can be seen that these are roughly two thirds of the

retention factors that equate estimated and theoretical assurance for Scenario 1, as

one might expect given that the true Phase 3 effect is two thirds of the true Phase 2

effect.

Table 12.5 Estimated powers for Phase 3 trials run when a launch threshold is exceeded for each

combination of launch threshold, Phase 2 sample size, and the use of bΔ, L1, and L2 for Scenarios 2
and 3 (Δ0¼ 0.2 ,Δ02¼ 0.3)

Scenario Δ0L m bΔ L1 L2

2 0.2 50 0.36 0.46 0.53

2 0.2 100 0.40 0.51 0.58

2 0.2 200 0.44 0.55 0.62

3 0.1 50 0.46 0.65 0.77

3 0.1 100 0.50 0.69 0.82

3 0.1 200 0.51 0.70 0.84

Table 12.6 Estimated assurance, theoretical assurance, and probability of launching a

Phase 3 trial for Scenarios 2 and 3 (m denotes Phase 2 sample size per treatment arm)

m¼ 50 m¼ 100 m¼ 200

Launch

criterion

Est.

ass.

Theo.

ass.

P

(launch)

Est.

ass.

Theo.

ass.

P

(launch)

Est.

ass.

Theo.

ass.

P

(launch)

Scenario 2bΔ > 0:2 0.68 0.39 0.69 0.71 0.42 0.76 0.74 0.44 0.84

L1> 0.2 0.66 0.46 0.31 0.69 0.49 0.38 0.72 0.52 0.50

L2> 0.2 0.65 0.49 0.07 0.68 0.53 0.10 0.71 0.57 0.16

M0.3> 0.2 0.62 0.58 0.03 0.66 0.62 0.01 0.69 0.67 0.00

M0.2> 0.2 0.62 0.60 0.00 NA NA 0.00 NA NA 0.00

Scenario 3bΔ > 0:1 0.67 0.44 0.84 0.69 0.47 0.92 0.73 0.49 0.98

L1> 0.1 0.63 0.54 0.50 0.66 0.59 0.66 0.70 0.63 0.84

L2> 0.1 0.61 0.60 0.16 0.64 0.67 0.28 0.67 0.73 0.50

M0.6> 0.1 0.62 0.57 0.75 0.65 0.64 0.83 0.68 0.71 0.91

M0.5> 0.1 0.61 0.61 0.69 0.63 0.68 0.76 0.66 0.76 0.84
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12.4 Planning a Phase 3 Trial Using the Results of a Phase 2

POC Study and a Phase 2 Dose-Response Study

In this section, we extend the results obtained in Sects. 12.3.1 and 12.3.2 by

assuming that after a successful POC study at the maximum tolerated dose, a

dose-response study is conducted. We assume that the dose-response study includes

three doses and a placebo and that one of the three doses is the maximum tolerated

dose. The result from the dose-response study is combined with that from the POC

study for the common maximum dose by using the Normal approximation to the

sampling distribution of the mean for the maximum dose from the POC study as a

prior distribution to be combined with the approximate Normal likelihood for the

maximum dose from the dose-response study. If the combined estimate also

exceeds a threshold, then the Phase 3 study is launched.

We consider the following extended scenarios which apply to the dose-response

study as well as the POC study.

Scenario 1b

Δ02POC ¼ 0:3, Δ02DR ¼ 0; 0:1; 0:2; 0:3ð Þ, Δ0 ¼ 0:2, m ¼ 50, 100, 200, Δ0L

¼ 0:2

Scenario 2b

Δ02POC ¼ 0:3, Δ02DR ¼ 0; 0:1; 0:2; 0:3ð Þ, Δ0 ¼ 0:2, m ¼ 50, 100, 200, Δ0L

¼ 0:2

Scenario 3b

Δ02POC ¼ 0:3, Δ02DR ¼ 0; 0:1; 0:2; 0:3ð Þ, Δ0 ¼ 0:2, m ¼ 50, 100, 200, Δ0L

¼ 0:1

Scenario 4b

Δ02POC ¼ 0:4, Δ02DR ¼ 0; 0:133; 0:267; 0:4ð Þ, Δ0 ¼ 0:2, m ¼ 50, 100, 200, Δ0L

¼ 0:2, 0:15, 0:1

The total sample size for the dose-response study was 200 if the sample size per

arm of the POC study was 50 or 100 and 400 if the sample size per arm of the POC

study was 200. The total sample size in the Phase 2 dose-response study was split

equally among the four groups. For convenience, we assume that the true dose-
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response is linear up to the maximum tolerated dose. Such a scenario could

correspond to the linear part of an Emax dose-response model.

As previously, for the dose-response study to be launched, a launch threshold

must be exceeded. For the analysis of the dose-response study, we assume that a

Normal prior distribution with mean equal to the POC study result (i.e., �dPOC) and
variance equal to the estimated variance of the mean is used. Furthermore, we

assume that the sampling distribution of the treatment effect estimate at the

maximum dose ( �dDR ) is Normal. Then the posterior mean of the predicted mean

response at the maximum dose is given by

�dcom ¼ w1
�dPOC þ w2

�dDRð Þ
w1 þ w2

� �

where w1 is the inverse of the estimated variance for the treatment effect from the

POC study and w2 is the inverse of the estimated variance for the predicted mean

effect for the maximum dose from the linear regression of outcome on dose. The

Phase 3 study is launched provided the launch threshold is exceeded by a chosen

function of the combined estimate �d com (e.g., 90% of �d com).

Estimated assurance was calculated in the same way as before except that a

pooled estimate of the variance was obtained by combining the estimates from the

POC and dose-response studies. Results for 10,000 POC studies were simulated for

each launch threshold and sample size.

In Table 12.7, we show the retention factor f for the launch criterion Mf that

approximately equates estimated and theoretical assurance for the four scenarios

when just a POC study is run and when both a POC study and a dose-response study

are run.

It can be seen that for a number of combinations of launch threshold and sample

size, the discounting factor (i.e., 1� f ) required to equate estimated and theoretical

Table 12.7 Retention factors f that approximately equate estimated and theoretical assurance

when just a POC study is run (top scenario in each row) before Phase 3 and when both a POC study

and a dose-response study (bottom scenario in each row) are run before Phase 3

Scenario (launch

thresholds in

brackets) n = 50 per arm

n = 100 per arm for POC

study and 50 per arm for

dose-response study

n = 200 per arm for POC

study and 100 per arm for

dose-response study

1 (0.1, 0.15, 0.2) 0.8, 0.8, 0.6 0.9, 0.9, 0.8 1.0, 1.0, 0.9

1b (0.1, 0.15, 0.2) 0.9, 0.8, 0.7 0.9, 0.9, 0.8 1.0, 1.0, 0.9

2 (0.2) 0.2 0.3a 0.3a

2b (0.2) 0.3a 0.3a 0.4a

3 (0.1) 0.5 0.6 0.6

3b (0.1) 0.6 0.6 0.6

4 (0.1, 0.15, 0.2) 0.4, 0.3, 0.2 0.5, 0.4, 0.2 0.5, 0.5, 0.3a

4b (0.1, 0.15, 0.2) 0.5, 0.4, 0.3a 0.5, 0.4, 0.3a 0.5, 0.5, 0.3a

aNo result obtained using a smaller value for f because the proportion of Phase 3 trials estimated to

be launched was zero in these cases
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assurance is generally less when a dose-response study is run after the POC study

and before considering launching a Phase 3 trial. This seems intuitively reasonable

as more information is obtained to make the decision to launch a Phase 3 trial. The

additional information dilutes the selection bias, especially in the case of a small but

very positive POC trial.

12.5 Estimation of the Regression to the Mean Effect

Caused by Phase 2 Trial Selection Using a Prior

Distribution

Zhang (2013) presented an approach of assessing the regression to the mean effect

caused by selection of a Phase 2 study result because it was positive. Zhang

compared the observed Phase 2 effect with the expected effect obtained using a

posterior distribution where the posterior distribution was calculated using the

Phase 2 data and an appropriate prior distribution. He attributed the difference

between the observed Phase 2 effect and the posterior mean to the effect of

regression to the mean.

To illustrate Zhang’s approach, we return to the example considered in Sect. 5.7.

In that example, we considered a mixture distribution for a prior distribution for the

treatment effect on TOTPAR6, total pain relief in the first six hours postsurgery, in

a dental pain study. A lump of 20% of the prior distribution was placed at zero, and

the remaining 80% of the distribution was taken to be a Normal distribution

centered at 2.5 with a standard deviation of 0.8.

As in Sect. 5.7, we assume that the Phase 2 study randomized 200 patients

equally to the new treatment and a comparator in a parallel-group design. Also as in

Sect. 5.7, we assume that the TOTPAR6 endpoint is Normally distributed with

standard deviation equal to seven.

For each possible observed effect in the Phase 2 study, we can calculate the

posterior distribution obtained by combining the Phase 2 study result with the prior

distribution described above. Here, we do this by evaluating both the prior and the

likelihood over a fine grid and approximating the likelihood for the Phase 2 result

by a Normal likelihood. Using the posterior distribution, we can obtain the expected

effect (i.e., posterior mean) that can be plotted against the observed effect to see the

amount of regression to the mean. We show such a plot in Fig. 12.3 for observed

treatment effects that would lead to rejection of the null hypothesis of no treatment

difference using a Z-test with a one-sided 2.5% significance level. It can be shown

that with 100 patients per group, an observed treatment effect of 1.95 or greater on

the TOTPAR6 scale would lead to rejection of the null hypothesis sinceffiffiffiffiffiffiffiffi
2�72

100

q
� 1:96 ¼ 1:94.

The shaded area between the 45-degree line and the curved blue line represents

the regression to the mean effect, i.e., the difference between the observed Phase 2
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effect and the posterior expected value. We can see that this difference becomes

larger as the observed effect becomes large above where the line and the curve

cross.

It is interesting to note that the posterior mean is higher than the observed effect

estimate in the Phase 2 trial when the latter is <2.44. This is because 80% of the

mass of the prior distribution follows a N(2.5; 0.82) distribution which devotes 68%
of its own mass to the range (1.7, 3.3). This represents a strong prior probability for

a nonzero effect. Thus, when the observed treatment effect is low, the prior helps

lift up the observed treatment effect so that the posterior expected value is higher

than the observed effect.

We can plot the difference between the observed Phase 2 effect and the posterior

expected value as a percentage of the observed effect against the observed effect to

examine the effect due to the regression to the mean. Such a plot is shown in

Fig. 12.4. In Fig. 12.4, we only include observed Phase 2 effects that are greater

than or equal to the corresponding posterior expected values (i.e., when the

observed effect in the Phase 2 trial is 2.44 or above).

From Fig. 12.4, it can be seen that the percentage increases up to around 30%

when the observed Phase 2 effect is 5.0. Thus, an observed effect of 5.0 would be

discounted down to a value of approximately 3.5. This approach differs from that

of Kirby et al. by allowing a variable percentage discounting of the observed Phase

2 effect depending upon the value of the observed effect. It offers a theoretical

justification for the level of discounting. Both the precision of the Phase 2 result and

the prior distribution can have a substantial influence on the level of discounting

under this approach.

To illustrate the effect of a larger POC study, we consider a POC study with

twice the number of subjects per arm, i.e., with 200 subjects per arm. We obtain the

graph shown in Fig. 12.5 for the regression to the mean effect with this sample size.

Fig. 12.3 Observed Phase 2 effect (X-axis) versus posterior expected effect from prior distribu-

tion and clinical trial data as described in the text
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Figure 12.5 shows that the regression to the mean effect is now smaller. As

before, we can plot the regression to the mean effect as a percentage of the observed

Phase 2 effect versus the observed Phase 2 effect. This plot is shown in Fig. 12.6.

We can see from Fig. 12.6 that the discounting percentage for an observed

Phase 2 effect of 5.0 has been reduced to approximately 22% compared with

roughly 30% for the smaller POC trial.

We next illustrate the effect of the prior distribution on the regression to the

mean effect. For this, we assume that instead of the mixture prior for the treatment

effect, we have just a Normal prior centered as before at 2.5 but now with a standard

deviation of two instead of 0.8. Using this prior, we obtain the regression to the

mean effect shown in Fig. 12.7.

Fig. 12.5 Observed Phase 2 effect (X-axis) versus posterior expected effect from the prior

distribution and POC trial data as described in the text with POC sample size per arm increased

to 200

Fig. 12.4 Observed Phase 2 effect minus posterior expected effect plotted as a percentage of the

observed Phase 2 effect versus observed Phase 2 effect
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It can immediately be seen from Fig. 12.7 that the regression to the mean effect

is much smaller for the less precise prior distribution. The percentage by which the

observed effect needs to be discounted when it is equal to 5.0 is now approximately

just 10%. Compared to the mixture prior distribution, the Normal prior assigns a

higher probability to larger treatment effects. For example, the mixture prior

distribution assigns 42% probability to a treatment effect greater than 2.44, while

the Normal prior assigns 51%. As a result, the posterior predicted value is higher

under the Normal prior for large observed Phase 2 treatment effects.

It should also be noted that the regression to the mean will be affected by the

location of the prior distribution. Thus, in the example above, if the prior distribu-

tion had a mean of 3.0 instead of 2.5, then there would be less regression to the

mean for observed values above 3.0.

Fig. 12.6 Observed Phase 2 effect minus posterior expected effect plotted as a percentage of the

observed Phase 2 effect versus observed Phase 2 effect for the POC trial described in the text with

the larger sample size of 200 subjects per arm

Fig. 12.7 Regression to the mean effect for the POC trial described in the text with 100 subjects

per treatment arm and the prior N(2.5; 22)
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Thus, provided an appropriate prior is available and acceptable, the expected

value of the posterior distribution obtained from combining the prior with the

Phase 2 data gives a theoretical basis for discounting an observed Phase 2 effect.

12.6 An Empirical Assessment of the Amount

of Discounting Required for Observed Phase 2 Effects

Kirby et al. (2012) investigated empirically the amount of discounting required for

observed Phase 2 results by looking at Pfizer development projects with completed

Phase 2 and Phase 3 studies between 1998 and 2009. To evaluate the amount of

discounting required, they compared average estimated assurance with the

observed Phase 3 success probability. To do this, they excluded projects without

comparative Phase 2 trials but did allow the time point of evaluation to differ

between Phase 2 and Phase 3. They found 11 drug projects satisfying these

selection criteria. The drug projects spanned the disease areas of osteoporosis,

obesity, hypertension, pain, overactive bladder, atrial fibrillation, smoking cessa-

tion, migraine, and arthritis.

Generally the Phase 3 trials were initiated in 2005 or earlier when recruitment

was concentrated heavily in the West and for the most part had similar inclusion/

exclusion criteria to their Phase 2 counterparts. The empirical assessment exercise

was thus to focus on selection bias rather than selection bias and changed popula-

tion or endpoint.

To calculate the estimated average assurance and compare it with the Phase 3

success probability, it was necessary to match the Phase 3 trials with the Phase 2

trials that would have been used to plan the Phase 3 trials. This proved very

challenging because of multiple Phase 2 studies and not being able to consult

with individuals who would have made program-level decisions. Consequently,

Kirby et al. formed all possible pairs of Phase 2 and Phase 3 studies under each

program. When multiple doses were included in either the Phase 2 or Phase 3

studies, the doses that provided the best match were chosen.

Kirby et al. found that the above matching led to some failed Phase 2 studies

being linked with Phase 3 trials. As a result, they decided to exclude all matches that

gave an estimated assurance of less than 0.1 as being unlikely for the Phase 2 trial to

have led to the launching of the Phase 3 trial. This gave them 104 matches from

11 drug projects with 32 distinct Phase 2 studies and 54 distinct Phase 3 studies.

For continuous endpoints, Kirby et al. calculated estimated assurance using a

Normal prior distribution with mean equal to the Phase 2 estimated treatment effect

and standard deviation equal to the corresponding standard error. For binary

endpoints, they used beta distributions as priors for each treatment group with

means equal to the Phase 2 estimated proportions and standard deviation equal to

the corresponding estimated binomial standard deviation.
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Kirby et al. found that averaging the estimated assurance from the 104 matched

pairs of trials gave a value of 0.801. Most of the estimated assurances were found to

be large so it is possible the Phase 3 trials were powered using a minimum clinically

important difference rather than the observed Phase 2 effect. Additionally, most of

the trials appeared to show robust efficacy results. Among the 104 matched pairs of

studies, a proportion 0.779 produced statistically significant results. The average

planned power by comparison for the 104 pairs was 0.858. Thus, the average

estimated assurance was closer to the proportion of statistically significant results

than the average planned power.

To see if the average estimated assurance could be brought even closer to the

proportion of statistically significant results, Kirby et al. multiplied each of the

observed Phase 2 effects by 0.9. This gave an average estimated assurance of 0.777

which is very close to the proportion of statistically significant results.

Kirby et al. did caution, however, against over interpretation of this result for a

number of reasons. First, the proportion of statistically significant results among

distinct Phase 3 trials was 81% which is much greater than the 50–60% figure that

has generally been reported for the Phase 3 success rate. Kirby et al. conjectured

that the higher success rate might be attributable to the multiple Phase 2 trials that

were run. Second, it seems that at least some of the Phase 3 trials were sized using

the concept of a minimum clinically important difference. This affects the esti-

mated assurance and the success probability. Finally, it is not clear how decisions

were made to move development to Phase 3 in the period 1998–2005 which

predated a Pfizer initiative to make the decision-making process more quantitative

and transparent.

12.7 Discussion

In this chapter, we looked at the bias that can be produced by use of Phase 2 results

that have been selected because of a favorable outcome. We then looked at three

proposals for how to discount the observed Phase 2 results when needed.

Wang et al. recommend that subtracting one standard error from the observed

Phase 2 effect might be reasonable. We have seen, however, that this level of

discounting may not be necessary and that it can lead to a relatively low probability

of launching a Phase 3 trial. By comparison Kirby et al. recommend that multiply-

ing the observed Phase 2 effect by 0.9 might be sufficient when there are no

differences between Phase 2 and Phase 3 trials in terms of the treatment effect

and the launch threshold is sufficiently low (e.g., one third of the true treatment

effect). Their recommendation is backed up by a limited and possibly selective

amount of empirical data. Finally Zhang proposed discounting an observed Phase 2

effect by combining it with a prior distribution and using the expected effect from

the posterior distribution as the discounted estimate for future planning.
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The topic of this chapter is important because Pereira et al. (2012) concluded that

most large effect sizes were observed in small studies and the observed effect sizes

became typically much smaller when additional trials were performed. In addition

to the potential change in patient populations and endpoints, the effect of regression

to the mean offers another explanation for the disappearing or shrinking effect.

Previously in Chaps. 4 and 5, we have seen how the idea of an average

replication probability and the calculation of an assurance probability give a more

realistic assessment of POSS (probability of a successful study) in a succeeding trial

than using the initial point estimate alone. In this chapter, we have learned that it

may also be necessary to adjust the assurance calculation because of the possibility

of a selection bias.

The bias identified in this chapter for Phase 2 results may also be manifested in

moving between Phase 3 and Phase 4 because again there is a selection effect in

only considering Phase 3 trials that are successful. Given the usual size of

Phase 3 studies, however, one can expect that this selection bias is much smaller

(and may even be negligible) than that which can occur between Phase 2 and

Phase 3.

Another message from this chapter is the importance of obtaining sufficient

information in Phase 2. The results obtained in Sect. 12.3 show that when the

Phase 2 and 3 true effects are the same and just a POC study is run, then no or little

discounting is required provided a bigger Phase 2 sample size is used together with

not too high a launch threshold. Including a dose-response study in this scenario

lessens the discounting required when the POC study is small. One can expect a

similar result of no or little discounting needed for an observed Phase 2 effect under

the Zhang method when the Phase 2 result is based on sufficient information and the

prior distribution before the start of Phase 2 is not informative.
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Chapter 13

Additional Topics

It always seems impossible until it’s done.
Nelson Mandela

13.1 Adaptive Designs

The PhRMA (Pharmaceutical Research and Manufacturers of America) Working

Group on adaptive clinical trial designs defined an adaptive design as “a clinical

study design that uses accumulating data to decide how to modify aspects of the

study as it continues, without undermining the validity and integrity of the trial”

(Gallo et al. 2006). Many different adaptive designs have been proposed, and there

are a number of classifications of the types of design.

One classification is given by Chow (2014) who distinguished the following

types of design: adaptive randomization, adaptive group sequential, flexible sample

size reestimation, drop the losers, adaptive dose finding, biomarker adaptive,

adaptive treatment switching, adaptive hypothesis, and Phase 1/2 or Phase 2/3

adaptive seamless.

According to Chow (2014), an adaptive randomization design is one which

allows modification of randomization schedules prospectively based on responses

of previously randomized subjects. An adaptive group sequential design is a classic

group sequential design with additional prespecified adaptations such as sample

size reestimation. Flexible sample size reestimation allows for sample size

reestimation based on observed data at an interim analysis. A drop-the-losers design

allows dropping inferior treatments, modifying treatment arms, and/or adding

additional arms after review of the data at an interim. An adaptive dose-finding

design can be applied to early-phase studies which seek to find the maximum

tolerated dose. Biomarker responses can be used to adapt a design giving a

biomarker-adaptive design. An adaptive treatment-switching design is one which

allows a patient’s treatment to be switched. Adaptive hypothesis testing allows a

change in hypotheses in response to interim analysis results. Finally, Phase 1/2 and

Phase 2/3 adaptive seamless designs combine objectives traditionally addressed in

different phases of development into single trials where the design of the second
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part of the trial depends on the results from the first part which addresses the

objectives of the earlier phase.

Chow noted that a number of the above types of adaptive designs were classified

as less well understood in the US FDA draft guidance (2010) on adaptive design

clinical trials and should be utilized with caution. It is worth pointing out that much

experience has been gained on the design and conduct of adaptive trials since the

publication of the draft guidance. As such, some of the designs classified as less

well understood in the draft guidance originally may no longer warrant such a label.

The conditional or unconditional evaluation of an adaptive design can proceed

using simulation as described for the nonadaptive POC, dose-ranging, and confir-

matory designs described in Chaps. 7–9. The only difference is that the adaptations

must be simulated, and the method of analysis needs to take into account the

planned adaptations (Chang 2014).

To illustrate what is involved, we look at a design with a single interim analysis

for futility. Such a design can be regarded as a simple adaptive design. We take as

our example the parallel group design in Sect. 5.4. We recall that the study uses a

parallel group design with a total of 200 subjects randomized equally to a new drug,

SC-75416 or ibuprofen, and the endpoint TOTPAR6 (total pain relief over the first

6 h after dental surgery) was assumed to be Normally distributed with a standard

deviation of 7. Further a prior distribution for the difference in means between

SC-75416 and ibuprofen is N(3.27; 0.62). The sponsor would be interested in

SC-75416 if the true difference in means is at least 3 points on the TOTPAR6 scale.

We suppose that an interim analysis is to be conducted when TOTPAR6 is

available in half of the subjects, and the study will be stopped early unless the

predictive power calculated using the interim TOTPAR6 data is greater than 0.20.

The calculation of the predictive power is the same as that of probability of study

success, but done at the interim analysis (Grieve 1991; Jennison and Turnbull

2000). Using an improper prior p(Δ)¼ 1 for Δ (the difference in means), the

posterior distribution for Δ given the data at the interim is

N �x1,SC � �x1, IBU; 4σ2=n1ð Þ where n1 is the sample size per treatment group at the

interim and �x 1,SC and �x 1, IBU are the sample means at the interim in the SC-75416

and the ibuprofen group, respectively. The predictive power is then given by

(Grieve 1991)

1� Φ zα � �x1,SC � �x1, IBU
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whereΦ(.) is the cumulative distribution of the standardNormal distribution and zα is
the upper 100 α% percentile of the standard Normal distribution to be used as the

critical value for the one-sided test at the end of the trial. We use α¼ 0.025 for the

one-sided test of the null hypothesis H0 :Δ� 0 versus the alternative hypothesis

HA :Δ> 0 at the end of the study.
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We show in Table 13.1 the results from 10,000 simulated trials where we treat

trials stopped for futility at the interim analysis as negative trials (i.e., do not reject

H0) and group them with trials that completed but had negative results. The pooled

sample variance is used for σ2 in calculating the predictive power at interim in

(13.1).

The probabilities in Table 13.1 are quite similar to those in Table 5.2. The

probability of rejecting H0 is slightly lower when the design has a futility interim

analysis (85% versus 88%). This is due to a small chance of stopping the trial early

even though Δ� 3. The PPV of the design with an interim futility analysis is 73%

(¼0.62/0.85) which is slightly higher than the 72% reported when the study does

not include any interim futility analysis (see Sect. 5.4).

One may be also interested in other properties such as the percentage of trials

that will be stopped at the interim analysis. We include the estimated percentage in

Table 13.2.

It can be seen that a relatively small proportion of trials (estimated to be around

8%) will be stopped after the interim analysis. Of these an estimated 62.5% (¼0.05/

0.08) would be stopped correctly. Table 13.2 also shows that there is an estimated

3% chance that the trial will be terminated early and the effect is at least 3. An

interesting statistic from Table 13.2 is the probability that Δ � 3 given that the trial

is allowed to continue. This probability is 70% (¼0.64/0.92), which is higher than

the prior probability of 67% that Δ � 3, but less than the PPV of 73% at the end of

the trial.

The statistical literature is filled with discussions on adaptive designs. In addi-

tion to the books by Chow (2014) and Chang (2014) mentioned above, two other

Table 13.1 Estimated probabilities for combinations of truth and hypothesis test decision from

10,000 simulated trials

Truth

Δ< 3 Δ � 3 Total

Decision Do not reject H0 0.10 0.06 0.16

Reject H0 0.23 0.62 0.85

Total 0.33 0.68

*Probabilities do not sum to 1.00 due to rounding

Table 13.2 Estimated probabilities for combinations of truth and decision to stop or continue at

interim analysis from 10,000 simulated trials

Truth

Δ < 3 Δ � 3 Total

Decision at interim analysis Stop 0.05 0.03 0.08

Continue 0.28 0.64 0.92

Total 0.33 0.67
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recent books including detailed discussions and case studies on adaptive designs are

those by He et al. (2014) and Menon and Zink (2015).

13.2 Joint Analysis of an Efficacy and a Safety Endpoint

So far, we have focused primarily on the analysis of efficacy endpoints. It may be

the case, however, that a joint analysis of a safety as well as an efficacy endpoint is

of interest. An example is the development of new oral anticoagulants. The efficacy

endpoint could be the prevention of venous thromboembolism. At the same time, it

is desired that the number of bleeding events be kept at an acceptable level.

Thall et al. (2006) described a Bayesian outcome-adaptive procedure that used

both efficacy and toxicity to choose doses for an experimental agent for successive

cohorts of patients in an early-phase clinical trial. For simplicity they considered the

bivariate binary case. Their approach has three basic components. The first is a

Bayesian model for the joint probabilities of efficacy and toxicity as functions of

dose. The second component is to decide which doses are acceptable. A dose is

considered acceptable if, given the current data, the posterior probability that the

chance of efficacy at the dose being greater than a fixed lower limit π
E
exceeds a

prespecified value pE and the posterior probability that the chance of toxicity at the

same dose being less than a fixed upper limit πT exceeds a prespecified value pT.
Values π

E
, pE, πT, and pT are design parameters. The third component is to

construct a family of efficacy-toxicity trade-off contours in the region [0, 1]�
[0, 1] of probability of efficacy and probability of toxicity, based on elicited

probability pairs that are considered to be equally desirable targets. Thall et al.

(2006) used three target probability pairs to determine the shape of the contours.

The point (1, 0) in the [0, 1]� [0, 1] region represents the ideal state of guaranteed

efficacy and absence of toxicity. Contours closer to the ideal state are considered

more desirable than contours further away from (1, 0).

One can design a trial by choosing a total sample size; a cohort size; models

linking probability of efficacy and probability of toxicity to doses; π
E
, pE, πT, and

pT; prior means for the probability of efficacy and toxicity at each dose; and three

equally desirable target probability pairs to construct the shape of efficacy-toxicity

trade-off contours.

A study proceeds by allocating the first cohort a starting dose decided by the

physician. The data will be used to update the model and determine the acceptabil-

ity of the doses. At any interim point in the trial, there is either no acceptable dose or

at least one acceptable dose. In the former case, the trial is stopped, while in the

latter case, the next cohort is treated with the dose having the maximum accept-

ability. No untried dose may be skipped as long as the dose meets the selection

criteria. If the trial is not stopped early for futility then at the end of the trial the most

desirable acceptable dose is selected to be the optimal dose.
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The operating characteristics of the design can be evaluated for plausible

scenarios using simulation. Scenarios can be defined by πE, pE, πT, pT, and the

treatment effect. Thall et al. suggested that metrics of interest included the proba-

bilities that a dose was selected and the average sample sizes at each dose and the

probabilities of stopping the trial early.

Tao et al. (2015) considered a method for jointly modeling a continuous efficacy

and a safety endpoint in Phase 2 studies. They recommended fitting a bivariate

Normal nonlinear model to estimate the dose response for both endpoints simulta-

neously. The nonlinear function used for the efficacy endpoint can differ from that

used for the safety endpoint. The joint modeling is used to estimate both the

minimum effective dose (MED) and the maximum safe dose (MSD). Following

Bretz et al. (2005), they estimated the MED as the smallest dose to have an effect

that exceeded the clinically meaningful minimum difference and for which simul-

taneously the lower confidence limit for the predicted mean value, for some chosen

confidence level, also exceeded this minimum difference. The MSD is estimated as

the maximum dose for which the upper confidence limit, for some chosen confi-

dence level, is less than the largest clinically acceptable safety response.

Before the joint modeling, Tao et al. described a first stage of testing whether

POC existed for efficacy and safety using the MCP-Mod approach of Bretz et al.

(see Sect. 6.3.2 for a description of MCP-Mod). POC for safety here means

evidence of a dose-response relationship for the safety endpoint. If POC is

established for efficacy using typically a Type I error rate of 0.05 and one of the

doses is estimated as the MED, Tao et al. suggested testing POC for safety using a

different Type I error rate such as 0.20. If POC for both efficacy and safety are

established and the estimated MSD is greater than or equal to the estimated MED,

then joint modeling of efficacy and safety responses will proceed.

Tao et al. discussed two strategies for fitting a joint model. The first strategy

starts with the most significant models obtained from fitting efficacy and safety

models separately. The most significant models are then fitted jointly by general-

ized least squares with an assumed variance-covariance structure for the efficacy

and safety endpoints. The MED and MSD are estimated from the jointly fitted

models.

The second strategy keeps all the significant models obtained from fitting

efficacy and safety models separately at the first stage to establish the POC. Joint

model fitting is then undertaken for all possible combinations of these significant

efficacy and safety models. The best combination is chosen based on the lowest

Akaike Information Criterion (Akaike 1974) defined as.

AIC ¼ 2k � 2 ln Lð Þ ð13:2Þ

where k is the number of parameters to be estimated in the pair of (efficacy, safety)

models and ln(L ) is the log of the maximum value of the likelihood function for the

pair. The best combination is then used to estimate the MED and MSD. Tao et al.

found that the second strategy appeared to be the better of the two.
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The performance of this joint modeling approach can be assessed by simulation

under plausible scenarios.

13.3 Use of a Sampling Distribution as a Prior Distribution

At various points throughout the book, a sampling distribution or a Normal approx-

imation to a sampling distribution has been used as a prior distribution. One

justification for doing this is that, on some occasions, the sampling distribution is

the same as the posterior distribution that would have been obtained from a

Bayesian analysis with a given appropriate prior, albeit the interpretation of the

distribution differs (Cox and Hinkley 1974). For example, for the case of a Normal

distribution with unknown mean and known variance, the posterior distribution for

the mean can be derived as the sampling distribution for the mean using the

improper prior p(Δ)¼ 1 for all Δ.
A possible justification for using a Normal approximation to a sampling distri-

bution as a prior is that when a flat prior is used, the Maximum Likelihood estimate

will coincide with the maximum a posteriori estimate from the Bayesian analysis,

and subject to regularity conditions the posterior distribution will converge, as

sample size increases, to a Normal distribution with mean given by the Maximum

Likelihood estimate and posterior variance given by the variance of the Maximum

Likelihood estimate (Gelman et al. 2004). We should point out that care is needed

for this interpretation as convergence may require large sample sizes particularly

for multiparameter problems.

Alternatively, as described in Sect. 5.8, a sampling distribution or a Normal

approximation to a sampling distribution is simply a convenient and objective way

to describe our current knowledge about the parameters of interest.

It is important to remember, as discussed in Chap. 12 and reiterated in Sect. 13.8,

that discounting may be needed when the sampling distribution of the treatment

effect estimate from a small and positive POC trial is used to help plan future trials.

13.4 Using Prior Information at the Preclinical Stage

So far, we have focused on the clinical phase of drug development. Before clinical

testing of a new drug can begin, the drug has to be evaluated first in animal

studies. Traditionally, preclinical animal studies have not received as much statis-

tical support as clinical studies. There are several reasons for this. In our opinion,

the most important two are probably the comparatively less statistical resource

dedicated to preclinical activities and the generally cookie-cutter designs of repeat

animal studies. As a result, many preclinical biologists analyze the studies them-

selves, using automated statistical packages that employ bar charts, t-tests, and the

analysis of variance technique.
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However, repeat animal studies are particularly suited for utilizing knowledge

from past studies and offering information to future studies. As Walley et al. (2016)

pointed out, animals in these studies are typically from the same strain and,

approximately, the same age and within the same range of body weights. The

same equipment and room is often used for each study. Some studies include an

extra control group (besides the standard control group) that receives no challenge

and serves as a check on the consistency of results with previous studies. The

uniformity and similarity in design and animals makes it highly feasible to borrow

information from previous studies, especially with respect to the standard control

group that is typically treated in the same way across studies.

Walley et al. (2016) described their experience in introducing a Bayesian meta-

analytic predictive approach to repeat animal studies. They focused on the standard

control group with an objective to reduce the number of animals in this group. Their

approach leads to either an informative prior for the standard control group as part

of a full Bayesian analysis or a predictive distribution that could be used to replace

the standard control group completely in the next study.

13.5 Data Sources

13.5.1 Preclinical Data

Except for a few conditions (most notably bacterial infections), preclinical efficacy

models seldom exist that could be used to predict treatment effect in humans

directly. On the other hand, preclinical insights on a drug’s mechanism could

help a sponsor better understand the potential use and side effects of the drug.

For example, DiSantostefano et al. (2016) used Factor Xa and thrombin inhibitors

as an example. They stated that emerging preclinical data for this class of molecular

entities suggested that these entities might have benefits in reducing progression of

atherosclerosis and atrial fibrillation as a consequence of their effects on inflam-

mation, vascular remodeling, and fibrosis. In addition, their potential for direct

vascular effects may increase the risk of bleeding in patients susceptible to micro-

vascular bleeds.

In general, preclinical data offer qualitative information on what may be worth-

while exploring in humans, but any quantification of a suggested relationship will

likely come from clinical trials.

13.5.2 Information from Observational Studies

Chapter 5 described how information from previous trials could be incorporated

into future trial planning. The discussion focuses on comparisons within
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randomized trials. If there are no randomized trials comparing two treatments head

to head and a network meta-analysis as described in Chap. 10 is not possible, it may

be possible to derive a prior distribution for the comparative effect between two

treatments by resorting to observational studies (Rosenbaum 2010).

The interest in observational studies has intensified since the turn of the century,

partly because of the increasing availability of large-scale healthcare databases and

improvements in informatics to access them. Large-scale healthcare databases

include administrative claims databases and electronic health records. Besides, it

is cheaper and faster to conduct observational studies than randomized clinical

trials. In some cases, randomized clinical trials are just not possible.

Observational studies could help a sponsor better understand a target patient

population and the effectiveness of marketed drugs in the real-world setting. These

studies range from population-based cohort studies with prospective data collection

to targeted patient registries to retrospective case-control studies. Many potential

biases and sources of variability threaten the validity of such studies and a substan-

tial literature documents these concerns (Ioannidis 2008).

Compared to randomized clinical trials, the most notable challenge of observa-

tional studies is the lack of randomization, which can result in different groups of

patients receiving different treatments. Another challenge of observational studies

is that patients in the studies may be drastically different from the average patient

population. For example, the US Medicare database pertains primarily to people

who are 65 years or older, while claims databases of private insurance companies

include predominantly younger people. Because older people tend to have more

co-morbidity and receive more medications, it may be difficult to generalize

findings from the Medicare database to the average patient population.

Furthermore, observational studies of healthcare databases represent a second-

ary use of the data. Consequently, the studies are often limited by what is available

in these databases. For example, healthcare databases typically do not contain pain

relief scores or responses on the Hamilton Depression Rating Scale. They often do

not include lab results in a consistent fashion either. Because of these limitations,

observational studies are generally more suited for studies involving clinical events.

There are methods that have been proposed to handle potential bias due to

treatment selection. One such approach is to calculate a propensity score (Austin

2011) and compare treatments within strata defined by quintiles of the propensity

score. When applying such an analysis, it is important that the propensity score is

modeled using all appropriate covariates to avoid issues arising from unmeasured

confounding variables. Austin suggests various diagnostics that can be used to

check the validity of such an analysis.
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13.5.3 General Principles on Handling Data from Different
Sources

DiSantostefano et al. (2016) recommended a set of principles when using data from

different sources to conduct benefit-risk assessment. Some of their recommenda-

tions are equally applicable when using data from different sources to evaluate a

drug’s efficacy and safety individually. We include relevant key points below:

• Consider all available data sources, their value, and utility as well as their

intended uses when extracting information from these data sources.

• When interpreting data across studies involving different data sources, it is

important to be aware of the characteristics and limitations of the studies. In

some cases, results from randomized clinical trials may be able to generalize to

larger populations via standardization to the larger populations.

• Context, including how well an outcome of interest is captured and in whom, is

important. Population, endpoint identification, and analytical approach may all

contribute to differences in results from different sources, limiting direct com-

parison of results across different sources.

• As a general rule, inferentially combining data from different sources is not

recommended. Results from different sources should be used to assess if findings

are similar and, if not, explore why they are different. Existing research has

shown that even studies within the same type of data source (e.g., observational

studies) may yield different results.

• Phase 3 clinical trials generally have limited generalizability to the population

with a medical condition of interest. Hence, there is a need to expand the

evidence in the postmarketing setting. This is important to the planning of

pragmatic trials, which have attracted a lot of attention in recent years.

• New study designs (e.g., pragmatic randomized trials, randomized studies using

electronic health records) offer new opportunities. These designs blur the line

between randomized clinical trials and observational studies, but also offer new

opportunities to conduct robust efficacy and safety assessment of a new drug in a

less controlled setting.

• Safety assessment and, increasingly, comparative effectiveness are major activ-

ities in the postmarketing setting. Because of the lack of randomization in

observational studies, one needs to adjust for confounding and identify differ-

ences in populations relative to the clinical trial setting.

13.6 Changes Over Time

We mentioned in Sect. 9.7 the need to be aware of how missing data were handled

in prior studies because the method to handle missing data affected the estimate for

the treatment effect.
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Methods to handle missing data are not the only change that occurred over the

last several decades. The advent of “professional patients” who move from trials to

trials or even participate in several trials simultaneously has created real challenges

for trial sponsors (McCann et al. 2015). These professional patients often do not

adhere to study medications and provide data that may be of limited value. This

challenge is especially a problem for developing drugs to treat central nervous

system disorders.

At the other end of the disease spectrum are conditions that, if left untreated,

could lead to high mortality and serious morbidity. For ethical reasons, trials of

such conditions typically use the standard of care as the comparator and mortality or

clinically important morbidity as the primary endpoint. Due to the advancements in

modern medicines and patient support care, the event rate in the control group has

decreased substantially in recent years. The assumption on the event rate in the

control group based on historical information may not be valid and adjustment of

the sample size in mid-trial may be necessary. While the latter could be planned as

part of an adaptive design, this requires additional planning upfront.

Thanks to lifestyle improvement and medical advancements, people are living

longer. This also means that today’s seniors are taking more medications than their

ancestors. The phenomenon of polypharmacy requires a sponsor to anticipate more

drug–drug interactions and to optimize the dosing schedule (e.g., once a day instead

of twice a day). This shift in the population could also impact how similar a past

trial population is to today’s population.
There has also been a societal shift toward preventive medicine. Vaccines and

treatment guidelines have helped reduce the incidence of certain diseases. While

this is something to celebrate as a society, the increasing use of vaccines or

immunomodulators could also have an impact on the human immune system in

general.

The conduct of multiregional clinical trials (MRCTs) to support simultaneous

global drug development (Chen and Quan 2016) has added another layer of

complexity to modern-day trials. Recent interest in MRCTs has prompted the

International Council for Harmonisation to convene an expert working group to

consider general principles for planning and design of multiregional clinical trials.

The working group published a draft guidance for public comment in May 2016

(ICH E17 2016). An MRCT could have hundreds of sites all over the world.

Chuang-Stein (2016) stated the risk of launching a confirmatory MRCT when

there was little knowledge of how patients in most regions would respond to the

new treatment. We shared the story of Dimebon in Sect. 6.6. Dimebon was a new

drug intended to treat Alzheimer’s disease. Dimebon’s failed global Phase 3

program was based on a single positive Phase 2 trial conducted in Russia.

A premise for this book is the need to take full advantage of prior information

that is pertinent and translatable when planning a new trial. The requirement of

translatability is critical. Using prior information blindly without checking this

requirement could lead us astray.
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13.7 Further Extensions of the Concept of Success

Probability

Although POSS (probability of study success), POPS (probability of program

success), and POCS (probability of compound success) are of interest in their

own right, they can be rolled up further with other considerations to determine a

probability of technical success (PTS) and a probability of technical and regulatory

success (PTRS). The former is defined as the probability of a compound generating

favorable data to support a filing to regulators. The latter is the probability of this

occurring and the filing being successful. Additional factors affecting PTS (beyond

those included in POCS) include findings from animal studies (especially the 2-year

rat and 6-month transgenic mouse carcinogenicity studies), emerging new mecha-

nistic insights that may impact the safety profile, manufacturing issues related to

scaling up the production, and sourcing the active pharmaceutical ingredients at a

reasonable price. Unlike the calculation of POCS, the assessment of these other

factors is often done in a less quantitative manner and may even include a subjec-

tive component.

As for factors impacting PTRS, they include regulatory precedents in approving

drugs for the same indication and how regulators view the benefit and risk profile of

the new drug. Some regulators place a greater emphasis on the safety of a pharma-

ceutical product, while others are more willing to accept a higher level of risk if the

product can deliver a greater level of efficacy. In recent years, there has been a

plethora of medical, statistical, and decision-making literature dedicated to the

subject of structured benefit-risk assessment methods to evaluate pharmaceutical

products. Some of these methods are qualitative (e.g., Coplan et al. 2011), while

others are quantitative (e.g., Mussen et al. 2009). A good overview of benefit-risk

evaluation methods can be found in Quartey et al. (2016).

Health authorities have also shown interest in a more systematic and transparent

way to conduct benefit-risk assessment. For example, the US FDA released a draft

benefit-risk implementation plan in 2013 (FDA 2013). The EMA Benefit-Risk

Methodology Project aimed to develop and test tools and processes for balancing

multiple benefits and risks (EMA 2009). The Center for Devices and Radiological

Health at the US FDA (FDA-CDRH) revised a previously issued guidance on

factors to consider when making benefit-risk determinations in medical device

premarket approvals (FDA 2016a). Besides, there has been an increasing awareness

among regulators, supported by patient advocacy groups, that patient preference

needs to be incorporated in the assessment of pharmaceutical products. This

awareness has led to the first national benefit-risk preference study conducted by

the FDA-CDRH in collaboration with the Research Triangle Institute Health

Solutions. The study surveyed 654 obese patients to assess how much risk they

were willing to tolerate in order to lose weight. Insight from the study led to an

FDA-CDRH proposal on the benefit-risk paradigm for clinical trial design of

obesity devices (Talamini 2013). In 2016, FDA-CDRH finalized a guidance on

the voluntary submission of patient preference information and the role of such
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information on the decision and labeling of a premarket approval application of a

device (FDA 2016b).

We can expect to see a greater outreach to patients during the entire process of a

pharmaceutical product by both regulators and pharmaceutical sponsors. Patient

engagement is not only important during the clinical testing phase of a product but

is also critical in the ultimate acceptance of the product by the patient community.

Because of the extra factors involved, PTRS will generally be lower than PTS,

which in turn will be lower than POCS in most cases.

We would like to point out that even after a product has received marketing

authorization in a country and is being looked upon favorably by the medical and

patient communities in that country, the product’s sponsor still needs to demon-

strate that the product is cost-effective for the product to be covered under the

national health plan if the country provides universal healthcare to its nationals. The

decision on coverage is typically based on an economic assessment referred to as

cost-effectiveness assessment (CEA) or health technology assessment (HTA). The

primary objective of a CEA or a HTA is to identify those healthcare technologies

that, if funded, would maximize total population health for the available healthcare

budget. The optimization is achieved by estimating differences in costs and effects

between technologies and choosing those with the lowest opportunity costs. The

assessment may lead to a decision to cover the product only in a subgroup of the

population for which the product is indicated (Paget et al. 2011).

The coverage decision needs to be made separately in each country with a HTA

requirement and may be based on complex models comparing different treatments

balancing treatment benefits and costs over a long period of time. Many HTA

authorities have published method guidelines for health technology appraisals (e.g.,

National Institute for Health and Care Excellence 2013). As a result, a sponsor has

to interact with each authority and potentially conduct different analyses. This

introduces another source of uncertainty and affects the overall chance of a prod-

uct’s becoming a commercially successful product. One can incorporate this addi-

tional uncertainty and calculate the probability that a product will be successful

commercially. Understandably, this probability is likely to be lower than PTRS.

Readers who are interested in learning more about CEA or HTA are encouraged

to read Briggs et al. (2006).

13.8 Wrapping Up

In this book, we show how clinical trials perform like a series of diagnostic tests,

and the condition to diagnose is whether a new drug has a clinically meaningful

effect. The trials at the early stage serve as screening tests. As the need for more

precision arises, subsequent trials will be designed with more sensitivity and

specificity. Under this analogy, the positive predictive value (PPV) of a trial

conveys useful information on the likelihood that the new drug has the desirable

effect. This is conceivably one of the most relevant questions of concern to both the
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sponsor who develops the drug and regulators who need to decide if the drug is

approvable.

The PPV of a diagnostic test may vary among subgroups of patients due to the

intrinsic and extrinsic factors associated with patients in the subgroups. Similarly,

intrinsic and extrinsic factors could affect a drug’s effect in subgroups. Thus, the

PPV of a drug may vary among different subgroups. For example, black people tend

to receive less benefit from many antihypertensive drugs compared to other races.

We discuss the probability of success at the study, stage, or program level. We

stress the importance to consider such probabilities in conjunction with statistical

power when planning a trial or a series of trials. The distinction between the

probability of success and statistical power is particularly pertinent for late-stage

development when we have accumulated a fair amount of information about a new

drug’s ability to induce a response. This knowledge should be incorporated into the
planning of the trial, so we know the likelihood of a positive outcome. We are glad

to see the uptake of this concept in the statistical community. In our opinion, the

concept of probability of success in general can help statisticians communicate with

clinicians because many clinicians prefer thinking in terms of the chance of an

outcome unconditionally instead of conditionally.

Product development is a continuum. As a general rule, a sponsor will progress

only compounds that look promising to the next stage. This rule, while sensible and

supported by the diagnostic analogy, creates a statistical challenge in estimating the

true treatment effect. To understand this challenge, Chuang-Stein and Kirby (2014)

drew a conceptual comparison between the Phase 2–3 development stages and

interim analyses of a trial with a group sequential design. They considered the

simple case when the target patient population stayed the same throughout Phase 2–3

and the treatment effect was measured by the same endpoint at the same time point

of interest. They compared Phase 2 and Phase 3 testing to a long-running clinical

investigation structured by a group sequential design with a few predetermined

interim points labeled as end of POC, end of Phase 2b, and end of Phase 3. The

design allows early stopping for efficacy and futility based on the observed treat-

ment effect at these interim points. Zhang et al. (2012) discussed how

overestimation could occur under a group sequential design if the efficacy boundary

was crossed early in the trial, and one used the observed treatment effect as an

estimate for the true treatment effect. The same overestimation applies, for exam-

ple, when we use the observed treatment effect to estimate the true treatment effect

in a very positive proof-of-concept trial.

The overestimation mentioned above needs to be accounted for when we use

results from a positive trial to plan a future trial. This is especially important if we

hope to size the new study to detect an effect that is above the minimum clinically

meaningful effect but considered plausible based on the results from a positive trial.

We discussed in Chap. 12 several approaches that had been investigated to discount

previous positive results. In our opinion, this is probably one area where awareness

is not yet as widespread as we would like to see in the pharmaceutical industry. We

hope this book will help increase this awareness as sponsors plan new trials.
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Go/No-Go decisions are needed at the end of various development stages. It is

useful to quantitatively assess the quality of the decisions by describing the risks

associated with them. Simulation has become a regular tool to perform the assess-

ment. In this book, we discuss metrics that are helpful to enable the decisions. We

acknowledge the many possible metrics including those we have proposed and used

ourselves. We want to emphasize that every situation is different and should be

evaluated in its own right. Our goal of writing this book is to provide the setup for a

general framework, well aware that customization is needed for specific

applications.

Even though modeling can be conducted separately for efficacy and safety, dose

decision and drug approval are ultimately based on the trade-off between benefits

and risks of a new drug at the dose(s) submitted for regulatory approval. The

emphasis on this trade-off has prompted some sponsors to consider ways to

combine efficacy and safety into one endpoint. We included some of these efforts

in Sect. 11.5 and this chapter. We expect greater efforts to be devoted to this aspect

in the future.

We will end the book by sharing an interesting story that highlights a case of

regulatory decisions on doses. Because all drugs have side effects and the inci-

dences of drug-related adverse reactions typically increase with doses, regulators

tend to favor lower doses if lower doses also meet the efficacy criterion setup in the

confirmatory trials. This preference has led to the search for the minimum effective

dose on many occasions. The minimum effective dose is usually defined as the

lowest dose that yields a therapeutic benefit to patients when compared to a

placebo. Consequently, if multiple doses are submitted for approval and if a higher

dose is considered to have much more unfavorable side effects than can be justified

by its additional benefits, regulators often prefer not approving the high dose.

This is why the approval of the 150 and not the 110 mg of dabigatran was a

surprise to many people. The FDA approved dabigatran for the reduction of the risk

of stroke and systemic embolism in patients with nonvalvular atrial fibrillation on

October 19, 2010. As stated in Beasley et al. (2011), the approval was based on

results from a multicenter, active-control trial, the Randomized Evaluation of

Long-Term Anticoagulation Therapy (RE-LY). In RE-LY, patients were random-

ized in equal proportions to 150 mg of dabigatran, 110 mg of dabigatran, and

warfarin. The primary endpoint is a composite endpoint of stroke or systemic

embolism. RE-LY was a noninferiority trial. The noninferiority margin for the

primary efficacy endpoint (a dabigatran dose against warfarin) was 1.38. Both the

150 and 110 mg of dabigatran were shown to be noninferior to warfarin on efficacy.

In addition, the 150 mg was significantly superior to warfarin and the 110 mg on

efficacy.

The main adverse drug reaction is major bleeding. For major bleeding, 110 mg

dabigatran was superior to warfarin, while 150 mg was similar to warfarin. Looking

at these results, it is clear that both 110 and 150 mg have some advantage over

warfarin. For the 110 mg, it is the better bleeding profile without sacrificing the

efficacy. For the 150 mg, it is the better efficacy profile without causing worse

bleeding. Beasley et al. (2011) acknowledged that either dose would have been
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considered safe and effective against warfarin (and therefore approvable) if studied

alone in a trial.

There were 49 more stroke or systemic embolism events in the 110 mg group

than in the 150 mg (183 versus 134). The number of additional stroke events in the

110 mg was also 49 (171 versus 122). On the other hand, the number of major

bleeding episodes in the 150 mg group was 57 more than that in the 110 mg group

(399 versus 342). The number of life-threatening bleeding episodes in the 150 mg

group was 34 higher than that in the 110 mg group (193 versus 159). If stroke/

systemic embolism and major bleeding were considered equally undesirable,

150 and 110 mg would have similar net benefit and risk. However, many consider

the irreversible effects of stroke and systemic emboli to have greater clinical

significance than nonfatal bleeding. From this perspective, 150 mg has an overall

benefit-risk advantage over the 110 mg, based on the results in RE-LY.

As a side story, Beasley et al. (2011) described FDA’s attempt to identify, within

RE-LY, subgroups for whom the benefit-risk assessment of 110 mg could be more

favorable than 150 mg since the 110 mg was associated with a lower bleeding risk.

The FDA looked for patients with impaired renal function (since dabigatran is

cleared primarily through the kidneys, impaired renal function implies a higher

dabigatran blood level, and a higher chance for bleeding), patients who experienced

hemorrhage previously (a predisposition for bleeding), and elderly patients (who

tend to bleed more easily in general). The FDA was not able to find any subpop-

ulation for whom 110 mg has a better benefit-risk profile.

In the end, Beasley et al. stated that the FDA felt that “playing it safe” (i.e., using

110 mg) for patients and by physicians represented an undesirable stimulus to using

a less effective regimen and would lead to unnecessary strokes and disability. This

consideration plus the inability to identify a subgroup for which 110 mg would be

more favorable in terms of benefit and risk led the FDA to approve only the 150 mg

dose for dabigatran.
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Appendix

In this appendix, we include selected R and WinBUGS programs that produced

results reported in the book. The version of R used is version 3.1.0 and the version

of WinBUGS used is WinBUGS 1.4.3. Please direct any question about codes to

Simon Kirby at s.kirby1.kirby@btinternet.com.

Chapter 5, Table 5.2

#require statistical significance at one-sided 2.5% level

#set random number seed

set.seed(80835459)

#number of simulations

nsim<-10000

#required true treatment effect to be of interest

reqdelta<-3

#sample size per group

nsamp<-100

#true variance of the endpoint

var<-49

#correct positive decision counter

corrpos<-0

#incorrect positive decision counter

incorrpos<-0

#correct negative decision counter

corrneg<-0

#incorrect negative decision counter

incorrneg<-0
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#begin the simulations

for (ss in 1:nsim){

#sample true delta from a prior assumed to be a Normal

#distribution with mean 3.27 and SD of 0.6

delta<-rnorm(1,3.27,0.6)

#sample difference in the observed means

diff<-rnorm(1,delta,sqrt(2*var/nsamp))

#construct the test statistic

test<-diff/sqrt(2*var/nsamp)

#correct positive decision

if((test>=qnorm(0.975))&(delta>=reqdelta))

corrpos<-corrpos+1

#incorrect positive decision

if((test>=qnorm(0.975))&(delta<reqdelta))

incorrpos<-incorrpos+1

#correct negative decision

if((test<qnorm(0.975))&(delta<reqdelta))

corrneg<-corrneg+1

#incorrect negative decision

if((test<qnorm(0.975))&(delta>=reqdelta))

incorrneg<-incorrneg+1

}

#correct positive decision proportion

corrpos/nsim

#incorrect positive decision proportion

incorrpos/nsim

#correct negative decision proportion

corrneg/nsim

#incorrect negative decision proportion

incorrneg/nsim
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Chapter 6, Table 6.3

#require statistical significance at one-sided 2.5% level

#and observed treatment effect � 3 for a positive decision

#set random number seed

set.seed(58974595)

#number of simulations

nsim<-10000

#required true treatment effect to be of interest

reqdelta<-3

#sample size per group

nsamp<-225

#true variance of the endpoint

var<-49

#correct positive decision counter

corrpos<-0

#incorrect positive decision counter

incorrpos<-0

#correct negative decision counter

corrneg<-0

#incorrect negative decision counter

incorrneg<-0

#begin simulations

for (ss in 1:nsim){

#sample true delta from a prior assumed to be a Normal

#distribution with mean 3.27 and SD of 0.6

delta<-rnorm(1,3.27,0.6)

#sample difference in the observed means

diff<-rnorm(1,delta,sqrt(2*var/nsamp))

#construct the test statistic

test<-diff/sqrt(2*var/nsamp)

#correct positive decision

if((test>=qnorm(0.975)&(diff>=3))&(delta>=reqdelta))

corrpos<-corrpos+1

#incorrect positive decision

if((test>=qnorm(0.975)&(diff>=3))&(delta<reqdelta))

incorrpos<-incorrpos+1
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#correct negative decision

if((test<qnorm(0.975)|(diff<3))&(delta<reqdelta))

corrneg<-corrneg+1

#incorrect negative decision

if((test<qnorm(0.975)|(diff<3))&(delta>=reqdelta))

incorrneg<-incorrneg+1

}

#correct positive decision proportion

corrpos/nsim

#incorrect positive decision proportion

incorrpos/nsim

#correct negative decision proportion

corrneg/nsim

#incorrect negative decision proportion

incorrneg/nsim

Chapter 7, Figures 7.2 – 7.4

#first set of plot commands give Go probabilities

#second set of plot commands give Pause probabilities

#third set of plot commands give Stop probabilities

#minimum clinically important difference

MCID<-0.3

#target value

TV<-0.5

#assumed true standard deviation of the endpoint equal to 1

#vector of effect sizes with increment of 0.01

effectsize<-c(seq(0,1,0.01))

#sample size per group under Trad approach (one-sided 2.5%

#significance level and 80% power)

tradn<-ceiling(((qnorm(0.975)+qnorm(0.8))^2*2)/MCID^2)

tradn

#vectors to store Go and Stop probabilities for the Trad

#approach

tradgo<-NA

tradstop<-NA
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#index for vectors to hold Trad results

index<-0

#calculate Trad Go and Stop probabilities for vector of

#effect sizes

for (ee in effectsize){

index<-index+1

tradgo[index]<-pnorm(sqrt(tradn*ee^2/2)-qnorm(0.975))

tradstop[index]<-1-tradgo[index]

}

#sample size per group for the ESOE approach

esoen<-ceiling(((qnorm(0.95)+qnorm(0.80))^2*2)/TV^2)

#vectors to store Go, Stop and Pause probabilities for ESOE

esoego<-NA

esoestop<-NA

esoepause<-NA

#index for vectors to hold results

index<-0

#calculate ESOE Go, Stop and Pause probabilities for vector

#of effect sizes

for (ee in effectsize){

index<-index+1

esoego[index]<-pnorm(sqrt(esoen*ee^2/2)-qnorm(0.95))

esoestop[index]<-1-pnorm(sqrt(esoen*ee^2/2)-qnorm(0.80))

esoepause[index]<-1-esoego[index]-esoestop[index]

}

#number supplied from a separate sample size calculation for

#LPDAT

lpdatn<-135

#vectors to store Go, Stop and Pause probabilities for LPDAT

lpdatgo<-NA

lpdatstop<-NA

lpdatpause<-NA

#index for vectors to hold results

index<-0

#calculate LPDAT Go, Stop and Pause probabilities for vector

#of effect sizes

#NB Go probability can be calculated as below because
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#requirement that lower confidence interval limit exceeds

#MCID dominates requirement that upper confidence interval

#limit exceeds TV for this example

for (ee in effectsize){

index<-index+1

lpdatgo[index]<-1-pnorm(MCID,ee-qnorm(0.80)*

sqrt(2/lpdatn),sqrt(2/lpdatn))

lpdatstop[index]<-pnorm(TV,ee+qnorm(0.95)*sqrt(2/lpdatn)

,sqrt(2/lpdatn))

lpdatpause[index]<-1-lpdatgo[index]-lpdatstop[index]

}

#sample size per group for TV

TVn<-ceiling(2*1.645^2/TV^2)

#vectors to store Go and Stop probabilities for TV

TVgo<-NA

TVstop<-NA

#index for vectors to hold results

index<-0

#calculate TV Go and Stop probabilities for vector of effect

#sizes

#NB Go probability can be calculated as below because

#precision requirement satisfied if observed

#effect >= TV

for (ee in effectsize){

index<-index+1

TVgo[index]<-(1-pnorm(TV,ee,sqrt(2/TVn)))

TVstop[index]<-1-TVgo[index]

}

#sample size per group for TVMCID

TVncomp<-ceiling(2*1.645^2/(TV-MCID)^2)

#vector to store Go and Stop probabilities for TVMCID

TVcompgo<-NA

TVcompstop<-NA

#index for vectors to hold results

#NB Go probability can be calculated as below because

#precision requirement is satisfied if observed effect >= TV

index<-0
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#calculate Go and Stop probabilities for TVMCID

for (ee in effectsize){

index<-index+1

TVcompgo[index]<-(1-pnorm(TV,ee,sqrt(2/TVncomp)))

TVcompstop[index]<-1-TVcompgo[index]

}

#plot Go probabilities

plot(effectsize,tradgo,typ=’l’,lty=1,col=’black’,

ylab=’probability’,xlab=’effect size’,lwd=2,cex.axis=2,

cex.lab=2,xaxt=’n’)

lines(effectsize,esoego,lty=2,col=’blue’,lwd=2)

lines(effectsize,lpdatgo,lty=3,col=’red’,lwd=2)

lines(effectsize,TVgo,lty=4,col=’brown’,lwd=2)

lines(effectsize,TVcompgo,lty=5,col=’brown’,lwd=2)

legend(0.7,0.6,legend=c(’Trad (n=175)’,’ESOE (n=50)’,

’LPDAT (n=135)’,’TV (n=22)’,expression(TV[MCID] ~"(n=136)"))

,lty=c(1,2,3,4,5),col=c(’black’,’blue’,’red’,’brown’,’brown’),

lwd=2,cex=2)

axis(1,at=c(0.2,0.3,0.4,0.5,0.6,0.8),labels=c(’0.2’,’MCID’,

’0.4’,’TV’,’0.6’,’0.8’),cex.axis=2)

#plot Pause probabilities

plot(effectsize,esoepause,lty=2,col=’blue’,ylim=c(0,1),

ylab=’probability’,xlab=’effect size’,typ=’l’,lwd=2,

cex.axis=2,cex.lab=2)

lines(effectsize,lpdatpause,lty=3,col=’red’,lwd=2)

legend(0.7,0.6,legend=c(’ESOE (n=50)’,’LPDAT (n=135)’),

lty=c(2,3),col=c(’blue’,’red’),lwd=2,cex=2)

axis(1,at=c(0.2,0.3,0.4,0.5,0.6,0.8),labels=c(’0.2’,’MCID’,

’0.4’,’TV’,’0.6’,’0.8’),cex.axis=2)

#plot Stop probabilities

plot(effectsize,tradstop,typ=’l’,lty=1,col=’black’,

ylab=’probability’,xlab=’effect size’,lwd=2,cex.axis=2,

cex.lab=2)

lines(effectsize,esoestop,lty=2,col=’blue’,lwd=2)

lines(effectsize,lpdatstop,lty=3,col=’red’,lwd=2)

lines(effectsize,TVstop,lty=4,col=’brown’,lwd=2)

lines(effectsize,TVcompstop,lty=5,col=’brown’,lwd=2)

legend(0.7,0.8,legend=c(’Trad (n=175)’,’ESOE (n=50)’,

’LPDAT (n=135)’,’TV (n=22)’,expression(TV[MCID] ~"(n=136)"))

,lty=c(1,2,3,4,5),col=c(’black’,’blue’,’red’,’brown’,

’brown’),lwd=2,cex=2)

axis(1,at=c(0.2,0.3,0.4,0.5,0.6,0.8),labels=c(’0.2’,’MCID’,

’0.4’,’TV’,’0.6’,’0.8’),cex.axis=2)
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Chapter 7, Tables 7.2 – 7.6

#simulate probabilities for Tables 7.2 to 7.6 assessing POC

#designs in chapter 7

#correct decision if positive decision and delta greater

#than or equal to MCID

#set random number seed

set.seed(11684145)

#number of simulations

nsim<-10000

#assumed true sigma

sigma<-1

#MCID value

MCID<-0.3

#TV value

TV<-0.5

#significance level for traditional test

alphatrad<-0.025

#ESOE error probability for accelerating a compound with no

#effect

ESOEacc0<-0.05

#ESOE probability for killing a compound with no effect

ESOEkill0<-0.80

#confidence for upper confidence limit for lpdat

upplpdat<-0.95

#confidence for lower confidence limit for lpdat

lowlpdat<-0.80

#sample sizes derived as described in chapter

ntrad<-175

nesoe<-50

nlpdat<-135

nTV<-22

nTVMCID<-136

#counters to hold counts of various outcomes for different

#approaches

corrpostrad<-0

incorrpostrad<-0

corrnegtrad<-0

incorrnegtrad<-0
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corrposesoe<-0

incorrposesoe<-0

corrnegesoe<-0

incorrnegesoe<-0

pauseesoe_h<-0

pauseesoe_l<-0

corrposlpdat<-0

incorrposlpdat<-0

corrneglpdat<-0

incorrneglpdat<-0

pauselpdat_h<-0

pauselpdat_l<-0

corrposTV<-0

incorrposTV<-0

corrnegTV<-0

incorrnegTV<-0

corrposTVMCID<-0

incorrposTVMCID<-0

corrnegTVMCID<-0

incorrnegTVMCID<-0

#simulations

for (ss in 1:nsim){

#simulate from treatment effect prior - start with a

#random number from uniform distribution from 0 to 1

rannum<-runif(1,0,1)

#delta if randum number less than 0.8

if(rannum<0.80)

delta<-0

#delta if random number greater than or equal to 0.8

if(rannum>=0.80)

delta<-rnorm(1,0.5,0.17)

#generated sample means for each approach allowing for

#different sample sizes

traddiff<-rnorm(1,delta,sqrt(2*sigma^2/ntrad))

esoediff<-rnorm(1,delta,sqrt(2*sigma^2/nesoe))

lpdatdiff<-rnorm(1,delta, sqrt(2*sigma^2/nlpdat))

TVdiff<-rnorm(1,delta,sqrt(2*sigma^2/nTV))
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TVMCIDdiff<-rnorm(1,delta,sqrt(2*sigma^2/nTVMCID))

#correct positive, incorrect positive, incorrect negative and

#correct negative counts by approach

#pause probabilities also captured for ESOE and lpdat

#approaches

if((traddiff/sqrt(2*sigma^2/ntrad)>=qnorm(1-alphatrad))&

(delta>=MCID)){

corrpostrad<-corrpostrad+1

}else if((traddiff/sqrt(2*sigma^2/ntrad)>=qnorm(1-alphatrad)

)&(delta<MCID)){

incorrpostrad<-incorrpostrad+1

}else if((traddiff/sqrt(2*sigma^2/ntrad)<qnorm(1-alphatrad))

&(delta>=MCID)){

incorrnegtrad<-incorrnegtrad+1

}else

corrnegtrad<-corrnegtrad+1

if((esoediff/sqrt(2*sigma^2/nesoe)>=qnorm(1-ESOEacc0))&

(delta>=MCID)){

corrposesoe<-corrposesoe+1

}else if((esoediff/sqrt(2*sigma^2/nesoe)>=qnorm(1-

ESOEacc0))&(delta<MCID)){

incorrposesoe<-incorrposesoe+1

}else if((esoediff/sqrt(2*sigma^2/nesoe)<qnorm(ESOEkill0)

)&(delta>=MCID)){

incorrnegesoe<-incorrnegesoe+1

}else if((esoediff/sqrt(2*sigma^2/nesoe)<qnorm(ESOEkill0)

)&(delta<MCID)){

corrnegesoe<-corrnegesoe+1

}else if (delta>=MCID){

pauseesoe_h<-pauseesoe_h+1

}else

pauseesoe_l<-pauseesoe_l+1

if((lpdatdiff+qnorm(upplpdat)*sqrt(2*sigma^2/nlpdat)>=TV)

&(lpdatdiff-qnorm(lowlpdat)*sqrt(2*sigma^2/nlpdat)>MCID)&

(delta>=MCID)){

corrposlpdat<-corrposlpdat+1

}else if((lpdatdiff+qnorm(upplpdat)*sqrt(2*sigma^2/nlpdat

)>=TV)&(lpdatdiff-qnorm(lowlpdat)*sqrt(2*sigma^2/nlpdat)>

MCID)&(delta<MCID)){
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incorrposlpdat<-incorrposlpdat+1

}else if((lpdatdiff+qnorm(upplpdat)*sqrt(2*sigma^2/nlpdat

)<TV)&(delta>=MCID)){

incorrneglpdat<-incorrneglpdat+1

}else if((lpdatdiff+qnorm(upplpdat)*sqrt(2*sigma^2/nlpdat)

<TV)&(delta<MCID)){

corrneglpdat<-corrneglpdat+1

}else if (delta>=MCID){

pauselpdat_h<-pauselpdat_h+1

}else

pauselpdat_l<-pauselpdat_l+1

if((TVdiff>=TV)&(delta>=MCID)){

corrposTV<-corrposTV+1

}else if((TVdiff>=TV)&(delta<MCID)){

incorrposTV<-incorrposTV+1

}else if((TVdiff<TV)&(delta>=MCID)){

incorrnegTV<-incorrnegTV+1

}else

corrnegTV<-corrnegTV+1

if((TVMCIDdiff>=TV)&(delta>=MCID)){

corrposTVMCID<-corrposTVMCID+1

}else if((TVMCIDdiff>=TV)&(delta<MCID)){

incorrposTVMCID<-incorrposTVMCID+1

}else if((TVMCIDdiff<TV)&(delta>=MCID)){

incorrnegTVMCID<-incorrnegTVMCID+1

}else

corrnegTVMCID<-corrnegTVMCID+1

}

#convert counts to probabilities for each approach by

#dividing by nsim

#print correct positive, incorrect positive, correct

#negative and incorrect negative decision for each

#approach; print positive predictive value and negative

#predictive value for each approach

#print pause probabilities by whether true difference >=

#MCID or not

corrpostrad<-corrpostrad/nsim

incorrpostrad<-incorrpostrad/nsim

corrnegtrad<-corrnegtrad/nsim

incorrnegtrad<-incorrnegtrad/nsim

print(cbind(corrpostrad,incorrpostrad,corrnegtrad,

incorrnegtrad))
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tradPPV<-corrpostrad/(corrpostrad+incorrpostrad)

tradNPV<-corrnegtrad/(corrnegtrad+incorrnegtrad)

print(cbind(tradPPV,tradNPV))

corrposesoe<-corrposesoe/nsim

incorrposesoe<-incorrposesoe/nsim

corrnegesoe<-corrnegesoe/nsim

incorrnegesoe<-incorrnegesoe/nsim

print(cbind(corrposesoe,incorrposesoe,corrnegesoe,

incorrnegesoe))

esoePPV<-corrposesoe/(corrposesoe+incorrposesoe)

esoeNPV<-corrnegesoe/(corrnegesoe+incorrnegesoe)

print(cbind(esoePPV,esoeNPV))

print(cbind(pauseesoe_h/nsim,pauseesoe_l/nsim))

corrposlpdat<-corrposlpdat/nsim

incorrposlpdat<-incorrposlpdat/nsim

corrneglpdat<-corrneglpdat/nsim

incorrneglpdat<-incorrneglpdat/nsim

print(cbind(corrposlpdat,incorrposlpdat,corrneglpdat,

incorrneglpdat))

lpdatPPV<-corrposlpdat/(corrposlpdat+incorrposlpdat)

lpdatNPV<-corrneglpdat/(corrneglpdat+incorrneglpdat)

print(cbind(lpdatPPV,lpdatNPV))

print(cbind(pauselpdat_h/nsim,pauselpdat_l/nsim))

corrposTV<-corrposTV/nsim

incorrposTV<-incorrposTV/nsim

corrnegTV<-corrnegTV/nsim

incorrnegTV<-incorrnegTV/nsim

print(cbind(corrposTV,incorrposTV,corrnegTV,incorrnegTV))

TVPPV<-corrposTV/(corrposTV+incorrposTV)

TVNPV<-corrnegTV/(corrnegTV+incorrnegTV)

print(cbind(TVPPV,TVNPV))

corrposTVMCID<-corrposTVMCID/nsim

incorrposTVMCID<-incorrposTVMCID/nsim

corrnegTVMCID<-corrnegTVMCID/nsim

incorrnegTVMCID<-incorrnegTVMCID/nsim

print(cbind(corrposTVMCID,incorrposTVMCID,corrnegTVMCID,

incorrnegTVMCID))

TVMCIDPPV<-corrposTVMCID/(corrposTVMCID+incorrposTVMCID)

TVMCIDNPV<-corrnegTVMCID/(corrnegTVMCID+incorrnegTVMCID)

print(cbind(TVMCIDPPV,TVMCIDNPV))
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Chapter 8, Tables 8.2 – 8.5

#for table 8.2

#width=0.1

#dose<-c(rep(0,30),rep(2,30),rep(4,30),rep(6,30),rep(8,30))

#alldose<-c(0,2,4,6,8)

#Emax varied as -1.2, -1.5 and -1.8

#seeds used for random numbers

#pessimistic 66558519

#base 215551

#optimistic 4665132

#For table 8.3

#width=0.1

#dose<-c(rep(0,60),rep(2,60),rep(4,60),rep(6,60),rep(8,60))

#alldose<-c(0,2,4,6,8)

#Emax varied as -1.2, -1.5 and -1.8

#seeds used for random numbers

#pessimistic 61213048

#base 72937763

#optimistic 33979873

#For table 8.4

#width=0.15, 0.20, 0.25 or 0.30

#dose<-c(rep(0,30),rep(2,30),rep(4,30),rep(6,30),rep(8,30))

#alldose<-c(0,2,4,6,8)

#Emax varied as -1.2, -1.5 and -1.8

#seeds used for random numbers

#0.15 width, pessimistic 69002499

#0.15 width, base 73928088

#0.15 width, optimistic 55318173

#0.20 width, pessimistic 6915962

#0.20 width, base 83966698

#0.20 width, optimistic 70845545

#0.25 width, pessimistic 20776442

#0.25 width, base 11384123

#0.25 width, optimistic 86133592

#0.30 width, pessimistic 59115048

#0.30 width, base 36608344

#0.30 width, optimistic 73736949

#For table 8.5

#width=0.1

#dose<-c(rep(0,40),rep(1,40),rep(2,15),rep(5,15),rep(8,40))

#alldose<-c(0,1,2,5,8)
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#Emax varied as -1.2, -1.5 and -1.8

#seeds used for random numbers

#pessimistic 89681883

#base 53257519

#optimistic 28034564

#settings for a particular (width, dose, sample size, Emax)

#combination

width<-0.10

dose<-c(rep(0,40),rep(1,40),rep(2,15),rep(5,15),rep(8,40))

#available doses

alldose<-c(0,1,2,5,8)

trueEmax<-(-1.8)

rand<-28034564

set.seed(rand)

#number of simulations

nsim<-10000

#true variance

sigmasq<-4.5

#true values of parameters

trueE0<-0

trueED50<-0.79

truelogED50<-log(trueED50)

#target efficacy

target<-(-1)

#target value interval from lowtarget to hightarget allowing

#for width difference from target value

lowtarget<-target*(1-width)

hightarget<-target*(1+width)

#true doses satisfying lowtarget and hightarget values

#if hightarget value not achieveable then dose set to a

#large value

lowtargetdose<-trueED50/(trueEmax/lowtarget-1)

hightargetdose<-trueED50/(trueEmax/hightarget-1)

if(trueEmax>=hightarget){

hightargetdose<-1000000

}
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#bounds for parameter values

lower.E0<-(-1000000)

upper.E0<-1000000

lower.Emax<-(-1000000)

upper.Emax<-1000000

lower.logED50<-(-10)

upper.logED50<-10

#number of doses

ndose<-length(alldose)

#counter for trend test

trendcount<-0

#counter for estimated dose being in target dose interval

targetdosecount<-0

#sum of average prediction error

sumAPE<-0

#sum of relative average prediction error

sumpAPE<-0

#true response for all available doses under the 3-parameter

#Emax model with ED50=0.79.

truealldose<-trueEmax*alldose/(0.79+alldose)

targetdosecount<-0

#for loop for simulations

for(ss in 1:nsim){

#simulate errors

errorsim<-rnorm(150,0,sqrt(4.5))

#add errors to true response

ysim<-trueEmax*dose/(trueED50+dose)+errorsim

#fit linear regression on dose

fit2<-lm(ysim~dose)

#t test for slope coefficient

ttest<-summary(fit2)$coef[,"t value"][2]

pval<-pt(ttest,fit2$df.residual)

#assess significance of trend test

if(pval<0.05){
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trendyes<-1

trendcount<-trendcount+trendyes

}else{

trendyes<-0

}

#nls fit

fit<-nls(ysim ~ E0+Emax*dose/(exp(logED50)+dose),

start=list(E0=0,Emax=trueEmax,logED50=truelogED50),

alg="port",lower=c(lower.E0,lower.Emax,lower.logED50),

upper=c(upper.E0,upper.Emax,upper.logED50),

trace=FALSE,control=nls.control(tol=1e-05,warnOnly=TRUE))

#estimated parameters

estparams<-coef(fit)

#fit for all available doses

allfit<-estparams[1]+estparams[2]*alldose/(exp(estparams[3])

+alldose)

#if estimated Emax < target value of -1 then calculated dose

#estimated to give target effect

#otherwise set estimated dose to 0

if(estparams[2]<target){

estdose<-exp(estparams[3])/(estparams[2]/target-1)

}else{

estdose<-0

}

#increment targetdosecount if trend test significant and

#estimated dose in target dose interval

if((estdose>=lowtargetdose)&(estdose<=hightargetdose)&

(trendyes==1))

targetdosecount<-targetdosecount+1

#average prediction error

APE<-(sum(abs(allfit-truealldose))/ndose)

#sum average prediction error

sumAPE<-sumAPE+APE

#relative average prediction error

pAPE<-APE/abs(target)

#sum relative average prediction error

sumpAPE<-sumpAPE+pAPE

}

224 Appendix



#probability of trend test being significant

trendcount/nsim

#probability estimated dose in target dose interval given

#trend test significant

targetdosecount/trendcount

#mean of the average prediction error

sumAPE/nsim

#mean of the relative average prediction error

sumpAPE/nsim

Chapter 8, Table 8.6

#Priors for the parameters

#N(0, 0.1^2) for E0

#N(-1.5, 0.2^2) for Emax

#t distn with 3 df with scale parameter = 0.6 and

#mean = 0.79 for log(ED50/P50)

#P50 (coincidentally) set equal to 0.79

#beta distribution with parameters 3.03 and 18.15 scaled to

#the interval (0, 6) for lambda

#number of simulations

nsim<-10000

#P50

P50<-0.79

#available non-zero doses

dose<-c(1,2,3,4,5,6,7,8)

#random number used for seed 7546193

rand<-7546193

set.seed(rand)

#simulate E0

rE0<-rnorm(nsim,0,0.1)

#simulate Emax

rEmax<-rnorm(nsim,-1.5,0.2)

#simulate ED50

tval<-rt(nsim,3)

rED50<-exp(tval*0.6+0.79)*P50

#simulate lambda

rlambda<-rbeta(nsim,3.03,18.15)*6
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#repeat dose sequence for each simulation

alldose<-c(rep(dose,nsim))

#repeat each simulated parameter by number of doses

allrE0<-rep(rE0,each=8)

allrEmax<-rep(rEmax,each=8)

allrED50<-rep(rED50, each=8)

allrlambda<-rep(rlambda, each=8)

#effect versus placebo for simulated parameters

effect<-(allrEmax*alldose^allrlambda)/(allrED50^allrlambda+

alldose^allrlambda)

#summary statistics of effects at different doses

summary(effect[alldose==1])

summary(effect[alldose==2])

summary(effect[alldose==3])

summary(effect[alldose==4])

summary(effect[alldose==5])

summary(effect[alldose==6])

summary(effect[alldose==7])

summary(effect[alldose==8])

Chapter 8, Tables 8.8 to 8.9

#For table 8.8

#dose<-c(rep(0,30),rep(2,30),rep(4,30),rep(6,30),rep(8,30))

#alldose<-c(0,2,4,6,8)

#random number used for seed

#72320230

#For table 8.9

#dose<-c(rep(0,40),rep(1,40),rep(2,15),rep(5,15),rep(8,40))

#alldose<-c(0,1,2,5,8)

#random number used for seed

#33254623

#settings for a particular program run (e.g., Table 8.9)

dose<-c(rep(0,40),rep(1,40),rep(2,15),rep(5,15),rep(8,40))

#available doses

alldose<-c(0,1,2,5,8)

rand<-33254623

set.seed(rand)
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#Priors for the parameters in the 4-parameter Emax model

#N(0, 0.1^2) for E0

#N(-1.5, 0.2^2) for Emax

#t distn with 3 df with scale parameter = 0.6 and

#mean = 0.79 for log(ED50/P50)

#P50 (coincidentally) set equal to 0.79

#beta with parameters 3.03 and 18.15 scaled by 6 for lambda

#number of simulations

nsim<-10000

#true variance

sigmasq<-4.5

#P50

P50<-0.79

#target efficacy

target<-(-1)

#bounds for parameter values

lower.E0<-(-1000000)

upper.E0<-1000000

lower.Emax<-(-1000000)

upper.Emax<-1000000

lower.logED50<-(-10)

upper.logED50<-10

lower.lambda<-0.01

upper.lambda<-5

#number of doses

ndose<-length(alldose)

#counter for trend test

trendcounttrue<-0

trendcountfalse<-0

#counter for estimated dose in target dose interval

targetdosetrue<-0

targetdosefalse<-0

#sum of average prediction error

sumAPE<-0

#sum of relative average prediction error

sumpAPE<-0

sumpAPEtrue<-0

sumpAPEfalse<-0

ntrue<-0

nfalse<-0

#for loop for simulations

for(ss in 1:nsim){
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#simulate E0

rE0<-rnorm(1,0,0.1)

#simulate Emax

rEmax<-rnorm(1,-1.5,0.2)

#simulate ED50

tval<-rt(1,3)

rED50<-exp(tval*0.6+0.79)*P50

#log simulated ED50 for R fit

logrED50<-log(rED50)

#simulate lambda

rlambda<-rbeta(1,3.03,18.15)*6

#true mean responses

truealldose<-rE0+rEmax*alldose^rlambda/(rED50^rlambda+

alldose^rlambda)

truealleffect<-rEmax*alldose^rlambda/(rED50^rlambda+

alldose^rlambda)

#low and high targets for allowed target interval

lowtarget<-target*0.9

hightarget<-target*1.1

#true doses giving lowtarget and hightarget values

#if lowtarget achieveable determine true dose giving

#lowtarget else set this dose to a large value

if(rEmax<lowtarget){

lowtargetdose<-rED50/((rEmax/lowtarget-1)^(1/rlambda))

}else{

lowtargetdose<-1000000

}

#if hightarget achieveable determine true dose giving

#hightarget else set this dose to a large value

if(rEmax<hightarget){

hightargetdose<-rED50/((rEmax/hightarget-1)^

(1/rlambda))

}else{

hightargetdose<-1000000

}
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#whether top dose achieves target efficacy, initially set

#to 0 for no

topdoseokay<-0

if(truealleffect[ndose]<=-1)

topdoseokay<-1

#simulate errors

errorsim<-rnorm(150,0,sqrt(sigmasq))

#add errors to model

ysim<-rE0+rEmax*dose^rlambda/(rED50^rlambda+dose^rlambda)

+errorsim

#fit linear regression on dose

fit2<-lm(ysim~dose)

# t test for slope coefficient

ttest<-summary(fit2)$coef[,"t value"][2]

pval<-pt(ttest,fit2$df.residual)

trendyes<-0

#assess significance of trend test

if((pval<0.05)&(topdoseokay==1)){

trendcounttrue<-trendcounttrue+1

trendyes<-1

}else if((pval<0.05)){

trendcountfalse<-trendcountfalse+1

trendyes<-1

}

#nls fit

fit<-nls(ysim ~ E0+Emax*dose^lambda/(exp(logED50)^lambda+

dose^lambda),

start=list(E0=rE0,Emax=rEmax,logED50=logrED50,

lambda=rlambda),alg="port",lower=c(lower.E0,lower.Emax,

lower.logED50,lower.lambda),upper=c(upper.E0,upper.Emax,

upper.logED50,upper.lambda),trace=FALSE,

control=nls.control(tol=1e-05,warnOnly=TRUE))

#estimated parameters

estparams<-coef(fit)

#fit for all available doses
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allfit<-estparams[1]+estparams[2]*alldose^estparams[4]/

(exp(estparams[3])^estparams[4]+alldose^estparams[4])

#if estimated Emax < target of -1 calculate dose giving

#target effect else set estimated dose to 0

if(estparams[2]<target){

estdose<-exp(estparams[3])/((estparams[2]/target-1)^

(1/estparams[4]))

}else{

estdose<-0

}

#if estimated dose in target dose interval and trend test

#significant then increment targetdosetrue or

#targetdosefalse depending if top dose gives a true effect of

#at least 1 compared with placebo

if((estdose>=lowtargetdose)&(estdose<=hightargetdose)&

(trendyes==1)){

if(topdoseokay==1){

targetdosetrue<-targetdosetrue+1

}else{

targetdosefalse<-targetdosefalse+1

}

}

#average prediction error

APE<-(sum(abs(allfit-truealldose))/ndose)

#sum average prediction error

sumAPE<-sumAPE+APE

#relative average prediction error

pAPE<-APE/abs(target)

#sum relative average prediction error

if(topdoseokay==1){

sumpAPEtrue<-sumpAPEtrue+pAPE

ntrue<-ntrue+1

}else{

sumpAPEfalse<-sumpAPEfalse+pAPE

nfalse<-nfalse+1

}

sumpAPE<-sumpAPE+pAPE

}
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#probability of trend test being significant and effect of top

#dose <=-1

trendcounttrue/nsim

#probability of trend dose being significant and effect of

#top dose not <= -1

trendcountfalse/nsim

#probability estimated dose in target dose interval and

#effect of top dose <=-1 given trend test significant

targetdosetrue/(trendcounttrue+trendcountfalse)

#probability estimated dose in target dose interval and

#effect of top dose NOT <=-1 given trend test significant

targetdosefalse/(trendcounttrue+trendcountfalse)

#APE

sumAPE/nsim

#pAPE overall

sumpAPE/nsim

#pAPE when top dose gives at least target effect

sumpAPEtrue/ntrue

#pAPE when top dose does not achieve target effect

sumpAPEfalse/nfalse

Chapter 8, Tables 8.10 – 8.11

library("R2WinBUGS")

#For Table 8.10

#dose<-c(rep(0,30),rep(2,30),rep(4,30),rep(6,30),rep(8,30))

#alldose<-c(0,2,4,6,8)

#simulations done as 4 sets of 250 with following seeds for

#random numbers

#68162410

#13624885

#62080175

#34180515

#For Table 8.11

#dose<-c(rep(0,40),rep(1,40),rep(2,15),rep(5,15),rep(8,40))

#alldose<-c(0,1,2,5,8)
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#simulations done as 4 sets of 250 with following seeds for

#random numbers

#70029005

#84436182

#53321012

#35248536

#settings for a particular program run

dose<-c(rep(0,40),rep(1,40),rep(2,15),rep(5,15),rep(8,40))

#available doses

alldose<-c(0,1,2,5,8)

rand<-35248536

#Bayesian prior for design

#E0 N(0, 0.1^2) for E0

#Emax N(-1.5, 0.2^2) for Emax

#t distn with 3 df with scale parameter = 0.6 and

#mean = 0.79 for log(ED50/P50)

#P50 (coincidentally) set equal to 0.79

#beta with parameters 3.03 and 18.15 scaled by 6 for lambda

set.seed(rand)

#number of simulations

nsim<-250

#true variance

sigmasq<-4.5

#P50

P50<-0.79

#target efficacy

target<-(-1)

#number of subjects

N<-length(dose)

#number of doses

K<-length(alldose)

#counter for Emax test

Emaxcounttrue<-0

Emaxcountfalse<-0

#counter for estimated dose in target dose interval

targetdosetrue<-0

targetdosefalse<-0

#sum of average prediction error

sumAPE<-0

#sum of relative average prediction error

sumpAPE<-0
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sumpAPEtrue<-0

sumpAPEfalse<-0

ntrue<-0

nfalse<-0

#initial values to supply to WinBUGS

inits<-list(list(E0=0,Emax=(-1.2),logratio=0.7,lambda=1,

prec=0.01),

list(E0=0,Emax=(-1.5),logratio=0.79,lambda=0.9,prec=0.01),

list(E0=0,Emax=(-1.8),logratio=0.9,lambda=0.8,prec=0.01))

#for loop for simulations

for(ss in 1:nsim){

#simulate true E0

rE0<-rnorm(1,0,0.1)

#simulate true Emax

rEmax<-rnorm(1,-1.5,0.2)

#simulate true ED50

tval<-rt(1,3)

rED50<-exp(tval*0.6+0.79)*P50

#log of ED50

logrED50<-log(rED50)

#simulate true lambda

rlambda<-rbeta(1,3.03,18.15)*6

truealldose<-rE0+(rEmax*alldose^rlambda)/(rED50^rlambda+

alldose^rlambda)

truealleffect<-(rEmax*alldose^rlambda)/(rED50^rlambda+

alldose^rlambda)

#low and high targets

lowtarget<-target*0.9

hightarget<-target*1.1

#low and high target doses

if(rEmax<lowtarget){

lowtargetdose<-rED50/((rEmax/lowtarget-1)^(1/rlambda))

}else{

lowtargetdose<-1000000

}

if(rEmax<hightarget){
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hightargetdose<-rED50/((rEmax/hightarget-1)^(1/rlambda))

}else{

hightargetdose<-1000000

}

#whether top dose achieves target efficacy

topdoseokay<-0

if(truealleffect[K]<=-1)

topdoseokay<-1

#simulate errors

errorsim<-rnorm(150,0,sqrt(4.5))

#add errors to model

ysim<-rE0+(rEmax*dose^rlambda)/(rED50^rlambda+dose^

rlambda)+errorsim

#data for WinBUGS

data<-list(N=N,dose=dose,ysim=ysim,K=K,alldose=alldose,

lowtargetdose=lowtargetdose,

hightargetdose=hightargetdose)

#where WinBUGS file is – replace with file location

filetxt=c(

"M:/book/Chapter 8/programs and outputs/Emax

- 20160916.txt")

#call WinBUGS – replace directory location

emaxfit<-bugs(data,inits,model.file=filetxt,

parameters=c("E0","Emax","logED50","lambda","allfit",

"alleffect","loweffect","higheffect"),n.chains=3,

n.iter=100000,n.burnin=50000,

bugs.directory=’C:\\Program Files (x86)\\WinBUGS14’,

program=’OpenBUGS’)

#place simulated Emax values in a vector

emaxsims<-emaxfit$sims.matrix[,2]

#sort simulated Emax values

emaxsort<-sort(emaxsims)

#95th percentile of distribution of simulated Emax values

testper<-quantile(emaxsort,0.95)

#counter for Emax test

Emaxyes<-0
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#if 95th percentile of simulated Emax values less than 0 then

#test is significant

#further if top dose gives at least required effect using

#true parameter values then Emaxcounttrue

#incremented by 1 else Emaxcountfalse

if((testper<0)&(topdoseokay==1)){

Emaxcounttrue<-Emaxcounttrue+1

Emaxyes<-1

}else if(testper<0){

Emaxcountfalse<-Emaxcountfalse+1

Emaxyes<-1

}

#if posterior mean effect for lowest dose in target dose

#interval > target of -1 and estimated

#posterior mean effect for highest dose in target dose

#interval < target of -1 then dose giving

#posterior mean effect equal to target must be in allowed

#target dose interval

if((emaxfit$mean$loweffect>=target)&

(emaxfit$mean$higheffect<=target)){

if(topdoseokay==1){

targetdosetrue<-targetdosetrue+1

}else{

targetdosefalse<-targetdosefalse+1

}

}

#average prediction error

APE<-(sum(abs(emaxfit$mean$allfit-truealldose))/K)

#sum average prediction error

sumAPE<-sumAPE+APE

#relative average prediction error

pAPE<-APE/abs(target)

#sum relative average prediction error

if(topdoseokay==1){

sumpAPEtrue<-sumpAPEtrue+pAPE

ntrue<-ntrue+1

}else{

sumpAPEfalse<-sumpAPEfalse+pAPE

nfalse<-nfalse+1

}

sumpAPE<-sumpAPE+pAPE

}
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#probability of Emax test being significant when top dose

#achieves at least target effect using true parameter values

Emaxcounttrue/nsim

#probability of Emax test being significant when top dose

#does not achieve at least the target

Emaxcountfalse/nsim

#probability estimated dose in target dose interval given a

#significant Emax test when top dose achieves target

#efficacy using true #parameter values

targetdosetrue/(Emaxcounttrue+Emaxcountfalse)

#probability estimated dose in target dose interval given a

#significant Emax test when top dose does not achieve at

#least the target effect using true parameter values

targetdosefalse/(Emaxcounttrue+Emaxcountfalse)

#APE

sumAPE/nsim

#pAPE

sumpAPE/nsim

#pAPE when top dose does achieve target efficacy using true

#parameter values

sumpAPEtrue/ntrue

#pAPE when top dose does not achieve target efficacy using

#true parameter values

sumpAPEfalse/nfalse

WinBUGS program for Tables 8.10 – 8.11

#WinBUGS code for fit of Emax model with informative prior

#prior for E0 Normal with mean 0 and variance 0.1^2

#prior for Emax Normal with mean -1.5 and variance 0.2^2

#prior for log(ED50/P50) t with 3 degrees of freedom,

#location = 0.79 and scale 0.6, P50 set equal to 0.79
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model{

for (i in 1:N)

{

#distribution for individual observation

ysim[i] ~ dnorm(mean[i],prec)

#model mean

mean[i]<-E0+(Emax*pow(dose[i],slambda))/

(pow(exp(logED50),slambda)+

pow(dose[i],slambda))

}

#placebo fit

allfit[1]<-E0

#fit and effects for all doses

for (i in 2:K)

{

allfit[i]<-E0+(Emax*pow(alldose[i],slambda)

)/(pow(exp(logED50),slambda)

+pow(alldose[i],slambda))

alleffect[i]<-(Emax*pow(alldose[i],slambda)

)/(pow(exp(logED50),slambda)+

pow(alldose[i],slambda))

}

#effect for lowest dose in target dose interval

loweffect<-(Emax*pow(lowtargetdose,slambda))/

(pow(exp(logED50),slambda)

+pow(lowtargetdose,slambda))

#effect for highest dose in target dose interval

higheffect<-(Emax*pow(hightargetdose,slambda)

)/(pow(exp(logED50),slambda)+

pow(hightargetdose,slambda))

#priors

E0~dnorm(0,100)

Emax~dnorm(-1.5,25)

logratio~dt(0.79,2.78,3)

logED50<-logratio+log(0.79)

lambda~dbeta(3.03,18.15)

slambda<-lambda*6

prec~dgamma(0.001,0.001)

}
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Chapter 9, Table 9.1

#values at which power is to be calculated

powerpts<-c(0.35,0.45,0.55,0.65,0.75,0.85,0.95,1.05)

#set prob to NA so prob recognised by R

prob<-NA

#probabilities of required intervals

prob[1]<-pnorm(log(0.4),-0.34,0.24)

prob[2]<-pnorm(log(0.5),-0.34,0.24)-

pnorm(log(0.4),-0.34,0.24)

prob[3]<-pnorm(log(0.6),-0.34,0.24)-

pnorm(log(0.5),-0.34,0.24)

prob[4]<-pnorm(log(0.7),-0.34,0.24)-

pnorm(log(0.6),-0.34,0.24)

prob[5]<-pnorm(log(0.8),-0.34,0.24)-

pnorm(log(0.7),-0.34,0.24)

prob[6]<-pnorm(log(0.9),-0.34,0.24)-

pnorm(log(0.8),-0.34,0.24)

prob[7]<-pnorm(log(1),-0.34,0.24)-

pnorm(log(0.9),-0.34,0.24)

prob[8]<-1-pnorm(log(1),-0.34,0.24)

#print vector of probabilities

prob

#power at required values

power<-pnorm(-qnorm(0.975)-log(powerpts)/sqrt(4/460))

power

#components of probability of success

pos<-power*prob

pos

#overall probability of success

sum(pos)

Chapter 9, Table 9.2

#set random number seed

set.seed(38683166)
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#number of simulations

nsim<-10000

#counters for correct positive, incorrect negative,

#incorrect positive and correct negative decisions

#when a true positive decision is defined by the true log

#hazard ratio is less than or equal to 0.75 and the

#one-sided p-value <=0.025

correctpos<-0

incorrneg<-0

incorrpos<-0

correctneg<-0

for(ss in 1:nsim){

#simulate true log hazard

loghazard<-rnorm(1,-0.34,0.24)

#simulate observed log hazard

estloghazard<-rnorm(1,loghazard,sqrt(4/460))

#one-sided p-value for test of log hazard

pval<-1-pnorm(0,estloghazard,sqrt(4/460))

if((exp(loghazard)<=0.75)&(pval<=0.025)){

correctpos<-correctpos+1

}else if((exp(loghazard)<=0.75)&(pval>0.025)){

incorrneg<-incorrneg+1

}else if((exp(loghazard)>0.75)&(pval<=0.025)){

incorrpos<-incorrpos+1

}else

correctneg<-correctneg+1

}

#proportions of correct positive, incorrect negative,

#incorrect positive and correct negative results

correctpos/nsim

incorrneg/nsim

incorrpos/nsim

correctneg/nsim
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Chapter 10, Tables 10.4 – 10.5

#sample size = 191 for Table 10.4

#sample size varied for Table 10.5

#random number seed for Table 10.4

#17041253

#random number seeds for Table 10.5

#n=250 27777393

#n=400 27709135

#n=600 79130894

#n=800 74768143

#n=1000 5562509

#codes for when sample size is set at 1000

sampsize<-1000

#set seed

rand<-5562509

set.seed(rand)

#number of simulations

nsim<-10000

#counters for true positive, false positive, true negative

#and false negative results

#positive decision is defined by significance at the

#one-sided 2.5% level

truepos<-0

falsepos<-0

trueneg<-0

falseneg<-0

#critical value for one-sided test

critval<-qnorm(0.975)

#assumed variance

var<-1

#simulations

for(ss in 1:nsim){

#simulate delta

simdelta<-rnorm(1,0.287,0.2504)

#simulate difference using simulated delta

simdiff<-rnorm(1,simdelta,sqrt(2/sampsize))

#standard error
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se<-sqrt(2*var/sampsize)

#test statistic

zval<-simdiff/se

if((zval>=critval)&(simdelta>0)){

truepos<-truepos+1

}else if((zval>=critval)&(simdelta<=0)){

falsepos<-falsepos+1

}else if((zval<critval)&(simdelta>0)){

falseneg<-falseneg+1

}else

trueneg<-trueneg+1

}

#proportions of true positive, false positive,

#false negative and true negative results

truepos/nsim

falsepos/nsim

falseneg/nsim

trueneg/nsim

#probability of study success poss

poss<-(truepos+falsepos)/nsim

poss

#positive predictive value

ppv<-truepos/(truepos+falsepos)

ppv

#print sample size, probability of study success and

#positive predictive value

cbind(sampsize,poss,ppv)

Chapter 12, Figure 12.3

#prior as used for pain example in chapter 2

#use discretized grid to calculate

#theta values for first component

theta1<-c(seq(-0.05,0.05,0.01))

#density for first component

prior1<-c(rep(2,length(theta1)))

#theta values for second component
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theta2<-c(seq(0.05,5,0.01))

#density for second component

prior2<-dnorm(theta2,2.5,0.8)*0.8

#observed effects for plotting

yval<-c(seq(1.94,5,0.01))

#counter for indexing vector of posterior expected values

count<-0

#vector to hold posterior expected values

expect<-NA

for(yy in yval){

count<-count+1

#sum over theta of prior times likelihood for first

#component

sumy1<-sum(dnorm(yy,theta1,sqrt(2*49/100))*prior1)

#sum over theta of prior times likelihood for second

#component

sumy2<-sum(dnorm(yy,theta2,sqrt(2*49/100))*prior2)

#probability of data

proby<-sumy1+sumy2

#prior times likelihood divided by probability of data

# - first component

post1<-prior1*dnorm(yy,theta1,sqrt(2*49/100))/proby

#prior times likelihood divided by probability of data

# - second component

post2<-prior2*dnorm(yy,theta2,sqrt(2*49/100))/proby

#posterior expected value

expect[count]<-sum(c(post1,post2)*c(theta1,theta2))

#print observed difference and posterior expected value

print(cbind(yy,expect[count]))

}

#plot observed difference versus posterior expected value

plot(yval,expect,xlim=c(1.94,5),ylim=c(1.94,5),typ=’l’,

xlab=’observed Phase 2 treatment effect’,

ylab=’posterior expected effect’,lwd=2,cex=2,cex.lab=2,

cex.axis=2,col=’blue’)

#observed values greater than 2.43

resyval<-yval[yval>2.43]

#reverse order of observed values

resyval<-rev(resyval)
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#posterior expected values for observed values greater

#than 2.43

resexp<-expect[yval>2.43]

#reverse order of expected values

resexp<-rev(resexp)

#shade in area between 45 degree line and plot of observed

#versus posterior expected value

polygon(x=c(2.5,5,resyval),y=c(2.5,5,resexp),density=5)

#add 45 degree line

abline(a=0,b=1)

Chapter 12, Figure 12.4

#prior as used for pain example in chapter 2

#use discretized grid to calculate

#theta values for first component

theta1<-c(seq(-0.05,0.05,0.01))

#density for first component

prior1<-c(rep(2,length(theta1)))

#theta values for second component

theta2<-c(seq(0.05,5,0.01))

#density for second component

prior2<-dnorm(theta2,2.5,0.8)*0.8

#observed effects for plotting

yval<-c(seq(1.94,5,0.01))

#index for vector of posterior expected values

count<-0

#vector for posterior expected values

expect<-NA

#vector for difference between observed and posterior

#expected value

diff<-NA

#vector for difference between observed and posterior

#expected value as percentage of observed value

per<-NA
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for(yy in yval){

count<-count+1

#sum over theta of prior times likelihood for first

#component

sumy1<-sum(dnorm(yy,theta1,sqrt(2*49/100))*prior1)

#sum over theta of prior times likelihood for second

# component

sumy2<-sum(dnorm(yy,theta2,sqrt(2*49/100))*prior2)

#probability of data

proby<-sumy1+sumy2

#prior times likelihood divided by probability of data

# - first component

post1<-prior1*dnorm(yy,theta1,sqrt(2*49/100))/proby

#prior times likelihood divided by probability of data

# - second component

post2<-prior2*dnorm(yy,theta2,sqrt(2*49/100))/proby

#posterior expected value

expect[count]<-sum(c(post1,post2)*c(theta1,theta2))

#print observed difference and posterior expected value

print(cbind(yy,expect[count]))

#difference between observed and posterior expected value

diff[count]<-(yy-expect[count])

#difference as percentage of observed value

per[count]<-diff[count]/yy*100

}

#plot of observed value versus difference as percentage of

#observed

plot(yval,per,xlim=c(2.44,5),ylim=c(0,35),typ=’l’,

xlab=’observed Phase 2 treatment effect’,

ylab=’difference (as %)’,lwd=2,cex=2,cex.lab=2,cex.axis=2)
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Empirical prior, 125
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183, 188, 189

Expected net present value, 69, 83, 165

Exponential decline, 159

Exposure response, 120

Extrapolation, 149

F
Fast Track, 11

Fifth-year net revenue, 158, 161–162

Frequentist, viii, 19–30, 41, 42, 69, 70, 89, 102

Frequentist operating characteristics, 93, 102

Future net revenue (PVRev), 159

G
Generalized least squares, 195

Generalized nonlinear models, 106

Generalized variance, 107, 108

Go decision, 59, 88, 89, 92, 95, 96, 98, 100,

102, 155, 168

Group sequential trial, 28

H
Hierarchical Bayesian model, 53, 56

Hill parameter, 72–74, 106

Historical data, 9, 103, 119

Hypotheses, 7, 19–22, 26, 28, 29, 41, 191

I
Improper prior, 196

Indirect comparisons, 140, 142, 144, 146, 148

Inference, 19, 23, 30, 53, 54, 74

Information, 12, 41

Information from Observational Studies,

197–198

Informative prior, 66, 70, 89, 114, 197

Interaction effect, 141

Interim analyses, 14, 191–193, 203

International Conference on Harmonisation, 8

Isotonic regression, 163

J
Joint modeling, 195

K
Kenward-Roger adjustment, 141

Kill decision, 87

L
Laboratory assay, 33

Launch criteria, 178, 179

Launch threshold, 176, 177, 179, 181,

183, 184

LDOD R package, 111, 113

Learn Phase Development Assessment Tool

(LPDAT), 85

Likelihood ratio test, 22

Linear log-dose model, 76

Linear mixed model, 141

Linear model, 73

Locally optimal designs, 108

Logistic model, 163

Llower reference value (LRV), 88

M
Markov chain Monte Carlo methods, 54

Master Protocol, 14–15

Maximum Safe Dose (MSD), 195

Maximum likelihood, 22, 73, 105, 106,

111–113, 115, 117, 118, 196

Maximum tolerated dose (MTD), 5, 107

Maximum utility method, 164

MCP-Mod, 76, 105, 195

Medicare, 198

Meta-analytic predictive prior, 54

Minimum acceptable value (MAV), 87

Minimum effective dose (MED), 195

Mixture prior distribution, 61, 62, 187

Model-based meta-analysis (MBMA), 54,

63–65

Multiregional clinical trials (MRCTs), 200

N
Negative predictive value (NPV), 35–37, 58,

78, 79

Net revenue, 83, 158–160

Network meta-analysis, 198

(Network meta-analysis) heterogeneity, 198

(Network meta-analysis) inconsistency, 198

Noninferiority trial, 57, 204

Noninformative priors, 66

Nonmonotone dose response, 119

Normal Dynamic Linear Model (NDLM), 385

Null hypothesis, 20–22, 24–26, 28, 41, 45,

53, 55–59, 70, 76, 86, 89, 184,

185, 192

246 Index



O
One-sided test, 28–29, 57, 86, 89, 192

OpenBUGS, 54

Optimal design, 105, 108, 119, 157

Orphan drug, 12

P
Patent life, 83, 153, 166

Pause decision, 87, 88, 90, 92, 95, 97, 101

Pediatric study designs, 146

Pharmacodynamic (PD), 64

Pharmacokinetic (PK), 2, 4, 64, 120

Phase 1, 4–5, 43, 154, 191

Phase 2, 4–6, 9, 42, 54, 61, 63, 65, 82, 158, 159,

161, 163, 164, 166, 168, 173, 176, 178,

185, 186, 189, 191, 203

Phase 3, 4, 7–8, 15, 42, 54, 63, 82, 154–156,

159, 166–168, 173, 176, 179, 181, 183,

189, 191, 203

Phase 4, 4, 8

PK/PD model, 54, 59, 63–65, 81

PK/PD prediction of potency, 114

Placebo response, 63, 110, 114

Planned power, 173, 176, 180, 189

Population exposure, 8

Positive predictive value (PPV), 35–37, 43, 58,

79, 202

Posterior distribution, 54, 55, 61, 64, 66, 81,

103, 118, 174, 184, 188, 192, 196

Posterior expected value, 185

Power function, 24–25, 45, 46, 57

Preclinical data, 197

Predictive power, 192, 193

Present value, 158–167

Prevalence, 1, 36, 37, 39, 43, 44

Prior distribution, 53–57, 59–65, 86, 93–94,

102, 114, 115, 118, 182–188

Priority review, 11, 12

Probability distribution, 19, 55, 58, 63

Probability of compound success (POCS),

69, 81

Probability of Program Success (POPS), 69,

79–80

Probability of study success (POSS), 69, 78,

192, 201

Probability of technical and regulatory success

(PTRS)., 201

Probability of technical success (PTS), 201

Professional patients, 200

Proof of concept (POC), 5, 43, 61, 62, 69–71,

85–103, 154, 168, 182–184

Proof of mechanism (POM), 5

Propensity score, 198

P-value, 7, 29, 44–46, 48, 49, 79, 80

Q
Quadratic model, 76, 163

Qualitative information, 197

R
Random variable, 19, 29

Rare disease, 8, 15, 30

Receiver operating characteristic (ROC)

curve, 35
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